mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2026-02-04 18:06:48 +00:00
feat: durable (#794)
* durable (no-mistakes) * hatchet no-mistake * hatchet no-mistake * hatchet no-mistake, better logging * remove conductor and add hatchet tests (no-mistakes) * self-review (no-mistakes) * hatched logs * remove shadow mode for hatchet * and add hatchet processor setting to room * . * cleanup * hatchet init db * self-review (no-mistakes) * self-review (no-mistakes) * hatchet: restore zullip report * self-review round * self-review round * self-review round * dry hatchet with celery * dry hatched with celery - 2 * self-review round * more NES instead of str * self-review wip * self-review round * self-review round * self-review round * can_replay cancelled * add forgotten file * pr autoreviewer fixes * better log webhook events * durable_started return * migration sync * latest changes feature parity * migration merge * pr review --------- Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
115
server/reflector/hatchet/client.py
Normal file
115
server/reflector/hatchet/client.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""Hatchet Python client wrapper.
|
||||
|
||||
Uses singleton pattern because:
|
||||
1. Hatchet client maintains persistent gRPC connections for workflow registration
|
||||
2. Creating multiple clients would cause registration conflicts and resource leaks
|
||||
3. The SDK is designed for a single client instance per process
|
||||
4. Tests use `HatchetClientManager.reset()` to isolate state between tests
|
||||
"""
|
||||
|
||||
import logging
|
||||
import threading
|
||||
|
||||
from hatchet_sdk import ClientConfig, Hatchet
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class HatchetClientManager:
|
||||
"""Singleton manager for Hatchet client connections.
|
||||
|
||||
See module docstring for rationale. For test isolation, use `reset()`.
|
||||
"""
|
||||
|
||||
_instance: Hatchet | None = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
@classmethod
|
||||
def get_client(cls) -> Hatchet:
|
||||
"""Get or create the Hatchet client (thread-safe singleton)."""
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
if not settings.HATCHET_CLIENT_TOKEN:
|
||||
raise ValueError("HATCHET_CLIENT_TOKEN must be set")
|
||||
|
||||
# Pass root logger to Hatchet so workflow logs appear in dashboard
|
||||
root_logger = logging.getLogger()
|
||||
cls._instance = Hatchet(
|
||||
debug=settings.HATCHET_DEBUG,
|
||||
config=ClientConfig(logger=root_logger),
|
||||
)
|
||||
return cls._instance
|
||||
|
||||
@classmethod
|
||||
async def start_workflow(
|
||||
cls,
|
||||
workflow_name: str,
|
||||
input_data: dict,
|
||||
additional_metadata: dict | None = None,
|
||||
) -> str:
|
||||
"""Start a workflow and return the workflow run ID.
|
||||
|
||||
Args:
|
||||
workflow_name: Name of the workflow to trigger.
|
||||
input_data: Input data for the workflow run.
|
||||
additional_metadata: Optional metadata for filtering in dashboard
|
||||
(e.g., transcript_id, recording_id).
|
||||
"""
|
||||
client = cls.get_client()
|
||||
result = await client.runs.aio_create(
|
||||
workflow_name,
|
||||
input_data,
|
||||
additional_metadata=additional_metadata,
|
||||
)
|
||||
return result.run.metadata.id
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_run_status(cls, workflow_run_id: str) -> V1TaskStatus:
|
||||
client = cls.get_client()
|
||||
return await client.runs.aio_get_status(workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def cancel_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_cancel(workflow_run_id)
|
||||
logger.info("[Hatchet] Cancelled workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def replay_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_replay(workflow_run_id)
|
||||
logger.info("[Hatchet] Replaying workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def can_replay(cls, workflow_run_id: str) -> bool:
|
||||
"""Check if workflow can be replayed (is FAILED only).
|
||||
|
||||
CANCELLED workflows should start fresh (new run ID) rather than replay,
|
||||
since cancellation indicates user intent to abort.
|
||||
"""
|
||||
try:
|
||||
status = await cls.get_workflow_run_status(workflow_run_id)
|
||||
return status == V1TaskStatus.FAILED
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"[Hatchet] Failed to check replay status",
|
||||
workflow_run_id=workflow_run_id,
|
||||
error=str(e),
|
||||
)
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_status(cls, workflow_run_id: str) -> dict:
|
||||
"""Get the full workflow run details as dict."""
|
||||
client = cls.get_client()
|
||||
run = await client.runs.aio_get(workflow_run_id)
|
||||
return run.to_dict()
|
||||
|
||||
@classmethod
|
||||
def reset(cls) -> None:
|
||||
"""Reset the client instance (for testing)."""
|
||||
with cls._lock:
|
||||
cls._instance = None
|
||||
Reference in New Issue
Block a user