mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 12:49:06 +00:00
feat: use llamaindex everywhere (#525)
* feat: use llamaindex for transcript final title too * refactor: removed llm backend, replaced with one single class+llamaindex * refactor: self-review * fix: typing * fix: tests * refactor: extract clean_title and add tests * test: fix * test: remove ensure_casing/nltk * fix: tiny mistake
This commit is contained in:
83
server/reflector/llm.py
Normal file
83
server/reflector/llm.py
Normal file
@@ -0,0 +1,83 @@
|
||||
from typing import Type, TypeVar
|
||||
|
||||
from llama_index.core import Settings
|
||||
from llama_index.core.output_parsers import PydanticOutputParser
|
||||
from llama_index.core.program import LLMTextCompletionProgram
|
||||
from llama_index.core.response_synthesizers import TreeSummarize
|
||||
from llama_index.llms.openai_like import OpenAILike
|
||||
from pydantic import BaseModel
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = """
|
||||
Based on the following analysis, provide the information in the requested JSON format:
|
||||
|
||||
Analysis:
|
||||
{analysis}
|
||||
|
||||
{format_instructions}
|
||||
"""
|
||||
|
||||
|
||||
class LLM:
|
||||
def __init__(self, settings, temperature: float = 0.4, max_tokens: int = 2048):
|
||||
self.settings_obj = settings
|
||||
self.model_name = settings.LLM_MODEL
|
||||
self.url = settings.LLM_URL
|
||||
self.api_key = settings.LLM_API_KEY
|
||||
self.context_window = settings.LLM_CONTEXT_WINDOW
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
# Configure llamaindex Settings
|
||||
self._configure_llamaindex()
|
||||
|
||||
def _configure_llamaindex(self):
|
||||
"""Configure llamaindex Settings with OpenAILike LLM"""
|
||||
Settings.llm = OpenAILike(
|
||||
model=self.model_name,
|
||||
api_base=self.url,
|
||||
api_key=self.api_key,
|
||||
context_window=self.context_window,
|
||||
is_chat_model=True,
|
||||
is_function_calling_model=False,
|
||||
temperature=self.temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
)
|
||||
|
||||
async def get_response(
|
||||
self, prompt: str, texts: list[str], tone_name: str | None = None
|
||||
) -> str:
|
||||
"""Get a text response using TreeSummarize for non-function-calling models"""
|
||||
summarizer = TreeSummarize(verbose=False)
|
||||
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
|
||||
return str(response).strip()
|
||||
|
||||
async def get_structured_response(
|
||||
self,
|
||||
prompt: str,
|
||||
texts: list[str],
|
||||
output_cls: Type[T],
|
||||
tone_name: str | None = None,
|
||||
) -> T:
|
||||
"""Get structured output from LLM for non-function-calling models"""
|
||||
summarizer = TreeSummarize(verbose=True)
|
||||
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
|
||||
|
||||
output_parser = PydanticOutputParser(output_cls)
|
||||
|
||||
program = LLMTextCompletionProgram.from_defaults(
|
||||
output_parser=output_parser,
|
||||
prompt_template_str=STRUCTURED_RESPONSE_PROMPT_TEMPLATE,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
format_instructions = output_parser.format(
|
||||
"Please structure the above information in the following JSON format:"
|
||||
)
|
||||
|
||||
output = await program.acall(
|
||||
analysis=str(response), format_instructions=format_instructions
|
||||
)
|
||||
|
||||
return output
|
||||
Reference in New Issue
Block a user