mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
fix: align whisper transcriber api with parakeet (#602)
* Documents transcriber api * Update whisper transcriber api to match parakeet * Update api transcription spec * Return 400 for unsupported file type * Add params to api spec * Update whisper transcriber implementation to match parakeet
This commit is contained in:
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m gpu_modal --no-cov server/tests/test_gpu_modal_transcript.py
|
||||
```
|
||||
@@ -1,41 +1,78 @@
|
||||
import os
|
||||
import tempfile
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
volume.commit()
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
@@ -45,19 +82,98 @@ image = (
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
@@ -71,23 +187,200 @@ class Transcriber:
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
@@ -96,66 +389,220 @@ class Transcriber:
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": text, "words": words}
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
@@ -272,6 +272,9 @@ class TestGPUModalTranscript:
|
||||
for f in temp_files:
|
||||
Path(f).unlink(missing_ok=True)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not "parakeet" in get_model_name(), reason="Parakeet only supports English"
|
||||
)
|
||||
def test_transcriptions_error_handling(self):
|
||||
"""Test error handling for invalid requests."""
|
||||
url = get_modal_transcript_url()
|
||||
|
||||
Reference in New Issue
Block a user