mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
integrate reflector-gpu-modal repo
This commit is contained in:
92
server/gpu/modal/README.md
Normal file
92
server/gpu/modal/README.md
Normal file
@@ -0,0 +1,92 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_llm.py` - LLM API
|
||||
- `reflector_transcriber.py` - Transcription API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set theses keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
LLM_BACKEND=modal
|
||||
LLM_URL=https://xxxx--reflector-llm-web.modal.run
|
||||
LLM_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### Warmup (both)
|
||||
|
||||
`POST /warmup`
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"status": "ok"
|
||||
}
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
170
server/gpu/modal/reflector_llm.py
Normal file
170
server/gpu/modal/reflector_llm.py
Normal file
@@ -0,0 +1,170 @@
|
||||
"""
|
||||
Reflector GPU backend - LLM
|
||||
===========================
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
from modal import Image, method, Stub, asgi_app, Secret
|
||||
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
|
||||
LLM_LOW_CPU_MEM_USAGE: bool = False
|
||||
LLM_TORCH_DTYPE: str = "bfloat16"
|
||||
LLM_MAX_NEW_TOKENS: int = 300
|
||||
|
||||
IMAGE_MODEL_DIR = "/model"
|
||||
|
||||
stub = Stub(name="reflector-llm")
|
||||
|
||||
|
||||
def download_llm():
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
print("Downloading LLM model")
|
||||
snapshot_download(LLM_MODEL, local_dir=IMAGE_MODEL_DIR)
|
||||
print("LLM model downloaded")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache()
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
llm_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.apt_install("git")
|
||||
.pip_install(
|
||||
"transformers",
|
||||
"torch",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"einops==0.6.1",
|
||||
"hf-transfer~=0.1",
|
||||
"huggingface_hub==0.16.4",
|
||||
)
|
||||
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
||||
.run_function(download_llm)
|
||||
.run_function(migrate_cache_llm)
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
concurrency_limit=2,
|
||||
image=llm_image,
|
||||
)
|
||||
class LLM:
|
||||
def __enter__(self):
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
print("Instance llm model")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
IMAGE_MODEL_DIR,
|
||||
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
|
||||
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
|
||||
)
|
||||
|
||||
# generation configuration
|
||||
print("Instance llm generation config")
|
||||
model.config.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
gen_cfg = GenerationConfig.from_model_config(model.config)
|
||||
gen_cfg.max_new_tokens = LLM_MAX_NEW_TOKENS
|
||||
|
||||
# load tokenizer
|
||||
print("Instance llm tokenizer")
|
||||
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
||||
|
||||
# move model to gpu
|
||||
print("Move llm model to GPU")
|
||||
model = model.cuda()
|
||||
|
||||
print("Warmup llm done")
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.gen_cfg = gen_cfg
|
||||
|
||||
def __exit__(self, *args):
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
def warmup(self):
|
||||
print("Warmup ok")
|
||||
return {"status": "ok"}
|
||||
|
||||
@method()
|
||||
def generate(self, prompt: str):
|
||||
print(f"Generate {prompt=}")
|
||||
# tokenize prompt
|
||||
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
|
||||
self.model.device
|
||||
)
|
||||
output = self.model.generate(input_ids, generation_config=self.gen_cfg)
|
||||
|
||||
# decode output
|
||||
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
|
||||
print(f"Generated {response=}")
|
||||
return {"text": response}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
container_idle_timeout=60 * 10,
|
||||
timeout=60 * 5,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
from fastapi import FastAPI, HTTPException, status, Depends
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
llmstub = LLM()
|
||||
|
||||
app = FastAPI()
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class LLMRequest(BaseModel):
|
||||
prompt: str
|
||||
|
||||
@app.post("/llm", dependencies=[Depends(apikey_auth)])
|
||||
async def llm(
|
||||
req: LLMRequest,
|
||||
):
|
||||
func = llmstub.generate.spawn(prompt=req.prompt)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
|
||||
async def warmup():
|
||||
return llmstub.warmup.spawn().get()
|
||||
|
||||
return app
|
||||
173
server/gpu/modal/reflector_transcriber.py
Normal file
173
server/gpu/modal/reflector_transcriber.py
Normal file
@@ -0,0 +1,173 @@
|
||||
"""
|
||||
Reflector GPU backend - transcriber
|
||||
===================================
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
import os
|
||||
from modal import Image, method, Stub, asgi_app, Secret
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Whisper
|
||||
WHISPER_MODEL: str = "large-v2"
|
||||
WHISPER_COMPUTE_TYPE: str = "float16"
|
||||
WHISPER_NUM_WORKERS: int = 1
|
||||
WHISPER_CACHE_DIR: str = "/cache/whisper"
|
||||
|
||||
stub = Stub(name="reflector-transcriber")
|
||||
|
||||
|
||||
def download_whisper():
|
||||
from faster_whisper.utils import download_model
|
||||
|
||||
download_model(WHISPER_MODEL, local_files_only=False)
|
||||
|
||||
|
||||
whisper_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.apt_install("git")
|
||||
.pip_install(
|
||||
"faster-whisper",
|
||||
"requests",
|
||||
"torch",
|
||||
)
|
||||
.run_function(download_whisper)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A10G",
|
||||
container_idle_timeout=60,
|
||||
image=whisper_image,
|
||||
)
|
||||
class Whisper:
|
||||
def __enter__(self):
|
||||
import torch
|
||||
import faster_whisper
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
WHISPER_MODEL,
|
||||
device=device,
|
||||
compute_type=WHISPER_COMPUTE_TYPE,
|
||||
num_workers=WHISPER_NUM_WORKERS,
|
||||
)
|
||||
|
||||
@method()
|
||||
def warmup(self):
|
||||
return {"status": "ok"}
|
||||
|
||||
@method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
timestamp: float = 0,
|
||||
language: str = "en",
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
transcript = ""
|
||||
words = []
|
||||
if segments:
|
||||
segments = list(segments)
|
||||
|
||||
for segment in segments:
|
||||
transcript += segment.text
|
||||
for word in segment.words:
|
||||
words.append(
|
||||
{
|
||||
"text": word.word,
|
||||
"start": round(timestamp + word.start, 3),
|
||||
"end": round(timestamp + word.end, 3),
|
||||
}
|
||||
)
|
||||
return {
|
||||
"text": transcript,
|
||||
"words": words,
|
||||
}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
container_idle_timeout=60,
|
||||
timeout=60,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
from fastapi import FastAPI, UploadFile, Form, Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriberstub = Whisper()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptionRequest(BaseModel):
|
||||
timestamp: float = 0
|
||||
language: str = "en"
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: str
|
||||
|
||||
@app.post("/transcribe", dependencies=[Depends(apikey_auth)])
|
||||
async def transcribe(
|
||||
file: UploadFile,
|
||||
timestamp: Annotated[float, Form()] = 0,
|
||||
language: Annotated[str, Form()] = "en",
|
||||
):
|
||||
audio_data = await file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in ["wav", "mp3", "ogg", "flac"]
|
||||
|
||||
func = transcriberstub.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
timestamp=timestamp,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
|
||||
async def warmup():
|
||||
return transcriberstub.warmup.spawn().get()
|
||||
|
||||
return app
|
||||
Reference in New Issue
Block a user