Merge pull request #29 from Monadical-SAS/feat/gokul

Push incremental summaries trial code
This commit is contained in:
projects-g
2023-07-14 00:39:43 +05:30
committed by GitHub

158
trials/incsum.py Normal file
View File

@@ -0,0 +1,158 @@
# Observe the incremental summaries by performing summaries in chunks
with open("transcript.txt") as f:
transcription = f.read()
import spacy
def split_text_file(filename, token_count):
nlp = spacy.load('en_core_web_md')
with open(filename, 'r') as file:
text = file.read()
doc = nlp(text)
total_tokens = len(doc)
parts = []
start_index = 0
while start_index < total_tokens:
end_index = start_index + token_count
part_tokens = doc[start_index:end_index]
part = ' '.join(token.text for token in part_tokens)
parts.append(part)
start_index = end_index
return parts
# Set the chunk length here to split the transcript and test
MAX_CHUNK_LENGTH=1000
chunks = split_text_file("transcript.txt", MAX_CHUNK_LENGTH)
print("Number of chunks", len(chunks))
# Write chunks to file to refer to input vs output, separated by blank lines
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a") as f:
for c in chunks:
f.write(c + "\n\n")
# If we want to run only a certain model, type the option while running
# ex. python incsum.py 1 => will run approach 1
# If no input, will run all approaches
import sys
try:
index = sys.argv[1]
except:
index = None
# Approach 1 : facebook/bart-large-cnn
if index == "1" or index is None:
SUMMARY_MODEL="facebook/bart-large-cnn"
MIN_LENGTH=5
MAX_LENGTH=10
BEAM_SIZE=2
print("Performing chunk summary : " + SUMMARY_MODEL)
from transformers import BartTokenizer, BartForConditionalGeneration
tokenizer = BartTokenizer.from_pretrained(SUMMARY_MODEL)
model = BartForConditionalGeneration.from_pretrained(SUMMARY_MODEL)
summaries = []
for c in chunks:
input_ids = tokenizer.encode(c,
truncation=True,
max_length=MAX_CHUNK_LENGTH,
padding="max_length",
return_tensors='pt')
summary_ids = model.generate(
input_ids,
num_beams=BEAM_SIZE,
max_length=56,
early_stopping=True,
length_penalty=1.0)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summaries.append(summary)
with open("bart-summaries.txt", "a") as f:
for summary in summaries:
f.write(summary + "\n\n")
# Approach 2
if index == "2" or index is None:
print("Performing chunk summary : " + "gpt-neo-1.3B")
import torch
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
summaries = []
for c in chunks:
input_ids = tokenizer.encode(c,
truncation=True,
return_tensors='pt')
input_length = input_ids.shape[1]
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
max_summary_length = 100
max_length = input_length + max_summary_length
output = model.generate(input_ids,
max_length=max_length,
attention_mask=attention_mask,
pad_token_id=model.config.eos_token_id,
num_beams=4,
length_penalty=2.0,
early_stopping=True)
summary_ids = output[0, input_length:]
summary = tokenizer.decode(summary_ids, skip_special_tokens=True)
summaries.append(summary)
with open("gptneo1.3B-summaries.txt", "a") as f:
f.write(summary + "\n\n")
# Approach 3
if index == "3" or index is None:
print("Performing chunk summary : " + "mpt-7B")
import torch
import transformers
from transformers import AutoTokenizer
config = transformers.AutoConfig.from_pretrained('mosaicml/mpt-7b',
trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.max_seq_len = 1024
config.init_device = "meta"
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b',
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
summaries = []
for c in chunks:
input_ids = tokenizer.encode(c, return_tensors="pt")
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
output = model.generate(input_ids,
max_new_tokens=25,
attention_mask=attention_mask,
pad_token_id=model.config.eos_token_id,
num_return_sequences=1)
summary = tokenizer.decode(output[0],
skip_special_tokens=True)
summaries.append(summary)
with open("mpt-7b-summaries.txt", "a") as f:
for summary in summaries:
f.write(summary + "\n\n")