mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-24 06:09:07 +00:00
feat: durable (#794)
* durable (no-mistakes) * hatchet no-mistake * hatchet no-mistake * hatchet no-mistake, better logging * remove conductor and add hatchet tests (no-mistakes) * self-review (no-mistakes) * hatched logs * remove shadow mode for hatchet * and add hatchet processor setting to room * . * cleanup * hatchet init db * self-review (no-mistakes) * self-review (no-mistakes) * hatchet: restore zullip report * self-review round * self-review round * self-review round * dry hatchet with celery * dry hatched with celery - 2 * self-review round * more NES instead of str * self-review wip * self-review round * self-review round * self-review round * can_replay cancelled * add forgotten file * pr autoreviewer fixes * better log webhook events * durable_started return * migration sync * latest changes feature parity * migration merge * pr review --------- Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
5
server/reflector/hatchet/__init__.py
Normal file
5
server/reflector/hatchet/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
"""Hatchet workflow orchestration for Reflector."""
|
||||
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
|
||||
__all__ = ["HatchetClientManager"]
|
||||
98
server/reflector/hatchet/broadcast.py
Normal file
98
server/reflector/hatchet/broadcast.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""WebSocket broadcasting helpers for Hatchet workflows.
|
||||
|
||||
DUPLICATION NOTE: To be kept when Celery is deprecated. Currently dupes Celery logic.
|
||||
|
||||
Provides WebSocket broadcasting for Hatchet that matches Celery's @broadcast_to_sockets
|
||||
decorator behavior. Events are broadcast to transcript rooms and user rooms.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import structlog
|
||||
|
||||
from reflector.db.transcripts import Transcript, TranscriptEvent, transcripts_controller
|
||||
from reflector.utils.string import NonEmptyString
|
||||
from reflector.ws_manager import get_ws_manager
|
||||
|
||||
# Events that should also be sent to user room (matches Celery behavior)
|
||||
USER_ROOM_EVENTS = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
|
||||
|
||||
async def broadcast_event(
|
||||
transcript_id: NonEmptyString,
|
||||
event: TranscriptEvent,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> None:
|
||||
"""Broadcast a TranscriptEvent to WebSocket subscribers.
|
||||
|
||||
Fire-and-forget: errors are logged but don't interrupt workflow execution.
|
||||
"""
|
||||
logger.info(
|
||||
"Broadcasting event",
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
try:
|
||||
ws_manager = get_ws_manager()
|
||||
|
||||
await ws_manager.send_json(
|
||||
room_id=f"ts:{transcript_id}",
|
||||
message=event.model_dump(mode="json"),
|
||||
)
|
||||
logger.info(
|
||||
"Event sent to transcript room",
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
|
||||
if event.event in USER_ROOM_EVENTS:
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
await ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{event.event}",
|
||||
"data": {"id": transcript_id, **event.data},
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to broadcast event",
|
||||
error=str(e),
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
|
||||
|
||||
async def set_status_and_broadcast(
|
||||
transcript_id: NonEmptyString,
|
||||
status: str,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> None:
|
||||
"""Set transcript status and broadcast to WebSocket.
|
||||
|
||||
Wrapper around transcripts_controller.set_status that adds WebSocket broadcasting.
|
||||
"""
|
||||
event = await transcripts_controller.set_status(transcript_id, status)
|
||||
if event:
|
||||
await broadcast_event(transcript_id, event, logger=logger)
|
||||
|
||||
|
||||
async def append_event_and_broadcast(
|
||||
transcript_id: NonEmptyString,
|
||||
transcript: Transcript,
|
||||
event_name: str,
|
||||
data: Any,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> TranscriptEvent:
|
||||
"""Append event to transcript and broadcast to WebSocket.
|
||||
|
||||
Wrapper around transcripts_controller.append_event that adds WebSocket broadcasting.
|
||||
"""
|
||||
event = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event=event_name,
|
||||
data=data,
|
||||
)
|
||||
await broadcast_event(transcript_id, event, logger=logger)
|
||||
return event
|
||||
115
server/reflector/hatchet/client.py
Normal file
115
server/reflector/hatchet/client.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""Hatchet Python client wrapper.
|
||||
|
||||
Uses singleton pattern because:
|
||||
1. Hatchet client maintains persistent gRPC connections for workflow registration
|
||||
2. Creating multiple clients would cause registration conflicts and resource leaks
|
||||
3. The SDK is designed for a single client instance per process
|
||||
4. Tests use `HatchetClientManager.reset()` to isolate state between tests
|
||||
"""
|
||||
|
||||
import logging
|
||||
import threading
|
||||
|
||||
from hatchet_sdk import ClientConfig, Hatchet
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class HatchetClientManager:
|
||||
"""Singleton manager for Hatchet client connections.
|
||||
|
||||
See module docstring for rationale. For test isolation, use `reset()`.
|
||||
"""
|
||||
|
||||
_instance: Hatchet | None = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
@classmethod
|
||||
def get_client(cls) -> Hatchet:
|
||||
"""Get or create the Hatchet client (thread-safe singleton)."""
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
if not settings.HATCHET_CLIENT_TOKEN:
|
||||
raise ValueError("HATCHET_CLIENT_TOKEN must be set")
|
||||
|
||||
# Pass root logger to Hatchet so workflow logs appear in dashboard
|
||||
root_logger = logging.getLogger()
|
||||
cls._instance = Hatchet(
|
||||
debug=settings.HATCHET_DEBUG,
|
||||
config=ClientConfig(logger=root_logger),
|
||||
)
|
||||
return cls._instance
|
||||
|
||||
@classmethod
|
||||
async def start_workflow(
|
||||
cls,
|
||||
workflow_name: str,
|
||||
input_data: dict,
|
||||
additional_metadata: dict | None = None,
|
||||
) -> str:
|
||||
"""Start a workflow and return the workflow run ID.
|
||||
|
||||
Args:
|
||||
workflow_name: Name of the workflow to trigger.
|
||||
input_data: Input data for the workflow run.
|
||||
additional_metadata: Optional metadata for filtering in dashboard
|
||||
(e.g., transcript_id, recording_id).
|
||||
"""
|
||||
client = cls.get_client()
|
||||
result = await client.runs.aio_create(
|
||||
workflow_name,
|
||||
input_data,
|
||||
additional_metadata=additional_metadata,
|
||||
)
|
||||
return result.run.metadata.id
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_run_status(cls, workflow_run_id: str) -> V1TaskStatus:
|
||||
client = cls.get_client()
|
||||
return await client.runs.aio_get_status(workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def cancel_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_cancel(workflow_run_id)
|
||||
logger.info("[Hatchet] Cancelled workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def replay_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_replay(workflow_run_id)
|
||||
logger.info("[Hatchet] Replaying workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def can_replay(cls, workflow_run_id: str) -> bool:
|
||||
"""Check if workflow can be replayed (is FAILED only).
|
||||
|
||||
CANCELLED workflows should start fresh (new run ID) rather than replay,
|
||||
since cancellation indicates user intent to abort.
|
||||
"""
|
||||
try:
|
||||
status = await cls.get_workflow_run_status(workflow_run_id)
|
||||
return status == V1TaskStatus.FAILED
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"[Hatchet] Failed to check replay status",
|
||||
workflow_run_id=workflow_run_id,
|
||||
error=str(e),
|
||||
)
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_status(cls, workflow_run_id: str) -> dict:
|
||||
"""Get the full workflow run details as dict."""
|
||||
client = cls.get_client()
|
||||
run = await client.runs.aio_get(workflow_run_id)
|
||||
return run.to_dict()
|
||||
|
||||
@classmethod
|
||||
def reset(cls) -> None:
|
||||
"""Reset the client instance (for testing)."""
|
||||
with cls._lock:
|
||||
cls._instance = None
|
||||
63
server/reflector/hatchet/run_workers.py
Normal file
63
server/reflector/hatchet/run_workers.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""
|
||||
Run Hatchet workers for the diarization pipeline.
|
||||
Runs as a separate process, just like Celery workers.
|
||||
|
||||
Usage:
|
||||
uv run -m reflector.hatchet.run_workers
|
||||
|
||||
# Or via docker:
|
||||
docker compose exec server uv run -m reflector.hatchet.run_workers
|
||||
"""
|
||||
|
||||
import signal
|
||||
import sys
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""Start Hatchet worker polling."""
|
||||
if not settings.HATCHET_ENABLED:
|
||||
logger.error("HATCHET_ENABLED is False, not starting workers")
|
||||
sys.exit(1)
|
||||
|
||||
if not settings.HATCHET_CLIENT_TOKEN:
|
||||
logger.error("HATCHET_CLIENT_TOKEN is not set")
|
||||
sys.exit(1)
|
||||
|
||||
logger.info(
|
||||
"Starting Hatchet workers",
|
||||
debug=settings.HATCHET_DEBUG,
|
||||
)
|
||||
|
||||
# Import here (not top-level) - workflow modules call HatchetClientManager.get_client()
|
||||
# at module level because Hatchet SDK decorators (@workflow.task) bind at import time.
|
||||
# Can't use lazy init: decorators need the client object when function is defined.
|
||||
from reflector.hatchet.client import HatchetClientManager # noqa: PLC0415
|
||||
from reflector.hatchet.workflows import ( # noqa: PLC0415
|
||||
diarization_pipeline,
|
||||
track_workflow,
|
||||
)
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
worker = hatchet.worker(
|
||||
"reflector-diarization-worker",
|
||||
workflows=[diarization_pipeline, track_workflow],
|
||||
)
|
||||
|
||||
def shutdown_handler(signum: int, frame) -> None:
|
||||
logger.info("Received shutdown signal, stopping workers...")
|
||||
# Worker cleanup happens automatically on exit
|
||||
sys.exit(0)
|
||||
|
||||
signal.signal(signal.SIGINT, shutdown_handler)
|
||||
signal.signal(signal.SIGTERM, shutdown_handler)
|
||||
|
||||
logger.info("Starting Hatchet worker polling...")
|
||||
worker.start()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
14
server/reflector/hatchet/workflows/__init__.py
Normal file
14
server/reflector/hatchet/workflows/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
"""Hatchet workflow definitions."""
|
||||
|
||||
from reflector.hatchet.workflows.diarization_pipeline import (
|
||||
PipelineInput,
|
||||
diarization_pipeline,
|
||||
)
|
||||
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
|
||||
|
||||
__all__ = [
|
||||
"diarization_pipeline",
|
||||
"track_workflow",
|
||||
"PipelineInput",
|
||||
"TrackInput",
|
||||
]
|
||||
1021
server/reflector/hatchet/workflows/diarization_pipeline.py
Normal file
1021
server/reflector/hatchet/workflows/diarization_pipeline.py
Normal file
File diff suppressed because it is too large
Load Diff
124
server/reflector/hatchet/workflows/models.py
Normal file
124
server/reflector/hatchet/workflows/models.py
Normal file
@@ -0,0 +1,124 @@
|
||||
"""
|
||||
Pydantic models for Hatchet workflow task return types.
|
||||
|
||||
Provides static typing for all task outputs, enabling type checking
|
||||
and better IDE support.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
class PadTrackResult(BaseModel):
|
||||
"""Result from pad_track task."""
|
||||
|
||||
padded_key: NonEmptyString # S3 key (not presigned URL) - presign on demand to avoid stale URLs on replay
|
||||
bucket_name: (
|
||||
NonEmptyString | None
|
||||
) # None means use default transcript storage bucket
|
||||
size: int
|
||||
track_index: int
|
||||
|
||||
|
||||
class TranscribeTrackResult(BaseModel):
|
||||
"""Result from transcribe_track task."""
|
||||
|
||||
words: list[dict[str, Any]]
|
||||
track_index: int
|
||||
|
||||
|
||||
class RecordingResult(BaseModel):
|
||||
"""Result from get_recording task."""
|
||||
|
||||
id: NonEmptyString | None
|
||||
mtg_session_id: NonEmptyString | None
|
||||
duration: float
|
||||
|
||||
|
||||
class ParticipantsResult(BaseModel):
|
||||
"""Result from get_participants task."""
|
||||
|
||||
participants: list[dict[str, Any]]
|
||||
num_tracks: int
|
||||
source_language: NonEmptyString
|
||||
target_language: NonEmptyString
|
||||
|
||||
|
||||
class PaddedTrackInfo(BaseModel):
|
||||
"""Info for a padded track - S3 key + bucket for on-demand presigning."""
|
||||
|
||||
key: NonEmptyString
|
||||
bucket_name: NonEmptyString | None # None = use default storage bucket
|
||||
|
||||
|
||||
class ProcessTracksResult(BaseModel):
|
||||
"""Result from process_tracks task."""
|
||||
|
||||
all_words: list[dict[str, Any]]
|
||||
padded_tracks: list[PaddedTrackInfo] # S3 keys, not presigned URLs
|
||||
word_count: int
|
||||
num_tracks: int
|
||||
target_language: NonEmptyString
|
||||
created_padded_files: list[NonEmptyString]
|
||||
|
||||
|
||||
class MixdownResult(BaseModel):
|
||||
"""Result from mixdown_tracks task."""
|
||||
|
||||
audio_key: NonEmptyString
|
||||
duration: float
|
||||
tracks_mixed: int
|
||||
|
||||
|
||||
class WaveformResult(BaseModel):
|
||||
"""Result from generate_waveform task."""
|
||||
|
||||
waveform_generated: bool
|
||||
|
||||
|
||||
class TopicsResult(BaseModel):
|
||||
"""Result from detect_topics task."""
|
||||
|
||||
topics: list[dict[str, Any]]
|
||||
|
||||
|
||||
class TitleResult(BaseModel):
|
||||
"""Result from generate_title task."""
|
||||
|
||||
title: str | None
|
||||
|
||||
|
||||
class SummaryResult(BaseModel):
|
||||
"""Result from generate_summary task."""
|
||||
|
||||
summary: str | None
|
||||
short_summary: str | None
|
||||
action_items: dict | None = None
|
||||
|
||||
|
||||
class FinalizeResult(BaseModel):
|
||||
"""Result from finalize task."""
|
||||
|
||||
status: NonEmptyString
|
||||
|
||||
|
||||
class ConsentResult(BaseModel):
|
||||
"""Result from cleanup_consent task."""
|
||||
|
||||
|
||||
class ZulipResult(BaseModel):
|
||||
"""Result from post_zulip task."""
|
||||
|
||||
zulip_message_id: int | None = None
|
||||
skipped: bool = False
|
||||
|
||||
|
||||
class WebhookResult(BaseModel):
|
||||
"""Result from send_webhook task."""
|
||||
|
||||
webhook_sent: bool
|
||||
skipped: bool = False
|
||||
response_code: int | None = None
|
||||
222
server/reflector/hatchet/workflows/track_processing.py
Normal file
222
server/reflector/hatchet/workflows/track_processing.py
Normal file
@@ -0,0 +1,222 @@
|
||||
"""
|
||||
Hatchet child workflow: TrackProcessing
|
||||
|
||||
Handles individual audio track processing: padding and transcription.
|
||||
Spawned dynamically by the main diarization pipeline for each track.
|
||||
|
||||
Architecture note: This is a separate workflow (not inline tasks in DiarizationPipeline)
|
||||
because Hatchet workflow DAGs are defined statically, but the number of tracks varies
|
||||
at runtime. Child workflow spawning via `aio_run()` + `asyncio.gather()` is the
|
||||
standard pattern for dynamic fan-out. See `process_tracks` in diarization_pipeline.py.
|
||||
|
||||
Note: This file uses deferred imports (inside tasks) intentionally.
|
||||
Hatchet workers run in forked processes; fresh imports per task ensure
|
||||
storage/DB connections are not shared across forks.
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
from hatchet_sdk import Context
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
|
||||
from reflector.utils.audio_padding import (
|
||||
apply_audio_padding_to_file,
|
||||
extract_stream_start_time_from_container,
|
||||
)
|
||||
|
||||
|
||||
class TrackInput(BaseModel):
|
||||
"""Input for individual track processing."""
|
||||
|
||||
track_index: int
|
||||
s3_key: str
|
||||
bucket_name: str
|
||||
transcript_id: str
|
||||
language: str = "en"
|
||||
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
track_workflow = hatchet.workflow(name="TrackProcessing", input_validator=TrackInput)
|
||||
|
||||
|
||||
@track_workflow.task(execution_timeout=timedelta(seconds=300), retries=3)
|
||||
async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
|
||||
"""Pad single audio track with silence for alignment.
|
||||
|
||||
Extracts stream.start_time from WebM container metadata and applies
|
||||
silence padding using PyAV filter graph (adelay).
|
||||
"""
|
||||
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
|
||||
logger.info(
|
||||
"[Hatchet] pad_track",
|
||||
track_index=input.track_index,
|
||||
s3_key=input.s3_key,
|
||||
transcript_id=input.transcript_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Create fresh storage instance to avoid aioboto3 fork issues
|
||||
from reflector.settings import settings # noqa: PLC0415
|
||||
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
|
||||
|
||||
storage = AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
source_url = await storage.get_file_url(
|
||||
input.s3_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=input.bucket_name,
|
||||
)
|
||||
|
||||
with av.open(source_url) as in_container:
|
||||
start_time_seconds = extract_stream_start_time_from_container(
|
||||
in_container, input.track_index, logger=logger
|
||||
)
|
||||
|
||||
# If no padding needed, return original S3 key
|
||||
if start_time_seconds <= 0:
|
||||
logger.info(
|
||||
f"Track {input.track_index} requires no padding",
|
||||
track_index=input.track_index,
|
||||
)
|
||||
return PadTrackResult(
|
||||
padded_key=input.s3_key,
|
||||
bucket_name=input.bucket_name,
|
||||
size=0,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
apply_audio_padding_to_file(
|
||||
in_container,
|
||||
temp_path,
|
||||
start_time_seconds,
|
||||
input.track_index,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
file_size = Path(temp_path).stat().st_size
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
|
||||
|
||||
logger.info(
|
||||
f"About to upload padded track",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
|
||||
with open(temp_path, "rb") as padded_file:
|
||||
await storage.put_file(storage_path, padded_file)
|
||||
|
||||
logger.info(
|
||||
f"Uploaded padded track to S3",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
finally:
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
|
||||
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
|
||||
logger.info(
|
||||
"[Hatchet] pad_track complete",
|
||||
track_index=input.track_index,
|
||||
padded_key=storage_path,
|
||||
)
|
||||
|
||||
# Return S3 key (not presigned URL) - consumer tasks presign on demand
|
||||
# This avoids stale URLs when workflow is replayed
|
||||
return PadTrackResult(
|
||||
padded_key=storage_path,
|
||||
bucket_name=None, # None = use default transcript storage bucket
|
||||
size=file_size,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("[Hatchet] pad_track failed", error=str(e), exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
@track_workflow.task(
|
||||
parents=[pad_track], execution_timeout=timedelta(seconds=600), retries=3
|
||||
)
|
||||
async def transcribe_track(input: TrackInput, ctx: Context) -> TranscribeTrackResult:
|
||||
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
|
||||
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
|
||||
logger.info(
|
||||
"[Hatchet] transcribe_track",
|
||||
track_index=input.track_index,
|
||||
language=input.language,
|
||||
)
|
||||
|
||||
try:
|
||||
pad_result = ctx.task_output(pad_track)
|
||||
padded_key = pad_result.padded_key
|
||||
bucket_name = pad_result.bucket_name
|
||||
|
||||
if not padded_key:
|
||||
raise ValueError("Missing padded_key from pad_track")
|
||||
|
||||
# Presign URL on demand (avoids stale URLs on workflow replay)
|
||||
from reflector.settings import settings # noqa: PLC0415
|
||||
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
|
||||
|
||||
storage = AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
audio_url = await storage.get_file_url(
|
||||
padded_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=bucket_name,
|
||||
)
|
||||
|
||||
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
|
||||
transcribe_file_with_processor,
|
||||
)
|
||||
|
||||
transcript = await transcribe_file_with_processor(audio_url, input.language)
|
||||
|
||||
# Tag all words with speaker index
|
||||
words = []
|
||||
for word in transcript.words:
|
||||
word_dict = word.model_dump()
|
||||
word_dict["speaker"] = input.track_index
|
||||
words.append(word_dict)
|
||||
|
||||
ctx.log(
|
||||
f"transcribe_track complete: track {input.track_index}, {len(words)} words"
|
||||
)
|
||||
logger.info(
|
||||
"[Hatchet] transcribe_track complete",
|
||||
track_index=input.track_index,
|
||||
word_count=len(words),
|
||||
)
|
||||
|
||||
return TranscribeTrackResult(
|
||||
words=words,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("[Hatchet] transcribe_track failed", error=str(e), exc_info=True)
|
||||
raise
|
||||
Reference in New Issue
Block a user