mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 20:59:05 +00:00
New summary (#283)
* handover final summary to Zephyr deployment * fix display error * push new summary feature * fix failing test case * Added markdown support for final summary * update UI render issue * retain sentence tokenizer call --------- Co-authored-by: Koper <andreas@monadical.com>
This commit is contained in:
@@ -258,7 +258,7 @@ class LLM:
|
||||
"""
|
||||
Choose the token size to set as the threshold to pack the LLM calls
|
||||
"""
|
||||
buffer_token_size = 25
|
||||
buffer_token_size = 100
|
||||
default_output_tokens = 1000
|
||||
context_window = self.tokenizer.model_max_length
|
||||
tokens = self.tokenizer.tokenize(
|
||||
|
||||
@@ -23,7 +23,7 @@ class ModalLLM(LLM):
|
||||
"""
|
||||
# TODO: Query the specific GPU platform
|
||||
# Replace this with a HTTP call
|
||||
return ["lmsys/vicuna-13b-v1.5"]
|
||||
return ["lmsys/vicuna-13b-v1.5", "HuggingFaceH4/zephyr-7b-alpha"]
|
||||
|
||||
async def _generate(
|
||||
self, prompt: str, gen_schema: dict | None, gen_cfg: dict | None, **kwargs
|
||||
@@ -33,6 +33,13 @@ class ModalLLM(LLM):
|
||||
json_payload["gen_schema"] = gen_schema
|
||||
if gen_cfg:
|
||||
json_payload["gen_cfg"] = gen_cfg
|
||||
|
||||
# Handing over generation of the final summary to Zephyr model
|
||||
# but replacing the Vicuna model will happen after more testing
|
||||
# TODO: Create a mapping of model names and cloud deployments
|
||||
if self.model_name == "HuggingFaceH4/zephyr-7b-alpha":
|
||||
self.llm_url = settings.ZEPHYR_LLM_URL + "/llm"
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await retry(client.post)(
|
||||
self.llm_url,
|
||||
|
||||
@@ -144,7 +144,76 @@ class TopicParams(LLMTaskParams):
|
||||
return self._task_params
|
||||
|
||||
|
||||
class BulletedSummaryParams(LLMTaskParams):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._gen_cfg = GenerationConfig(
|
||||
max_new_tokens=800,
|
||||
num_beams=1,
|
||||
do_sample=True,
|
||||
temperature=0.2,
|
||||
early_stopping=True,
|
||||
)
|
||||
self._instruct = """
|
||||
Given a meeting transcript, extract the key things discussed in the
|
||||
form of a list.
|
||||
|
||||
While generating the response, follow the constraints mentioned below.
|
||||
|
||||
Summary constraints:
|
||||
i) Do not add new content, except to fix spelling or punctuation.
|
||||
ii) Do not add any prefixes or numbering in the response.
|
||||
iii) The summarization should be as information dense as possible.
|
||||
iv) Do not add any additional sections like Note, Conclusion, etc. in
|
||||
the response.
|
||||
|
||||
Response format:
|
||||
i) The response should be in the form of a bulleted list.
|
||||
ii) Iteratively merge all the relevant paragraphs together to keep the
|
||||
number of paragraphs to a minimum.
|
||||
iii) Remove any unfinished sentences from the final response.
|
||||
iv) Do not include narrative or reporting clauses.
|
||||
v) Use "*" as the bullet icon.
|
||||
"""
|
||||
self._task_params = TaskParams(
|
||||
instruct=self._instruct, gen_schema=None, gen_cfg=self._gen_cfg
|
||||
)
|
||||
|
||||
def _get_task_params(self) -> TaskParams:
|
||||
"""gen_schema
|
||||
Return the parameters associated with a specific LLM task
|
||||
"""
|
||||
return self._task_params
|
||||
|
||||
|
||||
class MergedSummaryParams(LLMTaskParams):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._gen_cfg = GenerationConfig(
|
||||
max_new_tokens=600,
|
||||
num_beams=1,
|
||||
do_sample=True,
|
||||
temperature=0.2,
|
||||
early_stopping=True,
|
||||
)
|
||||
self._instruct = """
|
||||
Given the key points of a meeting, summarize the points to describe the
|
||||
meeting in the form of paragraphs.
|
||||
"""
|
||||
self._task_params = TaskParams(
|
||||
instruct=self._instruct, gen_schema=None, gen_cfg=self._gen_cfg
|
||||
)
|
||||
|
||||
def _get_task_params(self) -> TaskParams:
|
||||
"""gen_schema
|
||||
Return the parameters associated with a specific LLM task
|
||||
"""
|
||||
return self._task_params
|
||||
|
||||
|
||||
LLMTaskParams.register("topic", TopicParams)
|
||||
LLMTaskParams.register("final_title", FinalTitleParams)
|
||||
LLMTaskParams.register("final_short_summary", FinalShortSummaryParams)
|
||||
LLMTaskParams.register("final_long_summary", FinalLongSummaryParams)
|
||||
LLMTaskParams.register("bullet_summary", BulletedSummaryParams)
|
||||
LLMTaskParams.register("merged_summary", MergedSummaryParams)
|
||||
|
||||
Reference in New Issue
Block a user