organize imports

This commit is contained in:
Gokul Mohanarangan
2023-07-25 10:02:25 +05:30
parent ab42858ec8
commit 25f34bf9e5
8 changed files with 79 additions and 80 deletions

0
__init__.py Normal file
View File

View File

@@ -1,30 +0,0 @@
import json
with open("meeting_titles_and_summaries.txt", "r") as f:
outputs = f.read()
outputs = json.loads(outputs)
transcript_file = open("meeting_transcript.txt", "a")
title_description_file = open("meeting_title_description.txt", "a")
for item in outputs["topics"]:
transcript_file.write(item["transcript"])
title_description_file.write("TITLE: \n")
title_description_file.write(item["title"])
title_description_file.write("\n")
title_description_file.write("DESCRIPTION: \n")
title_description_file.write(item["description"])
title_description_file.write("\n")
title_description_file.write("TRANSCRIPT: \n")
title_description_file.write(item["transcript"])
title_description_file.write("\n")
title_description_file.write("---------------------------------------- \n\n")

View File

@@ -1,25 +1,23 @@
import asyncio
import datetime
import os
import io
import numpy as np
import json
import os
import uuid
import wave
from concurrent.futures import ThreadPoolExecutor
from faster_whisper import WhisperModel
import aiohttp_cors
import jax.numpy as jnp
import requests
from aiohttp import web
from aiortc import MediaStreamTrack, RTCPeerConnection, RTCSessionDescription
from aiortc.contrib.media import MediaRelay
from av import AudioFifo
from faster_whisper import WhisperModel
from loguru import logger
from whisper_jax import FlaxWhisperPipline
from utils.run_utils import run_in_executor
from sortedcontainers import SortedDict
from utils.run_utils import run_in_executor
pcs = set()
relay = MediaRelay()
data_channel = None
@@ -45,7 +43,7 @@ blacklisted_messages = [" Thank you.", " See you next time!",
def get_title_and_summary(llm_input_text, last_timestamp):
print("Generating title and summary")
("Generating title and summary")
# output = llm.generate(prompt)
# Use monadical-ml to fire this query to an LLM and get result
@@ -69,7 +67,7 @@ def get_title_and_summary(llm_input_text, last_timestamp):
"prompt": prompt
}
# To-do: Handle unexpected output formats from the model
# TODO : Handle unexpected output formats from the model
try:
response = requests.post(LLM_URL, headers=headers, json=data)
output = json.loads(response.json()["results"][0]["text"])
@@ -84,13 +82,13 @@ def get_title_and_summary(llm_input_text, last_timestamp):
}
except Exception as e:
print("Exception" + str(e))
logger.info("Exception" + str(e))
result = None
return result
def channel_log(channel, t, message):
print("channel(%s) %s %s" % (channel.label, t, message))
logger.info("channel(%s) %s %s" % (channel.label, t, message))
def channel_send(channel, message):
@@ -120,17 +118,18 @@ def channel_send_transcript(channel):
if len(sorted_transcripts) >= 3:
del sorted_transcripts[least_time]
except Exception as e:
print("Exception", str(e))
logger.info("Exception", str(e))
pass
def get_transcription(frames):
print("Transcribing..")
logger.info("Transcribing..")
sorted_transcripts[frames[0].time] = None
# TODO:
# Passing IO objects instead of temporary files throws an error
# Passing ndarrays (typecasted with float) does not give any
# transcription. Refer issue
# transcription. Refer issue,
# https://github.com/guillaumekln/faster-whisper/issues/369
audiofilename = "test" + str(datetime.datetime.now())
wf = wave.open(audiofilename, "wb")
@@ -170,7 +169,7 @@ def get_transcription(frames):
transcription_text += result_text
except Exception as e:
print("Exception" + str(e))
logger.info("Exception" + str(e))
pass
result = {
@@ -195,7 +194,7 @@ def get_final_summary_response():
"summary": final_summary
}
with open("meeting_titles_and_summaries.txt", "a") as f:
with open("./artefacts/meeting_titles_and_summaries.txt", "a") as f:
f.write(json.dumps(incremental_responses))
return response
@@ -275,7 +274,6 @@ async def offer(request):
if isinstance(message, str) and message.startswith("ping"):
channel_send(channel, "pong" + message[4:])
@pc.on("connectionstatechange")
async def on_connectionstatechange():
log_info("Connection state is " + pc.connectionState)

32
utils/format_output.py Normal file
View File

@@ -0,0 +1,32 @@
import json
with open("../artefacts/meeting_titles_and_summaries.txt", "r") as f:
outputs = f.read()
outputs = json.loads(outputs)
transcript_file = open("../artefacts/meeting_transcript.txt", "a")
title_desc_file = open("../artefacts/meeting_title_description.txt", "a")
summary_file = open("../artefacts/meeting_summary.txt", "a")
for item in outputs["topics"]:
transcript_file.write(item["transcript"])
summary_file.write(item["description"])
title_desc_file.write("TITLE: \n")
title_desc_file.write(item["title"])
title_desc_file.write("\n")
title_desc_file.write("DESCRIPTION: \n")
title_desc_file.write(item["description"])
title_desc_file.write("\n")
title_desc_file.write("TRANSCRIPT: \n")
title_desc_file.write(item["transcript"])
title_desc_file.write("\n")
title_desc_file.write("---------------------------------------- \n\n")
transcript_file.close()
title_desc_file.close()
summary_file.close()

View File

@@ -6,8 +6,8 @@ from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BartForConditionalGeneration, BartTokenizer
from utils.log_utils import logger
from utils.run_utils import config
from log_utils import logger
from run_utils import config
nltk.download('punkt', quiet=True)

View File

@@ -57,12 +57,12 @@ def create_wordcloud(timestamp, real_time=False):
def create_talk_diff_scatter_viz(timestamp, real_time=False):
"""
Perform agenda vs transription diff to see covered topics.
Perform agenda vs transcription diff to see covered topics.
Create a scatter plot of words in topics.
:return: None. Saved locally.
"""
spaCy_model = "en_core_web_md"
nlp = spacy.load(spaCy_model)
spacy_model = "en_core_web_md"
nlp = spacy.load(spacy_model)
nlp.add_pipe('sentencizer')
agenda_topics = []
@@ -75,7 +75,6 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
agenda_topics.append(line.split(":")[0])
# Load the transcription with timestamp
filename = ""
if real_time:
filename = "./artefacts/real_time_transcript_with_timestamp_" + \
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
@@ -142,7 +141,7 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
df = df.apply(create_new_columns, axis=1)
# Count the number of items covered and calculatre the percentage
# Count the number of items covered and calculate the percentage
num_covered_items = sum(covered_items.values())
percentage_covered = num_covered_items / len(agenda) * 100