mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
backup
This commit is contained in:
@@ -38,7 +38,7 @@ def migrate_cache_llm():
|
|||||||
from transformers.utils.hub import move_cache
|
from transformers.utils.hub import move_cache
|
||||||
|
|
||||||
print("Moving LLM cache")
|
print("Moving LLM cache")
|
||||||
move_cache()
|
move_cache(cache_dir=IMAGE_MODEL_DIR)
|
||||||
print("LLM cache moved")
|
print("LLM cache moved")
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -13,19 +13,40 @@ from pydantic import BaseModel
|
|||||||
WHISPER_MODEL: str = "large-v2"
|
WHISPER_MODEL: str = "large-v2"
|
||||||
WHISPER_COMPUTE_TYPE: str = "float16"
|
WHISPER_COMPUTE_TYPE: str = "float16"
|
||||||
WHISPER_NUM_WORKERS: int = 1
|
WHISPER_NUM_WORKERS: int = 1
|
||||||
WHISPER_CACHE_DIR: str = "/cache/whisper"
|
|
||||||
|
MODEL_DIR = "/model"
|
||||||
|
|
||||||
# Translation Model
|
# Translation Model
|
||||||
TRANSLATION_MODEL = "facebook/m2m100_418M"
|
TRANSLATION_MODEL = "facebook/m2m100_418M"
|
||||||
|
|
||||||
stub = Stub(name="reflector-transcriber")
|
stub = Stub(name="reflector-transtest")
|
||||||
|
|
||||||
|
|
||||||
def download_whisper():
|
def download_models():
|
||||||
from faster_whisper.utils import download_model
|
from faster_whisper.utils import download_model
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
download_model(WHISPER_MODEL, local_files_only=False)
|
print("Downloading Whisper model")
|
||||||
|
download_model(WHISPER_MODEL)
|
||||||
|
print("Whisper model downloaded")
|
||||||
|
|
||||||
|
print("Downloading Translation model")
|
||||||
|
ignore_patterns = ["*.ot"]
|
||||||
|
snapshot_download(TRANSLATION_MODEL, cache_dir=MODEL_DIR, ignore_patterns=ignore_patterns)
|
||||||
|
print("Translation model downloaded")
|
||||||
|
|
||||||
|
def migrate_cache_llm():
|
||||||
|
"""
|
||||||
|
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||||
|
Migrating your old cache. This is a one-time only operation. You can
|
||||||
|
interrupt this and resume the migration later on by calling
|
||||||
|
`transformers.utils.move_cache()`.
|
||||||
|
"""
|
||||||
|
from transformers.utils.hub import move_cache
|
||||||
|
|
||||||
|
print("Moving LLM cache")
|
||||||
|
move_cache()
|
||||||
|
print("LLM cache moved")
|
||||||
|
|
||||||
whisper_image = (
|
whisper_image = (
|
||||||
Image.debian_slim(python_version="3.10.8")
|
Image.debian_slim(python_version="3.10.8")
|
||||||
@@ -38,7 +59,8 @@ whisper_image = (
|
|||||||
"sentencepiece",
|
"sentencepiece",
|
||||||
"protobuf",
|
"protobuf",
|
||||||
)
|
)
|
||||||
.run_function(download_whisper)
|
.run_function(download_models)
|
||||||
|
.run_function(migrate_cache_llm)
|
||||||
.env(
|
.env(
|
||||||
{
|
{
|
||||||
"LD_LIBRARY_PATH": (
|
"LD_LIBRARY_PATH": (
|
||||||
@@ -69,8 +91,14 @@ class Whisper:
|
|||||||
compute_type=WHISPER_COMPUTE_TYPE,
|
compute_type=WHISPER_COMPUTE_TYPE,
|
||||||
num_workers=WHISPER_NUM_WORKERS,
|
num_workers=WHISPER_NUM_WORKERS,
|
||||||
)
|
)
|
||||||
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(TRANSLATION_MODEL).to(self.device)
|
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(
|
||||||
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(TRANSLATION_MODEL)
|
TRANSLATION_MODEL,
|
||||||
|
cache_dir=TRANSCRIPTION_MODEL_DIR
|
||||||
|
).to(self.device)
|
||||||
|
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(
|
||||||
|
TRANSLATION_MODEL,
|
||||||
|
cache_dir=TRANSCRIPTION_MODEL_DIR
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
|
|||||||
Reference in New Issue
Block a user