mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 12:49:06 +00:00
organize imports
This commit is contained in:
0
__init__.py
Normal file
0
__init__.py
Normal file
@@ -1,30 +0,0 @@
|
||||
import json
|
||||
|
||||
with open("meeting_titles_and_summaries.txt", "r") as f:
|
||||
outputs = f.read()
|
||||
|
||||
outputs = json.loads(outputs)
|
||||
|
||||
transcript_file = open("meeting_transcript.txt", "a")
|
||||
title_description_file = open("meeting_title_description.txt", "a")
|
||||
|
||||
for item in outputs["topics"]:
|
||||
transcript_file.write(item["transcript"])
|
||||
|
||||
title_description_file.write("TITLE: \n")
|
||||
title_description_file.write(item["title"])
|
||||
title_description_file.write("\n")
|
||||
|
||||
title_description_file.write("DESCRIPTION: \n")
|
||||
title_description_file.write(item["description"])
|
||||
title_description_file.write("\n")
|
||||
|
||||
title_description_file.write("TRANSCRIPT: \n")
|
||||
title_description_file.write(item["transcript"])
|
||||
title_description_file.write("\n")
|
||||
|
||||
title_description_file.write("---------------------------------------- \n\n")
|
||||
|
||||
|
||||
|
||||
|
||||
34
server.py
34
server.py
@@ -1,25 +1,23 @@
|
||||
import asyncio
|
||||
import datetime
|
||||
import os
|
||||
import io
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import wave
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
import aiohttp_cors
|
||||
import jax.numpy as jnp
|
||||
import requests
|
||||
from aiohttp import web
|
||||
from aiortc import MediaStreamTrack, RTCPeerConnection, RTCSessionDescription
|
||||
from aiortc.contrib.media import MediaRelay
|
||||
from av import AudioFifo
|
||||
from faster_whisper import WhisperModel
|
||||
from loguru import logger
|
||||
from whisper_jax import FlaxWhisperPipline
|
||||
from utils.run_utils import run_in_executor
|
||||
from sortedcontainers import SortedDict
|
||||
|
||||
from utils.run_utils import run_in_executor
|
||||
|
||||
pcs = set()
|
||||
relay = MediaRelay()
|
||||
data_channel = None
|
||||
@@ -45,7 +43,7 @@ blacklisted_messages = [" Thank you.", " See you next time!",
|
||||
|
||||
|
||||
def get_title_and_summary(llm_input_text, last_timestamp):
|
||||
print("Generating title and summary")
|
||||
("Generating title and summary")
|
||||
# output = llm.generate(prompt)
|
||||
|
||||
# Use monadical-ml to fire this query to an LLM and get result
|
||||
@@ -69,13 +67,13 @@ def get_title_and_summary(llm_input_text, last_timestamp):
|
||||
"prompt": prompt
|
||||
}
|
||||
|
||||
# To-do: Handle unexpected output formats from the model
|
||||
# TODO : Handle unexpected output formats from the model
|
||||
try:
|
||||
response = requests.post(LLM_URL, headers=headers, json=data)
|
||||
output = json.loads(response.json()["results"][0]["text"])
|
||||
output["description"] = output.pop("summary")
|
||||
output["transcript"] = llm_input_text
|
||||
output["timestamp"] =\
|
||||
output["timestamp"] = \
|
||||
str(datetime.timedelta(seconds=round(last_timestamp)))
|
||||
incremental_responses.append(output)
|
||||
result = {
|
||||
@@ -84,13 +82,13 @@ def get_title_and_summary(llm_input_text, last_timestamp):
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
print("Exception" + str(e))
|
||||
logger.info("Exception" + str(e))
|
||||
result = None
|
||||
return result
|
||||
|
||||
|
||||
def channel_log(channel, t, message):
|
||||
print("channel(%s) %s %s" % (channel.label, t, message))
|
||||
logger.info("channel(%s) %s %s" % (channel.label, t, message))
|
||||
|
||||
|
||||
def channel_send(channel, message):
|
||||
@@ -120,17 +118,18 @@ def channel_send_transcript(channel):
|
||||
if len(sorted_transcripts) >= 3:
|
||||
del sorted_transcripts[least_time]
|
||||
except Exception as e:
|
||||
print("Exception", str(e))
|
||||
logger.info("Exception", str(e))
|
||||
pass
|
||||
|
||||
|
||||
def get_transcription(frames):
|
||||
print("Transcribing..")
|
||||
logger.info("Transcribing..")
|
||||
sorted_transcripts[frames[0].time] = None
|
||||
|
||||
# TODO:
|
||||
# Passing IO objects instead of temporary files throws an error
|
||||
# Passing ndarrays (typecasted with float) does not give any
|
||||
# transcription. Refer issue
|
||||
# transcription. Refer issue,
|
||||
# https://github.com/guillaumekln/faster-whisper/issues/369
|
||||
audiofilename = "test" + str(datetime.datetime.now())
|
||||
wf = wave.open(audiofilename, "wb")
|
||||
@@ -170,7 +169,7 @@ def get_transcription(frames):
|
||||
transcription_text += result_text
|
||||
|
||||
except Exception as e:
|
||||
print("Exception" + str(e))
|
||||
logger.info("Exception" + str(e))
|
||||
pass
|
||||
|
||||
result = {
|
||||
@@ -195,7 +194,7 @@ def get_final_summary_response():
|
||||
"summary": final_summary
|
||||
}
|
||||
|
||||
with open("meeting_titles_and_summaries.txt", "a") as f:
|
||||
with open("./artefacts/meeting_titles_and_summaries.txt", "a") as f:
|
||||
f.write(json.dumps(incremental_responses))
|
||||
return response
|
||||
|
||||
@@ -275,7 +274,6 @@ async def offer(request):
|
||||
if isinstance(message, str) and message.startswith("ping"):
|
||||
channel_send(channel, "pong" + message[4:])
|
||||
|
||||
|
||||
@pc.on("connectionstatechange")
|
||||
async def on_connectionstatechange():
|
||||
log_info("Connection state is " + pc.connectionState)
|
||||
|
||||
@@ -114,7 +114,7 @@ class StreamClient:
|
||||
self.channel_log(channel, "<", message)
|
||||
|
||||
if isinstance(message, str) and message.startswith("pong"):
|
||||
elapsed_ms = (self.current_stamp() - int(message[5:]))\
|
||||
elapsed_ms = (self.current_stamp() - int(message[5:])) \
|
||||
/ 1000
|
||||
print(" RTT %.2f ms" % elapsed_ms)
|
||||
|
||||
|
||||
@@ -1,24 +1,24 @@
|
||||
[DEFAULT]
|
||||
#SetexceptionruleforOpenMPerrortoallowduplicatelibinitialization
|
||||
KMP_DUPLICATE_LIB_OK=TRUE
|
||||
KMP_DUPLICATE_LIB_OK = TRUE
|
||||
#ExportOpenAIAPIKey
|
||||
OPENAI_APIKEY=
|
||||
OPENAI_APIKEY =
|
||||
#ExportWhisperModelSize
|
||||
WHISPER_MODEL_SIZE=tiny
|
||||
WHISPER_REAL_TIME_MODEL_SIZE=tiny
|
||||
WHISPER_MODEL_SIZE = tiny
|
||||
WHISPER_REAL_TIME_MODEL_SIZE = tiny
|
||||
#AWSconfig
|
||||
AWS_ACCESS_KEY=***REMOVED***
|
||||
AWS_SECRET_KEY=***REMOVED***
|
||||
BUCKET_NAME=reflector-bucket
|
||||
AWS_ACCESS_KEY = ***REMOVED***
|
||||
AWS_SECRET_KEY = ***REMOVED***
|
||||
BUCKET_NAME = reflector-bucket
|
||||
#Summarizerconfig
|
||||
SUMMARY_MODEL=facebook/bart-large-cnn
|
||||
INPUT_ENCODING_MAX_LENGTH=1024
|
||||
MAX_LENGTH=2048
|
||||
BEAM_SIZE=6
|
||||
MAX_CHUNK_LENGTH=1024
|
||||
SUMMARIZE_USING_CHUNKS=YES
|
||||
SUMMARY_MODEL = facebook/bart-large-cnn
|
||||
INPUT_ENCODING_MAX_LENGTH = 1024
|
||||
MAX_LENGTH = 2048
|
||||
BEAM_SIZE = 6
|
||||
MAX_CHUNK_LENGTH = 1024
|
||||
SUMMARIZE_USING_CHUNKS = YES
|
||||
#Audiodevice
|
||||
BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME=aggregator
|
||||
AV_FOUNDATION_DEVICE_ID=1
|
||||
BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME = aggregator
|
||||
AV_FOUNDATION_DEVICE_ID = 1
|
||||
# LLM PATH
|
||||
LLM_PATH=
|
||||
LLM_PATH =
|
||||
|
||||
32
utils/format_output.py
Normal file
32
utils/format_output.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import json
|
||||
|
||||
with open("../artefacts/meeting_titles_and_summaries.txt", "r") as f:
|
||||
outputs = f.read()
|
||||
|
||||
outputs = json.loads(outputs)
|
||||
|
||||
transcript_file = open("../artefacts/meeting_transcript.txt", "a")
|
||||
title_desc_file = open("../artefacts/meeting_title_description.txt", "a")
|
||||
summary_file = open("../artefacts/meeting_summary.txt", "a")
|
||||
|
||||
for item in outputs["topics"]:
|
||||
transcript_file.write(item["transcript"])
|
||||
summary_file.write(item["description"])
|
||||
|
||||
title_desc_file.write("TITLE: \n")
|
||||
title_desc_file.write(item["title"])
|
||||
title_desc_file.write("\n")
|
||||
|
||||
title_desc_file.write("DESCRIPTION: \n")
|
||||
title_desc_file.write(item["description"])
|
||||
title_desc_file.write("\n")
|
||||
|
||||
title_desc_file.write("TRANSCRIPT: \n")
|
||||
title_desc_file.write(item["transcript"])
|
||||
title_desc_file.write("\n")
|
||||
|
||||
title_desc_file.write("---------------------------------------- \n\n")
|
||||
|
||||
transcript_file.close()
|
||||
title_desc_file.close()
|
||||
summary_file.close()
|
||||
@@ -6,8 +6,8 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
from transformers import BartForConditionalGeneration, BartTokenizer
|
||||
|
||||
from utils.log_utils import logger
|
||||
from utils.run_utils import config
|
||||
from log_utils import logger
|
||||
from run_utils import config
|
||||
|
||||
nltk.download('punkt', quiet=True)
|
||||
|
||||
@@ -171,7 +171,7 @@ def summarize(transcript_text, timestamp,
|
||||
output_filename = "real_time_" + output_filename
|
||||
|
||||
if summarize_using_chunks != "YES":
|
||||
inputs = tokenizer.\
|
||||
inputs = tokenizer. \
|
||||
batch_encode_plus([transcript_text], truncation=True,
|
||||
padding='longest',
|
||||
max_length=int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"]),
|
||||
|
||||
@@ -13,7 +13,7 @@ from wordcloud import STOPWORDS, WordCloud
|
||||
en = spacy.load('en_core_web_md')
|
||||
spacy_stopwords = en.Defaults.stop_words
|
||||
|
||||
STOPWORDS = set(STOPWORDS).union(set(stopwords.words("english"))).\
|
||||
STOPWORDS = set(STOPWORDS).union(set(stopwords.words("english"))). \
|
||||
union(set(spacy_stopwords))
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ def create_wordcloud(timestamp, real_time=False):
|
||||
"""
|
||||
filename = "transcript"
|
||||
if real_time:
|
||||
filename = "real_time_" + filename + "_" +\
|
||||
filename = "real_time_" + filename + "_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
else:
|
||||
filename += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
@@ -47,7 +47,7 @@ def create_wordcloud(timestamp, real_time=False):
|
||||
|
||||
wordcloud_name = "wordcloud"
|
||||
if real_time:
|
||||
wordcloud_name = "real_time_" + wordcloud_name + "_" +\
|
||||
wordcloud_name = "real_time_" + wordcloud_name + "_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
else:
|
||||
wordcloud_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
@@ -57,12 +57,12 @@ def create_wordcloud(timestamp, real_time=False):
|
||||
|
||||
def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
"""
|
||||
Perform agenda vs transription diff to see covered topics.
|
||||
Perform agenda vs transcription diff to see covered topics.
|
||||
Create a scatter plot of words in topics.
|
||||
:return: None. Saved locally.
|
||||
"""
|
||||
spaCy_model = "en_core_web_md"
|
||||
nlp = spacy.load(spaCy_model)
|
||||
spacy_model = "en_core_web_md"
|
||||
nlp = spacy.load(spacy_model)
|
||||
nlp.add_pipe('sentencizer')
|
||||
|
||||
agenda_topics = []
|
||||
@@ -75,12 +75,11 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
agenda_topics.append(line.split(":")[0])
|
||||
|
||||
# Load the transcription with timestamp
|
||||
filename = ""
|
||||
if real_time:
|
||||
filename = "./artefacts/real_time_transcript_with_timestamp_" +\
|
||||
filename = "./artefacts/real_time_transcript_with_timestamp_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
else:
|
||||
filename = "./artefacts/transcript_with_timestamp_" +\
|
||||
filename = "./artefacts/transcript_with_timestamp_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
with open(filename) as f:
|
||||
transcription_timestamp_text = f.read()
|
||||
@@ -142,7 +141,7 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
|
||||
df = df.apply(create_new_columns, axis=1)
|
||||
|
||||
# Count the number of items covered and calculatre the percentage
|
||||
# Count the number of items covered and calculate the percentage
|
||||
num_covered_items = sum(covered_items.values())
|
||||
percentage_covered = num_covered_items / len(agenda) * 100
|
||||
|
||||
@@ -158,7 +157,7 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
# Save df, mappings for further experimentation
|
||||
df_name = "df"
|
||||
if real_time:
|
||||
df_name = "real_time_" + df_name + "_" +\
|
||||
df_name = "real_time_" + df_name + "_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
else:
|
||||
df_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
@@ -169,7 +168,7 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
|
||||
mappings_name = "mappings"
|
||||
if real_time:
|
||||
mappings_name = "real_time_" + mappings_name + "_" +\
|
||||
mappings_name = "real_time_" + mappings_name + "_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
else:
|
||||
mappings_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
|
||||
Reference in New Issue
Block a user