mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
feat: use llamaindex everywhere (#525)
* feat: use llamaindex for transcript final title too * refactor: removed llm backend, replaced with one single class+llamaindex * refactor: self-review * fix: typing * fix: tests * refactor: extract clean_title and add tests * test: fix * test: remove ensure_casing/nltk * fix: tiny mistake
This commit is contained in:
@@ -3,8 +3,9 @@
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_llm.py` - LLM API
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
|
||||
@@ -1,213 +0,0 @@
|
||||
"""
|
||||
Reflector GPU backend - LLM
|
||||
===========================
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
from modal import App, Image, Secret, asgi_app, enter, exit, method
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
|
||||
LLM_LOW_CPU_MEM_USAGE: bool = True
|
||||
LLM_TORCH_DTYPE: str = "bfloat16"
|
||||
LLM_MAX_NEW_TOKENS: int = 300
|
||||
|
||||
IMAGE_MODEL_DIR = "/root/llm_models"
|
||||
|
||||
app = App(name="reflector-llm")
|
||||
|
||||
|
||||
def download_llm():
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
print("Downloading LLM model")
|
||||
snapshot_download(LLM_MODEL, cache_dir=IMAGE_MODEL_DIR)
|
||||
print("LLM model downloaded")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
llm_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.apt_install("git")
|
||||
.pip_install(
|
||||
"transformers",
|
||||
"torch",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"jsonformer==0.12.0",
|
||||
"accelerate==0.21.0",
|
||||
"einops==0.6.1",
|
||||
"hf-transfer~=0.1",
|
||||
"huggingface_hub==0.16.4",
|
||||
)
|
||||
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
||||
.run_function(download_llm)
|
||||
.run_function(migrate_cache_llm)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=15,
|
||||
image=llm_image,
|
||||
)
|
||||
class LLM:
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
|
||||
print("Instance llm model")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
LLM_MODEL,
|
||||
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
|
||||
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
# JSONFormer doesn't yet support generation configs
|
||||
print("Instance llm generation config")
|
||||
model.config.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
|
||||
# generation configuration
|
||||
gen_cfg = GenerationConfig.from_model_config(model.config)
|
||||
gen_cfg.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
|
||||
# load tokenizer
|
||||
print("Instance llm tokenizer")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
LLM_MODEL, cache_dir=IMAGE_MODEL_DIR, local_files_only=True
|
||||
)
|
||||
|
||||
# move model to gpu
|
||||
print("Move llm model to GPU")
|
||||
model = model.cuda()
|
||||
|
||||
print("Warmup llm done")
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.gen_cfg = gen_cfg
|
||||
self.GenerationConfig = GenerationConfig
|
||||
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@exit()
|
||||
def exit():
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
def generate(
|
||||
self, prompt: str, gen_schema: str | None, gen_cfg: str | None
|
||||
) -> dict:
|
||||
"""
|
||||
Perform a generation action using the LLM
|
||||
"""
|
||||
print(f"Generate {prompt=}")
|
||||
if gen_cfg:
|
||||
gen_cfg = self.GenerationConfig.from_dict(json.loads(gen_cfg))
|
||||
else:
|
||||
gen_cfg = self.gen_cfg
|
||||
|
||||
# If a gen_schema is given, conform to gen_schema
|
||||
with self.lock:
|
||||
if gen_schema:
|
||||
import jsonformer
|
||||
|
||||
print(f"Schema {gen_schema=}")
|
||||
jsonformer_llm = jsonformer.Jsonformer(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
json_schema=json.loads(gen_schema),
|
||||
prompt=prompt,
|
||||
max_string_token_length=gen_cfg.max_new_tokens,
|
||||
)
|
||||
response = jsonformer_llm()
|
||||
else:
|
||||
# If no gen_schema, perform prompt only generation
|
||||
|
||||
# tokenize prompt
|
||||
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
|
||||
self.model.device
|
||||
)
|
||||
output = self.model.generate(input_ids, generation_config=gen_cfg)
|
||||
|
||||
# decode output
|
||||
response = self.tokenizer.decode(
|
||||
output[0].cpu(), skip_special_tokens=True
|
||||
)
|
||||
response = response[len(prompt) :]
|
||||
print(f"Generated {response=}")
|
||||
return {"text": response}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=45,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
llmstub = LLM()
|
||||
|
||||
app = FastAPI()
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class LLMRequest(BaseModel):
|
||||
prompt: str
|
||||
gen_schema: Optional[dict] = None
|
||||
gen_cfg: Optional[dict] = None
|
||||
|
||||
@app.post("/llm", dependencies=[Depends(apikey_auth)])
|
||||
def llm(
|
||||
req: LLMRequest,
|
||||
):
|
||||
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None
|
||||
gen_cfg = json.dumps(req.gen_cfg) if req.gen_cfg else None
|
||||
func = llmstub.generate.spawn(
|
||||
prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -1,219 +0,0 @@
|
||||
"""
|
||||
Reflector GPU backend - LLM
|
||||
===========================
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
from modal import App, Image, Secret, asgi_app, enter, exit, method
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
|
||||
LLM_LOW_CPU_MEM_USAGE: bool = True
|
||||
LLM_TORCH_DTYPE: str = "bfloat16"
|
||||
LLM_MAX_NEW_TOKENS: int = 300
|
||||
|
||||
IMAGE_MODEL_DIR = "/root/llm_models/zephyr"
|
||||
|
||||
app = App(name="reflector-llm-zephyr")
|
||||
|
||||
|
||||
def download_llm():
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
print("Downloading LLM model")
|
||||
snapshot_download(LLM_MODEL, cache_dir=IMAGE_MODEL_DIR)
|
||||
print("LLM model downloaded")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
llm_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.apt_install("git")
|
||||
.pip_install(
|
||||
"transformers==4.34.0",
|
||||
"torch",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"jsonformer==0.12.0",
|
||||
"accelerate==0.21.0",
|
||||
"einops==0.6.1",
|
||||
"hf-transfer~=0.1",
|
||||
"huggingface_hub==0.16.4",
|
||||
)
|
||||
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
||||
.run_function(download_llm)
|
||||
.run_function(migrate_cache_llm)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=10,
|
||||
image=llm_image,
|
||||
)
|
||||
class LLM:
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
|
||||
print("Instance llm model")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
LLM_MODEL,
|
||||
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
|
||||
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
# JSONFormer doesn't yet support generation configs
|
||||
print("Instance llm generation config")
|
||||
model.config.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
|
||||
# generation configuration
|
||||
gen_cfg = GenerationConfig.from_model_config(model.config)
|
||||
gen_cfg.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
|
||||
# load tokenizer
|
||||
print("Instance llm tokenizer")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
LLM_MODEL, cache_dir=IMAGE_MODEL_DIR, local_files_only=True
|
||||
)
|
||||
gen_cfg.pad_token_id = tokenizer.eos_token_id
|
||||
gen_cfg.eos_token_id = tokenizer.eos_token_id
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
model.config.pad_token_id = tokenizer.eos_token_id
|
||||
|
||||
# move model to gpu
|
||||
print("Move llm model to GPU")
|
||||
model = model.cuda()
|
||||
|
||||
print("Warmup llm done")
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.gen_cfg = gen_cfg
|
||||
self.GenerationConfig = GenerationConfig
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@exit()
|
||||
def exit():
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
def generate(
|
||||
self, prompt: str, gen_schema: str | None, gen_cfg: str | None
|
||||
) -> dict:
|
||||
"""
|
||||
Perform a generation action using the LLM
|
||||
"""
|
||||
print(f"Generate {prompt=}")
|
||||
if gen_cfg:
|
||||
gen_cfg = self.GenerationConfig.from_dict(json.loads(gen_cfg))
|
||||
gen_cfg.pad_token_id = self.tokenizer.eos_token_id
|
||||
gen_cfg.eos_token_id = self.tokenizer.eos_token_id
|
||||
else:
|
||||
gen_cfg = self.gen_cfg
|
||||
|
||||
# If a gen_schema is given, conform to gen_schema
|
||||
with self.lock:
|
||||
if gen_schema:
|
||||
import jsonformer
|
||||
|
||||
print(f"Schema {gen_schema=}")
|
||||
jsonformer_llm = jsonformer.Jsonformer(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
json_schema=json.loads(gen_schema),
|
||||
prompt=prompt,
|
||||
max_string_token_length=gen_cfg.max_new_tokens,
|
||||
)
|
||||
response = jsonformer_llm()
|
||||
else:
|
||||
# If no gen_schema, perform prompt only generation
|
||||
|
||||
# tokenize prompt
|
||||
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
|
||||
self.model.device
|
||||
)
|
||||
output = self.model.generate(input_ids, generation_config=gen_cfg)
|
||||
|
||||
# decode output
|
||||
response = self.tokenizer.decode(
|
||||
output[0].cpu(), skip_special_tokens=True
|
||||
)
|
||||
response = response[len(prompt) :]
|
||||
response = {"long_summary": response}
|
||||
print(f"Generated {response=}")
|
||||
return {"text": response}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=30,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
llmstub = LLM()
|
||||
|
||||
app = FastAPI()
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class LLMRequest(BaseModel):
|
||||
prompt: str
|
||||
gen_schema: Optional[dict] = None
|
||||
gen_cfg: Optional[dict] = None
|
||||
|
||||
@app.post("/llm", dependencies=[Depends(apikey_auth)])
|
||||
def llm(
|
||||
req: LLMRequest,
|
||||
):
|
||||
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None
|
||||
gen_cfg = json.dumps(req.gen_cfg) if req.gen_cfg else None
|
||||
func = llmstub.generate.spawn(
|
||||
prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
Reference in New Issue
Block a user