Merge branch 'main' of github.com:Monadical-SAS/reflector into sara/language-picker

This commit is contained in:
Sara
2023-10-13 20:23:23 +02:00
24 changed files with 1271 additions and 283 deletions

View File

@@ -48,6 +48,7 @@
## Using serverless modal.com (require reflector-gpu-modal deployed)
#TRANSCRIPT_BACKEND=modal
#TRANSCRIPT_URL=https://xxxxx--reflector-transcriber-web.modal.run
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
#TRANSCRIPT_MODAL_API_KEY=xxxxx
## Using serverless banana.dev (require reflector-gpu-banana deployed)

View File

@@ -0,0 +1,208 @@
"""
Reflector GPU backend - LLM
===========================
"""
import json
import os
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
# LLM
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
LLM_LOW_CPU_MEM_USAGE: bool = True
LLM_TORCH_DTYPE: str = "bfloat16"
LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/root/llm_models"
stub = Stub(name="reflector-llm-zephyr")
def download_llm():
from huggingface_hub import snapshot_download
print("Downloading LLM model")
snapshot_download(LLM_MODEL, cache_dir=IMAGE_MODEL_DIR)
print("LLM model downloaded")
def migrate_cache_llm():
"""
XXX The cache for model files in Transformers v4.22.0 has been updated.
Migrating your old cache. This is a one-time only operation. You can
interrupt this and resume the migration later on by calling
`transformers.utils.move_cache()`.
"""
from transformers.utils.hub import move_cache
print("Moving LLM cache")
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
print("LLM cache moved")
llm_image = (
Image.debian_slim(python_version="3.10.8")
.apt_install("git")
.pip_install(
"transformers==4.34.0",
"torch",
"sentencepiece",
"protobuf",
"jsonformer==0.12.0",
"accelerate==0.21.0",
"einops==0.6.1",
"hf-transfer~=0.1",
"huggingface_hub==0.16.4"
)
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
.run_function(download_llm)
.run_function(migrate_cache_llm)
)
@stub.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
concurrency_limit=2,
image=llm_image,
)
class LLM:
def __enter__(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
print("Instance llm model")
model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL,
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
cache_dir=IMAGE_MODEL_DIR
)
# JSONFormer doesn't yet support generation configs
print("Instance llm generation config")
model.config.max_new_tokens = LLM_MAX_NEW_TOKENS
# generation configuration
gen_cfg = GenerationConfig.from_model_config(model.config)
gen_cfg.max_new_tokens = LLM_MAX_NEW_TOKENS
# load tokenizer
print("Instance llm tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
LLM_MODEL,
cache_dir=IMAGE_MODEL_DIR
)
gen_cfg.pad_token_id = tokenizer.eos_token_id
gen_cfg.eos_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
# move model to gpu
print("Move llm model to GPU")
model = model.cuda()
print("Warmup llm done")
self.model = model
self.tokenizer = tokenizer
self.gen_cfg = gen_cfg
self.GenerationConfig = GenerationConfig
def __exit__(self, *args):
print("Exit llm")
@method()
def generate(self, prompt: str, gen_schema: str | None, gen_cfg: str | None) -> dict:
"""
Perform a generation action using the LLM
"""
print(f"Generate {prompt=}")
if gen_cfg:
gen_cfg = self.GenerationConfig.from_dict(json.loads(gen_cfg))
gen_cfg.pad_token_id = self.tokenizer.eos_token_id
gen_cfg.eos_token_id = self.tokenizer.eos_token_id
else:
gen_cfg = self.gen_cfg
# If a gen_schema is given, conform to gen_schema
if gen_schema:
import jsonformer
print(f"Schema {gen_schema=}")
jsonformer_llm = jsonformer.Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=json.loads(gen_schema),
prompt=prompt,
max_string_token_length=gen_cfg.max_new_tokens
)
response = jsonformer_llm()
else:
# If no gen_schema, perform prompt only generation
# tokenize prompt
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=gen_cfg)
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response[len(prompt):]
response = {
"long_summary": response
}
print(f"Generated {response=}")
return {"text": response}
# -------------------------------------------------------------------
# Web API
# -------------------------------------------------------------------
@stub.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
secrets=[
Secret.from_name("reflector-gpu"),
],
)
@asgi_app()
def web():
from fastapi import Depends, FastAPI, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
llmstub = LLM()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class LLMRequest(BaseModel):
prompt: str
gen_schema: Optional[dict] = None
gen_cfg: Optional[dict] = None
@app.post("/llm", dependencies=[Depends(apikey_auth)])
async def llm(
req: LLMRequest,
):
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None
gen_cfg = json.dumps(req.gen_cfg) if req.gen_cfg else None
func = llmstub.generate.spawn(prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg)
result = func.get()
return result
return app

View File

@@ -14,34 +14,12 @@ WHISPER_MODEL: str = "large-v2"
WHISPER_COMPUTE_TYPE: str = "float16"
WHISPER_NUM_WORKERS: int = 1
# Seamless M4T
SEAMLESSM4T_MODEL_SIZE: str = "medium"
SEAMLESSM4T_MODEL_CARD_NAME: str = f"seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}"
SEAMLESSM4T_VOCODER_CARD_NAME: str = "vocoder_36langs"
HF_SEAMLESS_M4TEPO: str = f"facebook/seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}"
HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
SEAMLESS_MODEL_DIR: str = "m4t"
WHISPER_MODEL_DIR = "/root/transcription_models"
stub = Stub(name="reflector-transcriber")
def install_seamless_communication():
import os
import subprocess
initial_dir = os.getcwd()
subprocess.run(["ssh-keyscan", "-t", "rsa", "github.com", ">>", "~/.ssh/known_hosts"])
subprocess.run(["rm", "-rf", "seamless_communication"])
subprocess.run(["git", "clone", SEAMLESS_GITEPO, "." + "/seamless_communication"])
os.chdir("seamless_communication")
subprocess.run(["pip", "install", "-e", "."])
os.chdir(initial_dir)
def download_whisper():
from faster_whisper.utils import download_model
@@ -50,18 +28,6 @@ def download_whisper():
print("Whisper model downloaded")
def download_seamlessm4t_model():
from huggingface_hub import snapshot_download
print("Downloading Transcriber model & tokenizer")
snapshot_download(HF_SEAMLESS_M4TEPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Transcriber model & tokenizer downloaded")
print("Downloading vocoder weights")
snapshot_download(HF_SEAMLESS_M4T_VOCODEREPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Vocoder weights downloaded")
def migrate_cache_llm():
"""
XXX The cache for model files in Transformers v4.22.0 has been updated.
@@ -76,52 +42,6 @@ def migrate_cache_llm():
print("LLM cache moved")
def configure_seamless_m4t():
import os
import yaml
ASSETS_DIR: str = "./seamless_communication/src/seamless_communication/assets/cards"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'r') as file:
model_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'r') as file:
vocoder_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'r') as file:
unity_100_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'r') as file:
unity_200_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
model_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}/snapshots"
available_model_versions = os.listdir(model_dir)
latest_model_version = sorted(available_model_versions)[-1]
model_name = f"multitask_unity_{SEAMLESSM4T_MODEL_SIZE}.pt"
model_path = os.path.join(os.getcwd(), model_dir, latest_model_version, model_name)
vocoder_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-vocoder/snapshots"
available_vocoder_versions = os.listdir(vocoder_dir)
latest_vocoder_version = sorted(available_vocoder_versions)[-1]
vocoder_name = "vocoder_36langs.pt"
vocoder_path = os.path.join(os.getcwd(), vocoder_dir, latest_vocoder_version, vocoder_name)
tokenizer_name = "tokenizer.model"
tokenizer_path = os.path.join(os.getcwd(), model_dir, latest_model_version, tokenizer_name)
model_yaml_data['checkpoint'] = f"file:/{model_path}"
vocoder_yaml_data['checkpoint'] = f"file:/{vocoder_path}"
unity_100_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
unity_200_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'w') as file:
yaml.dump(model_yaml_data, file)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'w') as file:
yaml.dump(vocoder_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'w') as file:
yaml.dump(unity_100_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'w') as file:
yaml.dump(unity_200_yaml_data, file)
transcriber_image = (
Image.debian_slim(python_version="3.10.8")
.apt_install("git")
@@ -131,7 +51,7 @@ transcriber_image = (
"faster-whisper",
"requests",
"torch",
"transformers",
"transformers==4.34.0",
"sentencepiece",
"protobuf",
"huggingface_hub==0.16.4",
@@ -141,9 +61,6 @@ transcriber_image = (
"pyyaml",
"hf-transfer~=0.1"
)
.run_function(install_seamless_communication)
.run_function(download_seamlessm4t_model)
.run_function(configure_seamless_m4t)
.run_function(download_whisper)
.run_function(migrate_cache_llm)
.env(
@@ -167,7 +84,6 @@ class Transcriber:
def __enter__(self):
import faster_whisper
import torch
from seamless_communication.models.inference.translator import Translator
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
@@ -178,12 +94,6 @@ class Transcriber:
num_workers=WHISPER_NUM_WORKERS,
download_root=WHISPER_MODEL_DIR
)
self.translator = Translator(
SEAMLESSM4T_MODEL_CARD_NAME,
SEAMLESSM4T_VOCODER_CARD_NAME,
torch.device(self.device),
dtype=torch.float32
)
@method()
def transcribe_segment(
@@ -229,38 +139,6 @@ class Transcriber:
"words": words
}
def get_seamless_lang_code(self, lang_code: str):
"""
The codes for SeamlessM4T is different from regular standards.
For ex, French is "fra" and not "fr".
"""
# TODO: Enhance with complete list of lang codes
seamless_lang_code = {
"en": "eng",
"fr": "fra"
}
return seamless_lang_code.get(lang_code, "eng")
@method()
def translate_text(
self,
text: str,
source_language: str,
target_language: str
):
translated_text, _, _ = self.translator.predict(
text,
"t2tt",
src_lang=self.get_seamless_lang_code(source_language),
tgt_lang=self.get_seamless_lang_code(target_language),
ngram_filtering=True
)
return {
"text": {
source_language: text,
target_language: str(translated_text)
}
}
# -------------------------------------------------------------------
# Web API
# -------------------------------------------------------------------
@@ -316,18 +194,4 @@ def web():
result = func.get()
return result
@app.post("/translate", dependencies=[Depends(apikey_auth)])
async def translate(
text: str,
source_language: Annotated[str, Body(...)] = "en",
target_language: Annotated[str, Body(...)] = "fr",
) -> TranscriptResponse:
func = transcriberstub.translate_text.spawn(
text=text,
source_language=source_language,
target_language=target_language,
)
result = func.get()
return result
return app

View File

@@ -0,0 +1,237 @@
"""
Reflector GPU backend - transcriber
===================================
"""
import os
import tempfile
from modal import Image, Secret, Stub, asgi_app, method
from pydantic import BaseModel
# Seamless M4T
SEAMLESSM4T_MODEL_SIZE: str = "medium"
SEAMLESSM4T_MODEL_CARD_NAME: str = f"seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}"
SEAMLESSM4T_VOCODER_CARD_NAME: str = "vocoder_36langs"
HF_SEAMLESS_M4TEPO: str = f"facebook/seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}"
HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
SEAMLESS_MODEL_DIR: str = "m4t"
stub = Stub(name="reflector-translator")
def install_seamless_communication():
import os
import subprocess
initial_dir = os.getcwd()
subprocess.run(["ssh-keyscan", "-t", "rsa", "github.com", ">>", "~/.ssh/known_hosts"])
subprocess.run(["rm", "-rf", "seamless_communication"])
subprocess.run(["git", "clone", SEAMLESS_GITEPO, "." + "/seamless_communication"])
os.chdir("seamless_communication")
subprocess.run(["pip", "install", "-e", "."])
os.chdir(initial_dir)
def download_seamlessm4t_model():
from huggingface_hub import snapshot_download
print("Downloading Transcriber model & tokenizer")
snapshot_download(HF_SEAMLESS_M4TEPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Transcriber model & tokenizer downloaded")
print("Downloading vocoder weights")
snapshot_download(HF_SEAMLESS_M4T_VOCODEREPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Vocoder weights downloaded")
def configure_seamless_m4t():
import os
import yaml
ASSETS_DIR: str = "./seamless_communication/src/seamless_communication/assets/cards"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'r') as file:
model_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'r') as file:
vocoder_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'r') as file:
unity_100_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'r') as file:
unity_200_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
model_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}/snapshots"
available_model_versions = os.listdir(model_dir)
latest_model_version = sorted(available_model_versions)[-1]
model_name = f"multitask_unity_{SEAMLESSM4T_MODEL_SIZE}.pt"
model_path = os.path.join(os.getcwd(), model_dir, latest_model_version, model_name)
vocoder_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-vocoder/snapshots"
available_vocoder_versions = os.listdir(vocoder_dir)
latest_vocoder_version = sorted(available_vocoder_versions)[-1]
vocoder_name = "vocoder_36langs.pt"
vocoder_path = os.path.join(os.getcwd(), vocoder_dir, latest_vocoder_version, vocoder_name)
tokenizer_name = "tokenizer.model"
tokenizer_path = os.path.join(os.getcwd(), model_dir, latest_model_version, tokenizer_name)
model_yaml_data['checkpoint'] = f"file:/{model_path}"
vocoder_yaml_data['checkpoint'] = f"file:/{vocoder_path}"
unity_100_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
unity_200_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'w') as file:
yaml.dump(model_yaml_data, file)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'w') as file:
yaml.dump(vocoder_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'w') as file:
yaml.dump(unity_100_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'w') as file:
yaml.dump(unity_200_yaml_data, file)
transcriber_image = (
Image.debian_slim(python_version="3.10.8")
.apt_install("git")
.apt_install("wget")
.apt_install("libsndfile-dev")
.pip_install(
"requests",
"torch",
"transformers==4.34.0",
"sentencepiece",
"protobuf",
"huggingface_hub==0.16.4",
"gitpython",
"torchaudio",
"fairseq2",
"pyyaml",
"hf-transfer~=0.1"
)
.run_function(install_seamless_communication)
.run_function(download_seamlessm4t_model)
.run_function(configure_seamless_m4t)
.env(
{
"LD_LIBRARY_PATH": (
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
)
}
)
)
@stub.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
image=transcriber_image,
)
class Translator:
def __enter__(self):
import torch
from seamless_communication.models.inference.translator import Translator
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.translator = Translator(
SEAMLESSM4T_MODEL_CARD_NAME,
SEAMLESSM4T_VOCODER_CARD_NAME,
torch.device(self.device),
dtype=torch.float32
)
@method()
def warmup(self):
return {"status": "ok"}
def get_seamless_lang_code(self, lang_code: str):
"""
The codes for SeamlessM4T is different from regular standards.
For ex, French is "fra" and not "fr".
"""
# TODO: Enhance with complete list of lang codes
seamless_lang_code = {
"en": "eng",
"fr": "fra"
}
return seamless_lang_code.get(lang_code, "eng")
@method()
def translate_text(
self,
text: str,
source_language: str,
target_language: str
):
translated_text, _, _ = self.translator.predict(
text,
"t2tt",
src_lang=self.get_seamless_lang_code(source_language),
tgt_lang=self.get_seamless_lang_code(target_language),
ngram_filtering=True
)
return {
"text": {
source_language: text,
target_language: str(translated_text)
}
}
# -------------------------------------------------------------------
# Web API
# -------------------------------------------------------------------
@stub.function(
container_idle_timeout=60,
timeout=60,
secrets=[
Secret.from_name("reflector-gpu"),
],
)
@asgi_app()
def web():
from fastapi import Body, Depends, FastAPI, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
from typing_extensions import Annotated
translatorstub = Translator()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class TranslateResponse(BaseModel):
result: dict
@app.post("/translate", dependencies=[Depends(apikey_auth)])
async def translate(
text: str,
source_language: Annotated[str, Body(...)] = "en",
target_language: Annotated[str, Body(...)] = "fr",
) -> TranslateResponse:
func = translatorstub.translate_text.spawn(
text=text,
source_language=source_language,
target_language=target_language,
)
result = func.get()
return result
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
async def warmup():
return translatorstub.warmup.spawn().get()
return app

View File

@@ -258,7 +258,7 @@ class LLM:
"""
Choose the token size to set as the threshold to pack the LLM calls
"""
buffer_token_size = 25
buffer_token_size = 100
default_output_tokens = 1000
context_window = self.tokenizer.model_max_length
tokens = self.tokenizer.tokenize(

View File

@@ -23,7 +23,7 @@ class ModalLLM(LLM):
"""
# TODO: Query the specific GPU platform
# Replace this with a HTTP call
return ["lmsys/vicuna-13b-v1.5"]
return ["lmsys/vicuna-13b-v1.5", "HuggingFaceH4/zephyr-7b-alpha"]
async def _generate(
self, prompt: str, gen_schema: dict | None, gen_cfg: dict | None, **kwargs
@@ -33,6 +33,13 @@ class ModalLLM(LLM):
json_payload["gen_schema"] = gen_schema
if gen_cfg:
json_payload["gen_cfg"] = gen_cfg
# Handing over generation of the final summary to Zephyr model
# but replacing the Vicuna model will happen after more testing
# TODO: Create a mapping of model names and cloud deployments
if self.model_name == "HuggingFaceH4/zephyr-7b-alpha":
self.llm_url = settings.ZEPHYR_LLM_URL + "/llm"
async with httpx.AsyncClient() as client:
response = await retry(client.post)(
self.llm_url,

View File

@@ -144,7 +144,76 @@ class TopicParams(LLMTaskParams):
return self._task_params
class BulletedSummaryParams(LLMTaskParams):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._gen_cfg = GenerationConfig(
max_new_tokens=800,
num_beams=1,
do_sample=True,
temperature=0.2,
early_stopping=True,
)
self._instruct = """
Given a meeting transcript, extract the key things discussed in the
form of a list.
While generating the response, follow the constraints mentioned below.
Summary constraints:
i) Do not add new content, except to fix spelling or punctuation.
ii) Do not add any prefixes or numbering in the response.
iii) The summarization should be as information dense as possible.
iv) Do not add any additional sections like Note, Conclusion, etc. in
the response.
Response format:
i) The response should be in the form of a bulleted list.
ii) Iteratively merge all the relevant paragraphs together to keep the
number of paragraphs to a minimum.
iii) Remove any unfinished sentences from the final response.
iv) Do not include narrative or reporting clauses.
v) Use "*" as the bullet icon.
"""
self._task_params = TaskParams(
instruct=self._instruct, gen_schema=None, gen_cfg=self._gen_cfg
)
def _get_task_params(self) -> TaskParams:
"""gen_schema
Return the parameters associated with a specific LLM task
"""
return self._task_params
class MergedSummaryParams(LLMTaskParams):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._gen_cfg = GenerationConfig(
max_new_tokens=600,
num_beams=1,
do_sample=True,
temperature=0.2,
early_stopping=True,
)
self._instruct = """
Given the key points of a meeting, summarize the points to describe the
meeting in the form of paragraphs.
"""
self._task_params = TaskParams(
instruct=self._instruct, gen_schema=None, gen_cfg=self._gen_cfg
)
def _get_task_params(self) -> TaskParams:
"""gen_schema
Return the parameters associated with a specific LLM task
"""
return self._task_params
LLMTaskParams.register("topic", TopicParams)
LLMTaskParams.register("final_title", FinalTitleParams)
LLMTaskParams.register("final_short_summary", FinalShortSummaryParams)
LLMTaskParams.register("final_long_summary", FinalLongSummaryParams)
LLMTaskParams.register("bullet_summary", BulletedSummaryParams)
LLMTaskParams.register("merged_summary", MergedSummaryParams)

View File

@@ -1,3 +1,4 @@
import nltk
from reflector.llm import LLM, LLMTaskParams
from reflector.processors.base import Processor
from reflector.processors.types import FinalLongSummary, TitleSummary
@@ -10,36 +11,58 @@ class TranscriptFinalLongSummaryProcessor(Processor):
INPUT_TYPE = TitleSummary
OUTPUT_TYPE = FinalLongSummary
TASK = "final_long_summary"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.chunks: list[TitleSummary] = []
self.llm = LLM.get_instance()
self.params = LLMTaskParams.get_instance(self.TASK).task_params
self.llm = LLM.get_instance(model_name="HuggingFaceH4/zephyr-7b-alpha")
async def _push(self, data: TitleSummary):
self.chunks.append(data)
async def get_bullet_summary(self, text: str) -> str:
params = LLMTaskParams.get_instance("bullet_summary").task_params
chunks = list(self.llm.split_corpus(corpus=text, task_params=params))
bullet_summary = ""
for chunk in chunks:
prompt = self.llm.create_prompt(instruct=params.instruct, text=chunk)
summary_result = await self.llm.generate(
prompt=prompt,
gen_schema=params.gen_schema,
gen_cfg=params.gen_cfg,
logger=self.logger,
)
bullet_summary += summary_result["long_summary"]
return bullet_summary
async def get_merged_summary(self, text: str) -> str:
params = LLMTaskParams.get_instance("merged_summary").task_params
chunks = list(self.llm.split_corpus(corpus=text, task_params=params))
merged_summary = ""
for chunk in chunks:
prompt = self.llm.create_prompt(instruct=params.instruct, text=chunk)
summary_result = await self.llm.generate(
prompt=prompt,
gen_schema=params.gen_schema,
gen_cfg=params.gen_cfg,
logger=self.logger,
)
merged_summary += summary_result["long_summary"]
return merged_summary
async def get_long_summary(self, text: str) -> str:
"""
Generate a long version of the final summary
"""
self.logger.info(f"Smoothing out {len(text)} length summary to a long summary")
chunks = list(self.llm.split_corpus(corpus=text, task_params=self.params))
bullet_summary = await self.get_bullet_summary(text)
merged_summary = await self.get_merged_summary(bullet_summary)
accumulated_summaries = ""
for chunk in chunks:
prompt = self.llm.create_prompt(instruct=self.params.instruct, text=chunk)
summary_result = await self.llm.generate(
prompt=prompt,
gen_schema=self.params.gen_schema,
gen_cfg=self.params.gen_cfg,
logger=self.logger,
)
accumulated_summaries += summary_result["long_summary"]
return merged_summary
return accumulated_summaries
def sentence_tokenize(self, text: str) -> [str]:
return nltk.sent_tokenize(text)
async def _flush(self):
if not self.chunks:
@@ -49,11 +72,25 @@ class TranscriptFinalLongSummaryProcessor(Processor):
accumulated_summaries = " ".join([chunk.summary for chunk in self.chunks])
long_summary = await self.get_long_summary(accumulated_summaries)
# Format the output as much as possible to be handled
# by front-end for displaying
summary_sentences = []
for sentence in self.sentence_tokenize(long_summary):
sentence = str(sentence).strip()
if sentence.startswith("- "):
sentence.replace("- ", "* ")
else:
sentence = "* " + sentence
sentence += " \n"
summary_sentences.append(sentence)
formatted_long_summary = "".join(summary_sentences)
last_chunk = self.chunks[-1]
duration = last_chunk.timestamp + last_chunk.duration
final_long_summary = FinalLongSummary(
long_summary=long_summary,
long_summary=formatted_long_summary,
duration=duration,
)
await self.emit(final_long_summary)

View File

@@ -16,8 +16,8 @@ class TranscriptTranslatorProcessor(Processor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.transcript_url = settings.TRANSCRIPT_URL
self.timeout = settings.TRANSCRIPT_TIMEOUT
self.translate_url = settings.TRANSLATE_URL
self.timeout = settings.TRANSLATE_TIMEOUT
self.headers = {"Authorization": f"Bearer {settings.LLM_MODAL_API_KEY}"}
async def _push(self, data: Transcript):
@@ -46,7 +46,7 @@ class TranscriptTranslatorProcessor(Processor):
async with httpx.AsyncClient() as client:
response = await retry(client.post)(
settings.TRANSCRIPT_URL + "/translate",
self.translate_url + "/translate",
headers=self.headers,
params=json_payload,
timeout=self.timeout,

View File

@@ -38,6 +38,10 @@ class Settings(BaseSettings):
TRANSCRIPT_URL: str | None = None
TRANSCRIPT_TIMEOUT: int = 90
# Translate into the target language
TRANSLATE_URL: str | None = None
TRANSLATE_TIMEOUT: int = 90
# Audio transcription banana.dev configuration
TRANSCRIPT_BANANA_API_KEY: str | None = None
TRANSCRIPT_BANANA_MODEL_KEY: str | None = None
@@ -68,6 +72,7 @@ class Settings(BaseSettings):
LLM_TIMEOUT: int = 60 * 5 # take cold start into account
LLM_MAX_TOKENS: int = 1024
LLM_TEMPERATURE: float = 0.7
ZEPHYR_LLM_URL: str | None = None
# LLM Banana configuration
LLM_BANANA_API_KEY: str | None = None

View File

@@ -9,11 +9,12 @@ def get_audio_waveform(path: Path | str, segments_count: int = 256) -> list[int]
path = path.as_posix()
container = av.open(path)
stream = container.streams.get(audio=0)[0]
stream = container.streams.audio[0]
duration = container.duration / av.time_base
chunk_size_secs = duration / segments_count
chunk_size = int(chunk_size_secs * stream.rate * stream.channels)
if chunk_size == 0:
# there is not enough data to fill the chunks
# so basically we use chunk_size of 1.
@@ -22,7 +23,7 @@ def get_audio_waveform(path: Path | str, segments_count: int = 256) -> list[int]
# 1.1 is a safety margin as it seems that pyav decode
# does not always return the exact number of chunks
# that we expect.
volumes = np.zeros(int(segments_count * 1.1), dtype=int)
volumes = np.zeros(int(segments_count * 1.1), dtype=float)
current_chunk_idx = 0
current_chunk_size = 0
current_chunk_volume = 0
@@ -35,7 +36,6 @@ def get_audio_waveform(path: Path | str, segments_count: int = 256) -> list[int]
count += len(data)
frames += 1
samples += frame.samples
while len(data) > 0:
datalen = len(data)
@@ -53,13 +53,13 @@ def get_audio_waveform(path: Path | str, segments_count: int = 256) -> list[int]
current_chunk_idx += 1
current_chunk_size = 0
current_chunk_volume = 0
volumes = volumes[:current_chunk_idx]
# normalize the volumes 0-128
volumes = volumes * 128 / volumes.max()
# number of decimals to use when rounding the peak value
digits = 2
volumes = np.round(volumes / volumes.max(), digits)
return volumes.astype("uint8").tolist()
return volumes.tolist()
if __name__ == "__main__":

View File

@@ -41,7 +41,7 @@ def generate_transcript_name():
class AudioWaveform(BaseModel):
data: list[int]
data: list[float]
class TranscriptText(BaseModel):

View File

@@ -93,3 +93,12 @@ def ensure_casing():
with patch("reflector.llm.base.LLM.ensure_casing") as mock_casing:
mock_casing.return_value = "LLM TITLE"
yield
@pytest.fixture
def sentence_tokenize():
with patch(
"reflector.processors.TranscriptFinalLongSummaryProcessor" ".sentence_tokenize"
) as mock_sent_tokenize:
mock_sent_tokenize.return_value = ["LLM LONG SUMMARY"]
yield

View File

@@ -9,6 +9,7 @@ async def test_basic_process(
dummy_llm,
dummy_processors,
ensure_casing,
sentence_tokenize,
):
# goal is to start the server, and send rtc audio to it
# validate the events received

View File

@@ -60,6 +60,7 @@ async def test_transcript_rtc_and_websocket(
dummy_processors,
ensure_casing,
appserver,
sentence_tokenize,
):
# goal: start the server, exchange RTC, receive websocket events
# because of that, we need to start the server in a thread
@@ -156,7 +157,7 @@ async def test_transcript_rtc_and_websocket(
assert "FINAL_LONG_SUMMARY" in eventnames
ev = events[eventnames.index("FINAL_LONG_SUMMARY")]
assert ev["data"]["long_summary"] == "LLM LONG SUMMARY"
assert ev["data"]["long_summary"] == "* LLM LONG SUMMARY \n"
assert "FINAL_SHORT_SUMMARY" in eventnames
ev = events[eventnames.index("FINAL_SHORT_SUMMARY")]
@@ -193,6 +194,7 @@ async def test_transcript_rtc_and_websocket_and_fr(
dummy_processors,
ensure_casing,
appserver,
sentence_tokenize,
):
# goal: start the server, exchange RTC, receive websocket events
# because of that, we need to start the server in a thread
@@ -292,7 +294,7 @@ async def test_transcript_rtc_and_websocket_and_fr(
assert "FINAL_LONG_SUMMARY" in eventnames
ev = events[eventnames.index("FINAL_LONG_SUMMARY")]
assert ev["data"]["long_summary"] == "LLM LONG SUMMARY"
assert ev["data"]["long_summary"] == "* LLM LONG SUMMARY \n"
assert "FINAL_SHORT_SUMMARY" in eventnames
ev = events[eventnames.index("FINAL_SHORT_SUMMARY")]

View File

@@ -54,10 +54,6 @@ export interface V1TranscriptGetRequest {
transcriptId: any;
}
export interface V1TranscriptGetAudioRequest {
transcriptId: any;
}
export interface V1TranscriptGetAudioMp3Request {
transcriptId: any;
}
@@ -310,69 +306,6 @@ export class DefaultApi extends runtime.BaseAPI {
return await response.value();
}
/**
* Transcript Get Audio
*/
async v1TranscriptGetAudioRaw(
requestParameters: V1TranscriptGetAudioRequest,
initOverrides?: RequestInit | runtime.InitOverrideFunction,
): Promise<runtime.ApiResponse<any>> {
if (
requestParameters.transcriptId === null ||
requestParameters.transcriptId === undefined
) {
throw new runtime.RequiredError(
"transcriptId",
"Required parameter requestParameters.transcriptId was null or undefined when calling v1TranscriptGetAudio.",
);
}
const queryParameters: any = {};
const headerParameters: runtime.HTTPHeaders = {};
if (this.configuration && this.configuration.accessToken) {
// oauth required
headerParameters["Authorization"] = await this.configuration.accessToken(
"OAuth2AuthorizationCodeBearer",
[],
);
}
const response = await this.request(
{
path: `/v1/transcripts/{transcript_id}/audio`.replace(
`{${"transcript_id"}}`,
encodeURIComponent(String(requestParameters.transcriptId)),
),
method: "GET",
headers: headerParameters,
query: queryParameters,
},
initOverrides,
);
if (this.isJsonMime(response.headers.get("content-type"))) {
return new runtime.JSONApiResponse<any>(response);
} else {
return new runtime.TextApiResponse(response) as any;
}
}
/**
* Transcript Get Audio
*/
async v1TranscriptGetAudio(
requestParameters: V1TranscriptGetAudioRequest,
initOverrides?: RequestInit | runtime.InitOverrideFunction,
): Promise<any> {
const response = await this.v1TranscriptGetAudioRaw(
requestParameters,
initOverrides,
);
return await response.value();
}
/**
* Transcript Get Audio Mp3
*/

View File

@@ -0,0 +1,91 @@
/* Headings */
.markdown h1,
.markdown h2,
.markdown h3,
.markdown h4,
.markdown h5,
.markdown h6 {
margin-top: 1em;
margin-bottom: 0.5em;
}
/* Paragraphs */
.markdown p {
margin: 1em 0;
}
/* Lists */
.markdown ul,
.markdown ol {
margin: 1em;
padding-left: 1em;
}
.markdown li {
margin: 0.2em 0;
}
/* Bold and italic */
.markdown b,
.markdown strong {
font-weight: bold;
}
.markdown i,
.markdown em {
font-style: italic;
}
/* Blockquotes */
.markdown blockquote {
margin: 1em 0;
padding-left: 1em;
border-left: 2px solid #ccc;
}
/* Code blocks and inline code */
.markdown code {
font-family: "Courier New", monospace;
}
.markdown pre {
background-color: #f4f4f4;
padding: 1em;
overflow-x: auto;
}
/* Links */
.markdown a {
color: blue;
text-decoration: underline;
}
/* Horizontal rule */
.markdown hr {
border: 0;
border-bottom: 1px solid #ccc;
margin: 1em 0;
}
/* Images */
.markdown img {
max-width: 100%;
height: auto;
}
/* Lists */
.markdown ul {
margin: 1em;
padding-left: 1em;
list-style-type: disc;
}
.markdown ol {
margin: 1em;
padding-left: 1em;
list-style-type: decimal;
}
.markdown li {
margin: 0.2em 0;
}

View File

@@ -0,0 +1,30 @@
export const waveSurferStyles = {
playerSettings: {
waveColor: "#777",
progressColor: "#222",
cursorColor: "OrangeRed",
},
playerStyle: {
cursor: "pointer",
backgroundColor: "RGB(240 240 240)",
borderRadius: "15px",
},
marker: `
border-left: solid 1px orange;
padding: 0 2px 0 5px;
font-size: 0.7rem;
border-radius: 0 3px 3px 0;
position: absolute;
width: 100px;
max-width: fit-content;
cursor: pointer;
background-color: white;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
transition: width 100ms linear;
z-index: 0;
`,
markerHover: { backgroundColor: "orange" },
};

View File

@@ -12,6 +12,7 @@ import "../../styles/button.css";
import FinalSummary from "../finalSummary";
import ShareLink from "../shareLink";
import QRCode from "react-qr-code";
import TranscriptTitle from "../transcriptTitle";
type TranscriptDetails = {
params: {
@@ -50,13 +51,18 @@ export default function TranscriptDetails(details: TranscriptDetails) {
<Modal title="Loading" text={"Loading transcript..."} />
) : (
<>
<Recorder
topics={topics?.topics || []}
useActiveTopic={useActiveTopic}
waveform={waveform?.waveform}
isPastMeeting={true}
transcriptId={transcript?.response?.id}
/>
<div className="flex flex-col">
{transcript?.response?.title && (
<TranscriptTitle title={transcript.response.title} />
)}
<Recorder
topics={topics?.topics || []}
useActiveTopic={useActiveTopic}
waveform={waveform?.waveform}
isPastMeeting={true}
transcriptId={transcript?.response?.id}
/>
</div>
<div className="grid grid-cols-1 lg:grid-cols-2 grid-rows-2 lg:grid-rows-1 gap-2 lg:gap-4 h-full">
<TopicList
topics={topics?.topics || []}

View File

@@ -1,4 +1,8 @@
import { useRef, useState } from "react";
import React from "react";
import ReactDom from "react-dom";
import Markdown from "react-markdown";
import "../styles/markdown.css";
type FinalSummaryProps = {
summary: string;
@@ -62,7 +66,9 @@ export default function FinalSummary(props: FinalSummaryProps) {
</div>
</div>
<p ref={finalSummaryRef}>{props.summary}</p>
<p ref={finalSummaryRef} className="markdown">
<Markdown>{props.summary}</Markdown>
</p>
</div>
);
}

View File

@@ -14,6 +14,7 @@ import { AudioWaveform } from "../api";
import AudioInputsDropdown from "./audioInputsDropdown";
import { Option } from "react-dropdown";
import { useError } from "../(errors)/errorContext";
import { waveSurferStyles } from "../styles/recorder";
type RecorderProps = {
setStream?: React.Dispatch<React.SetStateAction<MediaStream | null>>;
@@ -94,20 +95,29 @@ export default function Recorder(props: RecorderProps) {
};
};
// Setup Shortcuts
useEffect(() => {
if (!record) return;
return setupProjectorKeys();
}, [record, deviceId]);
// Waveform setup
useEffect(() => {
if (waveformRef.current) {
const _wavesurfer = WaveSurfer.create({
container: waveformRef.current,
waveColor: "#777",
progressColor: "#222",
cursorColor: "OrangeRed",
url: props.transcriptId
? `${process.env.NEXT_PUBLIC_API_URL}/v1/transcripts/${props.transcriptId}/audio/mp3`
: undefined,
peaks: props.waveform?.data,
hideScrollbar: true,
autoCenter: true,
barWidth: 2,
height: "auto",
url: props.transcriptId
? `${process.env.NEXT_PUBLIC_API_URL}/v1/transcripts/${props.transcriptId}/audio/mp3`
: undefined,
...waveSurferStyles.player,
});
if (!props.transcriptId) {
@@ -115,10 +125,12 @@ export default function Recorder(props: RecorderProps) {
_wshack.renderer.renderSingleCanvas = () => {};
}
// styling
const wsWrapper = _wavesurfer.getWrapper();
wsWrapper.style.cursor = "pointer";
wsWrapper.style.backgroundColor = "RGB(240 240 240)";
wsWrapper.style.borderRadius = "15px";
wsWrapper.style.cursor = waveSurferStyles.playerStyle.cursor;
wsWrapper.style.backgroundColor =
waveSurferStyles.playerStyle.backgroundColor;
wsWrapper.style.borderRadius = waveSurferStyles.playerStyle.borderRadius;
_wavesurfer.on("play", () => {
setIsPlaying(true);
@@ -131,9 +143,10 @@ export default function Recorder(props: RecorderProps) {
setRecord(_wavesurfer.registerPlugin(RecordPlugin.create()));
setWaveRegions(_wavesurfer.registerPlugin(CustomRegionsPlugin.create()));
if (props.transcriptId) _wavesurfer.toggleInteraction(true);
if (props.isPastMeeting) _wavesurfer.toggleInteraction(true);
setWavesurfer(_wavesurfer);
return () => {
_wavesurfer.destroy();
setIsRecording(false);
@@ -152,35 +165,18 @@ export default function Recorder(props: RecorderProps) {
if (!waveRegions) return;
waveRegions.clearRegions();
for (let topic of topicsRef.current) {
const content = document.createElement("div");
content.setAttribute(
"style",
`
position: absolute;
border-left: solid 1px orange;
padding: 0 2px 0 5px;
font-size: 0.7rem;
width: 100px;
max-width: fit-content;
cursor: pointer;
background-color: white;
border-radius: 0 3px 3px 0;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
transition: width 100ms linear;
`,
);
content.setAttribute("style", waveSurferStyles.marker);
content.onmouseover = () => {
content.style.backgroundColor = "orange";
content.style.backgroundColor =
waveSurferStyles.markerHover.backgroundColor;
content.style.zIndex = "999";
content.style.width = "300px";
};
content.onmouseout = () => {
content.style.backgroundColor = "white";
content.style.zIndex = "0";
content.style.width = "100px";
content.setAttribute("style", waveSurferStyles.marker);
};
content.textContent = topic.title;
@@ -198,12 +194,6 @@ export default function Recorder(props: RecorderProps) {
}
};
useEffect(() => {
if (!record) return;
return setupProjectorKeys();
}, [record, deviceId]);
useEffect(() => {
if (!record) return;

View File

@@ -0,0 +1,13 @@
type TranscriptTitle = {
title: string;
};
const TranscriptTitle = (props: TranscriptTitle) => {
return (
<h2 className="text-2xl lg:text-4xl font-extrabold text-center mb-4">
{props.title}
</h2>
);
};
export default TranscriptTitle;

View File

@@ -25,6 +25,7 @@
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-dropdown": "^1.11.0",
"react-markdown": "^9.0.0",
"react-qr-code": "^2.0.12",
"sass": "^1.63.6",
"simple-peer": "^9.11.1",

View File

@@ -400,11 +400,25 @@
dependencies:
tslib "^2.4.0"
"@types/debug@^4.0.0":
version "4.1.9"
resolved "https://registry.yarnpkg.com/@types/debug/-/debug-4.1.9.tgz#906996938bc672aaf2fb8c0d3733ae1dda05b005"
integrity sha512-8Hz50m2eoS56ldRlepxSBa6PWEVCtzUo/92HgLc2qTMnotJNIm7xP+UZhyWoYsyOdd5dxZ+NZLb24rsKyFs2ow==
dependencies:
"@types/ms" "*"
"@types/estree@*", "@types/estree@^1.0.0":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@types/estree/-/estree-1.0.1.tgz#aa22750962f3bf0e79d753d3cc067f010c95f194"
integrity sha512-LG4opVs2ANWZ1TJoKc937iMmNstM/d0ae1vNbnBvBhqCSezgVUOzcLCqbI5elV8Vy6WKwKjaqR+zO9VKirBBCA==
"@types/hast@^3.0.0":
version "3.0.1"
resolved "https://registry.yarnpkg.com/@types/hast/-/hast-3.0.1.tgz#e1705ec9258ac4885659c2d50bac06b4fcd16466"
integrity sha512-hs/iBJx2aydugBQx5ETV3ZgeSS0oIreQrFJ4bjBl0XvM4wAmDjFEALY7p0rTSLt2eL+ibjRAAs9dTPiCLtmbqQ==
dependencies:
"@types/unist" "*"
"@types/istanbul-lib-coverage@*", "@types/istanbul-lib-coverage@^2.0.0":
version "2.0.4"
resolved "https://registry.yarnpkg.com/@types/istanbul-lib-coverage/-/istanbul-lib-coverage-2.0.4.tgz#8467d4b3c087805d63580480890791277ce35c44"
@@ -424,6 +438,18 @@
dependencies:
"@types/istanbul-lib-report" "*"
"@types/mdast@^4.0.0":
version "4.0.1"
resolved "https://registry.yarnpkg.com/@types/mdast/-/mdast-4.0.1.tgz#9c45e60a04e79f160dcefe6545d28ae536a6ed22"
integrity sha512-IlKct1rUTJ1T81d8OHzyop15kGv9A/ff7Gz7IJgrk6jDb4Udw77pCJ+vq8oxZf4Ghpm+616+i1s/LNg/Vh7d+g==
dependencies:
"@types/unist" "*"
"@types/ms@*":
version "0.7.32"
resolved "https://registry.yarnpkg.com/@types/ms/-/ms-0.7.32.tgz#f6cd08939ae3ad886fcc92ef7f0109dacddf61ab"
integrity sha512-xPSg0jm4mqgEkNhowKgZFBNtwoEwF6gJ4Dhww+GFpm3IgtNseHQZ5IqdNwnquZEoANxyDAKDRAdVo4Z72VvD/g==
"@types/node@*":
version "20.4.5"
resolved "https://registry.yarnpkg.com/@types/node/-/node-20.4.5.tgz#9dc0a5cb1ccce4f7a731660935ab70b9c00a5d69"
@@ -448,6 +474,11 @@
resolved "https://registry.yarnpkg.com/@types/scheduler/-/scheduler-0.16.3.tgz#cef09e3ec9af1d63d2a6cc5b383a737e24e6dcf5"
integrity sha512-5cJ8CB4yAx7BH1oMvdU0Jh9lrEXyPkar6F9G/ERswkCuvP4KQZfZkSjcMbAICCpQTN4OuZn8tz0HiKv9TGZgrQ==
"@types/unist@*", "@types/unist@^3.0.0":
version "3.0.0"
resolved "https://registry.yarnpkg.com/@types/unist/-/unist-3.0.0.tgz#988ae8af1e5239e89f9fbb1ade4c935f4eeedf9a"
integrity sha512-MFETx3tbTjE7Uk6vvnWINA/1iJ7LuMdO4fcq8UfF0pRbj01aGLduVvQcRyswuACJdpnHgg8E3rQLhaRdNEJS0w==
"@types/yargs-parser@*":
version "21.0.0"
resolved "https://registry.yarnpkg.com/@types/yargs-parser/-/yargs-parser-21.0.0.tgz#0c60e537fa790f5f9472ed2776c2b71ec117351b"
@@ -460,6 +491,11 @@
dependencies:
"@types/yargs-parser" "*"
"@ungap/structured-clone@^1.0.0":
version "1.2.0"
resolved "https://registry.yarnpkg.com/@ungap/structured-clone/-/structured-clone-1.2.0.tgz#756641adb587851b5ccb3e095daf27ae581c8406"
integrity sha512-zuVdFrMJiuCDQUMCzQaD6KL28MjnqqN8XnAqiEq9PNm/hCPTSGfrXCOfwj1ow4LFb/tNymJPwsNbVePc1xFqrQ==
agent-base@6:
version "6.0.2"
resolved "https://registry.yarnpkg.com/agent-base/-/agent-base-6.0.2.tgz#49fff58577cfee3f37176feab4c22e00f86d7f77"
@@ -543,6 +579,11 @@ axios@^1.4.0:
form-data "^4.0.0"
proxy-from-env "^1.1.0"
bail@^2.0.0:
version "2.0.2"
resolved "https://registry.yarnpkg.com/bail/-/bail-2.0.2.tgz#d26f5cd8fe5d6f832a31517b9f7c356040ba6d5d"
integrity sha512-0xO6mYd7JB2YesxDKplafRpsiOzPt9V02ddPCLbY1xYGPOX24NTyN50qnUxgCPcSoYMhKpAuBTjQoRZCAkUDRw==
balanced-match@^1.0.0:
version "1.0.2"
resolved "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz"
@@ -656,6 +697,11 @@ chalk@4.1.2, chalk@^4.0.0, chalk@^4.1.0, chalk@^4.1.1:
ansi-styles "^4.1.0"
supports-color "^7.1.0"
character-entities@^2.0.0:
version "2.0.2"
resolved "https://registry.yarnpkg.com/character-entities/-/character-entities-2.0.2.tgz#2d09c2e72cd9523076ccb21157dff66ad43fcc22"
integrity sha512-shx7oQ0Awen/BRIdkjkvz54PnEEI/EjwXDSIZp86/KKdbafHh1Df/RYGBhn4hbe2+uKC9FnT5UCEdyPz3ai9hQ==
chardet@^0.7.0:
version "0.7.0"
resolved "https://registry.yarnpkg.com/chardet/-/chardet-0.7.0.tgz#90094849f0937f2eedc2425d0d28a9e5f0cbad9e"
@@ -741,6 +787,11 @@ combined-stream@^1.0.8:
dependencies:
delayed-stream "~1.0.0"
comma-separated-tokens@^2.0.0:
version "2.0.3"
resolved "https://registry.yarnpkg.com/comma-separated-tokens/-/comma-separated-tokens-2.0.3.tgz#4e89c9458acb61bc8fef19f4529973b2392839ee"
integrity sha512-Fu4hJdvzeylCfQPp9SGWidpzrMs7tTrlu6Vb8XGaRGck8QSNZJJp538Wrb60Lax4fPwR64ViY468OIUTbRlGZg==
commander@8.3.0:
version "8.3.0"
resolved "https://registry.yarnpkg.com/commander/-/commander-8.3.0.tgz#4837ea1b2da67b9c616a67afbb0fafee567bca66"
@@ -824,13 +875,20 @@ date-fns@^2.16.1:
dependencies:
"@babel/runtime" "^7.21.0"
debug@4, debug@^4.3.2, debug@^4.3.4:
debug@4, debug@^4.0.0, debug@^4.3.2, debug@^4.3.4:
version "4.3.4"
resolved "https://registry.npmjs.org/debug/-/debug-4.3.4.tgz"
integrity sha512-PRWFHuSU3eDtQJPvnNY7Jcket1j0t5OuOsFzPPzsekD52Zl8qUfFIPEiswXqIvHWGVHOgX+7G/vCNNhehwxfkQ==
dependencies:
ms "2.1.2"
decode-named-character-reference@^1.0.0:
version "1.0.2"
resolved "https://registry.yarnpkg.com/decode-named-character-reference/-/decode-named-character-reference-1.0.2.tgz#daabac9690874c394c81e4162a0304b35d824f0e"
integrity sha512-O8x12RzrUF8xyVcY0KJowWsmaJxQbmy0/EtnNtHRpsOcT7dFk5W598coHqBVpmWo1oQQfsCqfCmkZN5DJrZVdg==
dependencies:
character-entities "^2.0.0"
defaults@^1.0.3:
version "1.0.4"
resolved "https://registry.yarnpkg.com/defaults/-/defaults-1.0.4.tgz#b0b02062c1e2aa62ff5d9528f0f98baa90978d7a"
@@ -843,6 +901,18 @@ delayed-stream@~1.0.0:
resolved "https://registry.yarnpkg.com/delayed-stream/-/delayed-stream-1.0.0.tgz#df3ae199acadfb7d440aaae0b29e2272b24ec619"
integrity sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==
dequal@^2.0.0:
version "2.0.3"
resolved "https://registry.yarnpkg.com/dequal/-/dequal-2.0.3.tgz#2644214f1997d39ed0ee0ece72335490a7ac67be"
integrity sha512-0je+qPKHEMohvfRTCEo3CrPG6cAzAYgmzKyxRiYSSDkS6eGJdyVJm7WaYA5ECaAD9wLB2T4EEeymA5aFVcYXCA==
devlop@^1.0.0:
version "1.1.0"
resolved "https://registry.yarnpkg.com/devlop/-/devlop-1.1.0.tgz#4db7c2ca4dc6e0e834c30be70c94bbc976dc7018"
integrity sha512-RWmIqhcFf1lRYBvNmr7qTNuyCt/7/ns2jbpp1+PalgE/rDQcBT0fioSMUpJ93irlUhC5hrg4cYqe6U+0ImW0rA==
dependencies:
dequal "^2.0.0"
dezalgo@^1.0.4:
version "1.0.4"
resolved "https://registry.yarnpkg.com/dezalgo/-/dezalgo-1.0.4.tgz#751235260469084c132157dfa857f386d4c33d81"
@@ -905,6 +975,11 @@ estree-walker@^2.0.2:
resolved "https://registry.yarnpkg.com/estree-walker/-/estree-walker-2.0.2.tgz#52f010178c2a4c117a7757cfe942adb7d2da4cac"
integrity sha512-Rfkk/Mp/DL7JVje3u18FxFujQlTNR2q6QfMSMB7AvCBx91NGj/ba3kCfza0f6dVDbw7YlRf/nDrn7pQrCCyQ/w==
extend@^3.0.0:
version "3.0.2"
resolved "https://registry.yarnpkg.com/extend/-/extend-3.0.2.tgz#f8b1136b4071fbd8eb140aff858b1019ec2915fa"
integrity sha512-fjquC59cD7CyW6urNXK0FBufkZcoiGG80wTuPujX590cB5Ttln20E2UB4S/WARVqhXffZl2LNgS+gQdPIIim/g==
external-editor@^3.0.3:
version "3.1.0"
resolved "https://registry.yarnpkg.com/external-editor/-/external-editor-3.1.0.tgz#cb03f740befae03ea4d283caed2741a83f335495"
@@ -1098,6 +1173,28 @@ has@^1.0.3:
dependencies:
function-bind "^1.1.1"
hast-util-to-jsx-runtime@^2.0.0:
version "2.2.0"
resolved "https://registry.yarnpkg.com/hast-util-to-jsx-runtime/-/hast-util-to-jsx-runtime-2.2.0.tgz#ffd59bfcf0eb8321c6ed511bfc4b399ac3404bc2"
integrity sha512-wSlp23N45CMjDg/BPW8zvhEi3R+8eRE1qFbjEyAUzMCzu2l1Wzwakq+Tlia9nkCtEl5mDxa7nKHsvYJ6Gfn21A==
dependencies:
"@types/hast" "^3.0.0"
"@types/unist" "^3.0.0"
comma-separated-tokens "^2.0.0"
hast-util-whitespace "^3.0.0"
property-information "^6.0.0"
space-separated-tokens "^2.0.0"
style-to-object "^0.4.0"
unist-util-position "^5.0.0"
vfile-message "^4.0.0"
hast-util-whitespace@^3.0.0:
version "3.0.0"
resolved "https://registry.yarnpkg.com/hast-util-whitespace/-/hast-util-whitespace-3.0.0.tgz#7778ed9d3c92dd9e8c5c8f648a49c21fc51cb621"
integrity sha512-88JUN06ipLwsnv+dVn+OIYOvAuvBMy/Qoi6O7mQHxdPXpjy+Cd6xRkWwux7DKO+4sYILtLBRIKgsdpS2gQc7qw==
dependencies:
"@types/hast" "^3.0.0"
hexoid@^1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/hexoid/-/hexoid-1.0.0.tgz#ad10c6573fb907de23d9ec63a711267d9dc9bc18"
@@ -1110,6 +1207,11 @@ hoist-non-react-statics@^3.3.2:
dependencies:
react-is "^16.7.0"
html-url-attributes@^3.0.0:
version "3.0.0"
resolved "https://registry.yarnpkg.com/html-url-attributes/-/html-url-attributes-3.0.0.tgz#fc4abf0c3fb437e2329c678b80abb3c62cff6f08"
integrity sha512-/sXbVCWayk6GDVg3ctOX6nxaVj7So40FcFAnWlWGNAB1LpYKcV5Cd10APjPjW80O7zYW2MsjBV4zZ7IZO5fVow==
https-proxy-agent@^5.0.0:
version "5.0.1"
resolved "https://registry.yarnpkg.com/https-proxy-agent/-/https-proxy-agent-5.0.1.tgz#c59ef224a04fe8b754f3db0063a25ea30d0005d6"
@@ -1160,6 +1262,11 @@ inherits@2, inherits@^2.0.3, inherits@^2.0.4:
resolved "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz"
integrity sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==
inline-style-parser@0.1.1:
version "0.1.1"
resolved "https://registry.yarnpkg.com/inline-style-parser/-/inline-style-parser-0.1.1.tgz#ec8a3b429274e9c0a1f1c4ffa9453a7fef72cea1"
integrity sha512-7NXolsK4CAS5+xvdj5OMMbI962hU/wvwoxk+LWR9Ek9bVtyuuYScDN6eS0rUm6TxApFpw7CX1o4uJzcd4AyD3Q==
inquirer@8.2.5:
version "8.2.5"
resolved "https://registry.yarnpkg.com/inquirer/-/inquirer-8.2.5.tgz#d8654a7542c35a9b9e069d27e2df4858784d54f8"
@@ -1222,6 +1329,11 @@ is-number@^7.0.0:
resolved "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz"
integrity sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==
is-plain-obj@^4.0.0:
version "4.1.0"
resolved "https://registry.yarnpkg.com/is-plain-obj/-/is-plain-obj-4.1.0.tgz#d65025edec3657ce032fd7db63c97883eaed71f0"
integrity sha512-+Pgi+vMuUNkJyExiMBt5IlFoMyKnr5zhJ4Uspz58WOhBF5QoIZkFyNHIbBAtHwzVAgk5RtndVNsDRN61/mmDqg==
is-reference@1.2.1:
version "1.2.1"
resolved "https://registry.yarnpkg.com/is-reference/-/is-reference-1.2.1.tgz#8b2dac0b371f4bc994fdeaba9eb542d03002d0b7"
@@ -1353,6 +1465,45 @@ magic-string@^0.27.0:
dependencies:
"@jridgewell/sourcemap-codec" "^1.4.13"
mdast-util-from-markdown@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/mdast-util-from-markdown/-/mdast-util-from-markdown-2.0.0.tgz#52f14815ec291ed061f2922fd14d6689c810cb88"
integrity sha512-n7MTOr/z+8NAX/wmhhDji8O3bRvPTV/U0oTCaZJkjhPSKTPhS3xufVhKGF8s1pJ7Ox4QgoIU7KHseh09S+9rTA==
dependencies:
"@types/mdast" "^4.0.0"
"@types/unist" "^3.0.0"
decode-named-character-reference "^1.0.0"
devlop "^1.0.0"
mdast-util-to-string "^4.0.0"
micromark "^4.0.0"
micromark-util-decode-numeric-character-reference "^2.0.0"
micromark-util-decode-string "^2.0.0"
micromark-util-normalize-identifier "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
unist-util-stringify-position "^4.0.0"
mdast-util-to-hast@^13.0.0:
version "13.0.2"
resolved "https://registry.yarnpkg.com/mdast-util-to-hast/-/mdast-util-to-hast-13.0.2.tgz#74c0a9f014bb2340cae6118f6fccd75467792be7"
integrity sha512-U5I+500EOOw9e3ZrclN3Is3fRpw8c19SMyNZlZ2IS+7vLsNzb2Om11VpIVOR+/0137GhZsFEF6YiKD5+0Hr2Og==
dependencies:
"@types/hast" "^3.0.0"
"@types/mdast" "^4.0.0"
"@ungap/structured-clone" "^1.0.0"
devlop "^1.0.0"
micromark-util-sanitize-uri "^2.0.0"
trim-lines "^3.0.0"
unist-util-position "^5.0.0"
unist-util-visit "^5.0.0"
mdast-util-to-string@^4.0.0:
version "4.0.0"
resolved "https://registry.yarnpkg.com/mdast-util-to-string/-/mdast-util-to-string-4.0.0.tgz#7a5121475556a04e7eddeb67b264aae79d312814"
integrity sha512-0H44vDimn51F0YwvxSJSm0eCDOJTRlmN0R1yBh4HLj9wiV1Dn0QoXGbvFAWj2hSItVTlCmBF1hqKlIyUBVFLPg==
dependencies:
"@types/mdast" "^4.0.0"
merge-stream@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/merge-stream/-/merge-stream-2.0.0.tgz#52823629a14dd00c9770fb6ad47dc6310f2c1f60"
@@ -1368,6 +1519,200 @@ methods@^1.1.2:
resolved "https://registry.yarnpkg.com/methods/-/methods-1.1.2.tgz#5529a4d67654134edcc5266656835b0f851afcee"
integrity sha512-iclAHeNqNm68zFtnZ0e+1L2yUIdvzNoauKU4WBA3VvH/vPFieF7qfRlwUZU+DA9P9bPXIS90ulxoUoCH23sV2w==
micromark-core-commonmark@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-core-commonmark/-/micromark-core-commonmark-2.0.0.tgz#50740201f0ee78c12a675bf3e68ffebc0bf931a3"
integrity sha512-jThOz/pVmAYUtkroV3D5c1osFXAMv9e0ypGDOIZuCeAe91/sD6BoE2Sjzt30yuXtwOYUmySOhMas/PVyh02itA==
dependencies:
decode-named-character-reference "^1.0.0"
devlop "^1.0.0"
micromark-factory-destination "^2.0.0"
micromark-factory-label "^2.0.0"
micromark-factory-space "^2.0.0"
micromark-factory-title "^2.0.0"
micromark-factory-whitespace "^2.0.0"
micromark-util-character "^2.0.0"
micromark-util-chunked "^2.0.0"
micromark-util-classify-character "^2.0.0"
micromark-util-html-tag-name "^2.0.0"
micromark-util-normalize-identifier "^2.0.0"
micromark-util-resolve-all "^2.0.0"
micromark-util-subtokenize "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-factory-destination@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-factory-destination/-/micromark-factory-destination-2.0.0.tgz#857c94debd2c873cba34e0445ab26b74f6a6ec07"
integrity sha512-j9DGrQLm/Uhl2tCzcbLhy5kXsgkHUrjJHg4fFAeoMRwJmJerT9aw4FEhIbZStWN8A3qMwOp1uzHr4UL8AInxtA==
dependencies:
micromark-util-character "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-factory-label@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-factory-label/-/micromark-factory-label-2.0.0.tgz#17c5c2e66ce39ad6f4fc4cbf40d972f9096f726a"
integrity sha512-RR3i96ohZGde//4WSe/dJsxOX6vxIg9TimLAS3i4EhBAFx8Sm5SmqVfR8E87DPSR31nEAjZfbt91OMZWcNgdZw==
dependencies:
devlop "^1.0.0"
micromark-util-character "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-factory-space@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-factory-space/-/micromark-factory-space-2.0.0.tgz#5e7afd5929c23b96566d0e1ae018ae4fcf81d030"
integrity sha512-TKr+LIDX2pkBJXFLzpyPyljzYK3MtmllMUMODTQJIUfDGncESaqB90db9IAUcz4AZAJFdd8U9zOp9ty1458rxg==
dependencies:
micromark-util-character "^2.0.0"
micromark-util-types "^2.0.0"
micromark-factory-title@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-factory-title/-/micromark-factory-title-2.0.0.tgz#726140fc77892af524705d689e1cf06c8a83ea95"
integrity sha512-jY8CSxmpWLOxS+t8W+FG3Xigc0RDQA9bKMY/EwILvsesiRniiVMejYTE4wumNc2f4UbAa4WsHqe3J1QS1sli+A==
dependencies:
micromark-factory-space "^2.0.0"
micromark-util-character "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-factory-whitespace@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-factory-whitespace/-/micromark-factory-whitespace-2.0.0.tgz#9e92eb0f5468083381f923d9653632b3cfb5f763"
integrity sha512-28kbwaBjc5yAI1XadbdPYHX/eDnqaUFVikLwrO7FDnKG7lpgxnvk/XGRhX/PN0mOZ+dBSZ+LgunHS+6tYQAzhA==
dependencies:
micromark-factory-space "^2.0.0"
micromark-util-character "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-util-character@^2.0.0:
version "2.0.1"
resolved "https://registry.yarnpkg.com/micromark-util-character/-/micromark-util-character-2.0.1.tgz#52b824c2e2633b6fb33399d2ec78ee2a90d6b298"
integrity sha512-3wgnrmEAJ4T+mGXAUfMvMAbxU9RDG43XmGce4j6CwPtVxB3vfwXSZ6KhFwDzZ3mZHhmPimMAXg71veiBGzeAZw==
dependencies:
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-util-chunked@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-chunked/-/micromark-util-chunked-2.0.0.tgz#e51f4db85fb203a79dbfef23fd41b2f03dc2ef89"
integrity sha512-anK8SWmNphkXdaKgz5hJvGa7l00qmcaUQoMYsBwDlSKFKjc6gjGXPDw3FNL3Nbwq5L8gE+RCbGqTw49FK5Qyvg==
dependencies:
micromark-util-symbol "^2.0.0"
micromark-util-classify-character@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-classify-character/-/micromark-util-classify-character-2.0.0.tgz#8c7537c20d0750b12df31f86e976d1d951165f34"
integrity sha512-S0ze2R9GH+fu41FA7pbSqNWObo/kzwf8rN/+IGlW/4tC6oACOs8B++bh+i9bVyNnwCcuksbFwsBme5OCKXCwIw==
dependencies:
micromark-util-character "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-util-combine-extensions@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-combine-extensions/-/micromark-util-combine-extensions-2.0.0.tgz#75d6ab65c58b7403616db8d6b31315013bfb7ee5"
integrity sha512-vZZio48k7ON0fVS3CUgFatWHoKbbLTK/rT7pzpJ4Bjp5JjkZeasRfrS9wsBdDJK2cJLHMckXZdzPSSr1B8a4oQ==
dependencies:
micromark-util-chunked "^2.0.0"
micromark-util-types "^2.0.0"
micromark-util-decode-numeric-character-reference@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-decode-numeric-character-reference/-/micromark-util-decode-numeric-character-reference-2.0.0.tgz#a798808d02cc74113e2c939fc95363096ade7f1d"
integrity sha512-pIgcsGxpHEtTG/rPJRz/HOLSqp5VTuIIjXlPI+6JSDlK2oljApusG6KzpS8AF0ENUMCHlC/IBb5B9xdFiVlm5Q==
dependencies:
micromark-util-symbol "^2.0.0"
micromark-util-decode-string@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-decode-string/-/micromark-util-decode-string-2.0.0.tgz#7dfa3a63c45aecaa17824e656bcdb01f9737154a"
integrity sha512-r4Sc6leeUTn3P6gk20aFMj2ntPwn6qpDZqWvYmAG6NgvFTIlj4WtrAudLi65qYoaGdXYViXYw2pkmn7QnIFasA==
dependencies:
decode-named-character-reference "^1.0.0"
micromark-util-character "^2.0.0"
micromark-util-decode-numeric-character-reference "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-encode@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-encode/-/micromark-util-encode-2.0.0.tgz#0921ac7953dc3f1fd281e3d1932decfdb9382ab1"
integrity sha512-pS+ROfCXAGLWCOc8egcBvT0kf27GoWMqtdarNfDcjb6YLuV5cM3ioG45Ys2qOVqeqSbjaKg72vU+Wby3eddPsA==
micromark-util-html-tag-name@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-html-tag-name/-/micromark-util-html-tag-name-2.0.0.tgz#ae34b01cbe063363847670284c6255bb12138ec4"
integrity sha512-xNn4Pqkj2puRhKdKTm8t1YHC/BAjx6CEwRFXntTaRf/x16aqka6ouVoutm+QdkISTlT7e2zU7U4ZdlDLJd2Mcw==
micromark-util-normalize-identifier@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-normalize-identifier/-/micromark-util-normalize-identifier-2.0.0.tgz#91f9a4e65fe66cc80c53b35b0254ad67aa431d8b"
integrity sha512-2xhYT0sfo85FMrUPtHcPo2rrp1lwbDEEzpx7jiH2xXJLqBuy4H0GgXk5ToU8IEwoROtXuL8ND0ttVa4rNqYK3w==
dependencies:
micromark-util-symbol "^2.0.0"
micromark-util-resolve-all@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-resolve-all/-/micromark-util-resolve-all-2.0.0.tgz#189656e7e1a53d0c86a38a652b284a252389f364"
integrity sha512-6KU6qO7DZ7GJkaCgwBNtplXCvGkJToU86ybBAUdavvgsCiG8lSSvYxr9MhwmQ+udpzywHsl4RpGJsYWG1pDOcA==
dependencies:
micromark-util-types "^2.0.0"
micromark-util-sanitize-uri@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-sanitize-uri/-/micromark-util-sanitize-uri-2.0.0.tgz#ec8fbf0258e9e6d8f13d9e4770f9be64342673de"
integrity sha512-WhYv5UEcZrbAtlsnPuChHUAsu/iBPOVaEVsntLBIdpibO0ddy8OzavZz3iL2xVvBZOpolujSliP65Kq0/7KIYw==
dependencies:
micromark-util-character "^2.0.0"
micromark-util-encode "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-subtokenize@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-subtokenize/-/micromark-util-subtokenize-2.0.0.tgz#9f412442d77e0c5789ffdf42377fa8a2bcbdf581"
integrity sha512-vc93L1t+gpR3p8jxeVdaYlbV2jTYteDje19rNSS/H5dlhxUYll5Fy6vJ2cDwP8RnsXi818yGty1ayP55y3W6fg==
dependencies:
devlop "^1.0.0"
micromark-util-chunked "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromark-util-symbol@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-symbol/-/micromark-util-symbol-2.0.0.tgz#12225c8f95edf8b17254e47080ce0862d5db8044"
integrity sha512-8JZt9ElZ5kyTnO94muPxIGS8oyElRJaiJO8EzV6ZSyGQ1Is8xwl4Q45qU5UOg+bGH4AikWziz0iN4sFLWs8PGw==
micromark-util-types@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/micromark-util-types/-/micromark-util-types-2.0.0.tgz#63b4b7ffeb35d3ecf50d1ca20e68fc7caa36d95e"
integrity sha512-oNh6S2WMHWRZrmutsRmDDfkzKtxF+bc2VxLC9dvtrDIRFln627VsFP6fLMgTryGDljgLPjkrzQSDcPrjPyDJ5w==
micromark@^4.0.0:
version "4.0.0"
resolved "https://registry.yarnpkg.com/micromark/-/micromark-4.0.0.tgz#84746a249ebd904d9658cfabc1e8e5f32cbc6249"
integrity sha512-o/sd0nMof8kYff+TqcDx3VSrgBTcZpSvYcAHIfHhv5VAuNmisCxjhx6YmxS8PFEpb9z5WKWKPdzf0jM23ro3RQ==
dependencies:
"@types/debug" "^4.0.0"
debug "^4.0.0"
decode-named-character-reference "^1.0.0"
devlop "^1.0.0"
micromark-core-commonmark "^2.0.0"
micromark-factory-space "^2.0.0"
micromark-util-character "^2.0.0"
micromark-util-chunked "^2.0.0"
micromark-util-combine-extensions "^2.0.0"
micromark-util-decode-numeric-character-reference "^2.0.0"
micromark-util-encode "^2.0.0"
micromark-util-normalize-identifier "^2.0.0"
micromark-util-resolve-all "^2.0.0"
micromark-util-sanitize-uri "^2.0.0"
micromark-util-subtokenize "^2.0.0"
micromark-util-symbol "^2.0.0"
micromark-util-types "^2.0.0"
micromatch@^4.0.4, micromatch@^4.0.5:
version "4.0.5"
resolved "https://registry.npmjs.org/micromatch/-/micromatch-4.0.5.tgz"
@@ -1664,6 +2009,11 @@ prop-types@^15.8.1:
object-assign "^4.1.1"
react-is "^16.13.1"
property-information@^6.0.0:
version "6.3.0"
resolved "https://registry.yarnpkg.com/property-information/-/property-information-6.3.0.tgz#ba4a06ec6b4e1e90577df9931286953cdf4282c3"
integrity sha512-gVNZ74nqhRMiIUYWGQdosYetaKc83x8oT41a0LlV3AAFCAZwCpg4vmGkq8t34+cUhp3cnM4XDiU/7xlgK7HGrg==
proxy-from-env@^1.1.0:
version "1.1.0"
resolved "https://registry.yarnpkg.com/proxy-from-env/-/proxy-from-env-1.1.0.tgz#e102f16ca355424865755d2c9e8ea4f24d58c3e2"
@@ -1713,6 +2063,23 @@ react-is@^16.13.1, react-is@^16.7.0:
resolved "https://registry.npmjs.org/react-is/-/react-is-16.13.1.tgz"
integrity sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ==
react-markdown@^9.0.0:
version "9.0.0"
resolved "https://registry.yarnpkg.com/react-markdown/-/react-markdown-9.0.0.tgz#7a41bde9e1b0b1d6911f6f9f8c3cdb4a3e9f9328"
integrity sha512-v6yNf3AB8GfJ8lCpUvzxAXKxgsHpdmWPlcVRQ6Nocsezp255E/IDrF31kLQsPJeB/cKto/geUwjU36wH784FCA==
dependencies:
"@types/hast" "^3.0.0"
devlop "^1.0.0"
hast-util-to-jsx-runtime "^2.0.0"
html-url-attributes "^3.0.0"
mdast-util-to-hast "^13.0.0"
micromark-util-sanitize-uri "^2.0.0"
remark-parse "^11.0.0"
remark-rehype "^11.0.0"
unified "^11.0.0"
unist-util-visit "^5.0.0"
vfile "^6.0.0"
react-qr-code@^2.0.12:
version "2.0.12"
resolved "https://registry.yarnpkg.com/react-qr-code/-/react-qr-code-2.0.12.tgz#98f99e9ad5ede46d73ab819e2dd9925c5f5d7a2d"
@@ -1761,6 +2128,27 @@ regenerator-runtime@^0.14.0:
resolved "https://registry.yarnpkg.com/regenerator-runtime/-/regenerator-runtime-0.14.0.tgz#5e19d68eb12d486f797e15a3c6a918f7cec5eb45"
integrity sha512-srw17NI0TUWHuGa5CFGGmhfNIeja30WMBfbslPNhf6JrqQlLN5gcrvig1oqPxiVaXb0oW0XRKtH6Nngs5lKCIA==
remark-parse@^11.0.0:
version "11.0.0"
resolved "https://registry.yarnpkg.com/remark-parse/-/remark-parse-11.0.0.tgz#aa60743fcb37ebf6b069204eb4da304e40db45a1"
integrity sha512-FCxlKLNGknS5ba/1lmpYijMUzX2esxW5xQqjWxw2eHFfS2MSdaHVINFmhjo+qN1WhZhNimq0dZATN9pH0IDrpA==
dependencies:
"@types/mdast" "^4.0.0"
mdast-util-from-markdown "^2.0.0"
micromark-util-types "^2.0.0"
unified "^11.0.0"
remark-rehype@^11.0.0:
version "11.0.0"
resolved "https://registry.yarnpkg.com/remark-rehype/-/remark-rehype-11.0.0.tgz#7f21c08738bde024be5f16e4a8b13e5d7a04cf6b"
integrity sha512-vx8x2MDMcxuE4lBmQ46zYUDfcFMmvg80WYX+UNLeG6ixjdCCLcw1lrgAukwBTuOFsS78eoAedHGn9sNM0w7TPw==
dependencies:
"@types/hast" "^3.0.0"
"@types/mdast" "^4.0.0"
mdast-util-to-hast "^13.0.0"
unified "^11.0.0"
vfile "^6.0.0"
require-directory@^2.1.1:
version "2.1.1"
resolved "https://registry.yarnpkg.com/require-directory/-/require-directory-2.1.1.tgz#8c64ad5fd30dab1c976e2344ffe7f792a6a6df42"
@@ -1893,6 +2281,11 @@ simple-peer@^9.11.1:
resolved "https://registry.npmjs.org/source-map-js/-/source-map-js-1.0.2.tgz"
integrity sha512-R0XvVJ9WusLiqTCEiGCmICCMplcCkIwwR11mOSD9CR5u+IXYdiseeEuXCVAjS54zqwkLcPNnmU4OeJ6tUrWhDw==
space-separated-tokens@^2.0.0:
version "2.0.2"
resolved "https://registry.yarnpkg.com/space-separated-tokens/-/space-separated-tokens-2.0.2.tgz#1ecd9d2350a3844572c3f4a312bceb018348859f"
integrity sha512-PEGlAwrG8yXGXRjW32fGbg66JAlOAwbObuqVoJpv/mRgoWDQfgH1wDPvtzWyUSNAXBGSk8h755YDbbcEy3SH2Q==
spawn-command@^0.0.2-1:
version "0.0.2-1"
resolved "https://registry.yarnpkg.com/spawn-command/-/spawn-command-0.0.2-1.tgz#62f5e9466981c1b796dc5929937e11c9c6921bd0"
@@ -1933,6 +2326,13 @@ strip-ansi@^6.0.0, strip-ansi@^6.0.1:
dependencies:
ansi-regex "^5.0.1"
style-to-object@^0.4.0:
version "0.4.2"
resolved "https://registry.yarnpkg.com/style-to-object/-/style-to-object-0.4.2.tgz#a8247057111dea8bd3b8a1a66d2d0c9cf9218a54"
integrity sha512-1JGpfPB3lo42ZX8cuPrheZbfQ6kqPPnPHlKMyeRYtfKD+0jG+QsXgXN57O/dvJlzlB2elI6dGmrPnl5VPQFPaA==
dependencies:
inline-style-parser "0.1.1"
styled-jsx@5.1.1:
version "5.1.1"
resolved "https://registry.npmjs.org/styled-jsx/-/styled-jsx-5.1.1.tgz"
@@ -2065,6 +2465,16 @@ tree-kill@^1.2.2:
resolved "https://registry.yarnpkg.com/tree-kill/-/tree-kill-1.2.2.tgz#4ca09a9092c88b73a7cdc5e8a01b507b0790a0cc"
integrity sha512-L0Orpi8qGpRG//Nd+H90vFB+3iHnue1zSSGmNOOCh1GLJ7rUKVwV2HvijphGQS2UmhUZewS9VgvxYIdgr+fG1A==
trim-lines@^3.0.0:
version "3.0.1"
resolved "https://registry.yarnpkg.com/trim-lines/-/trim-lines-3.0.1.tgz#d802e332a07df861c48802c04321017b1bd87338"
integrity sha512-kRj8B+YHZCc9kQYdWfJB2/oUl9rA99qbowYYBtr4ui4mZyAQ2JpvVBd/6U2YloATfqBhBTSMhTpgBHtU0Mf3Rg==
trough@^2.0.0:
version "2.1.0"
resolved "https://registry.yarnpkg.com/trough/-/trough-2.1.0.tgz#0f7b511a4fde65a46f18477ab38849b22c554876"
integrity sha512-AqTiAOLcj85xS7vQ8QkAV41hPDIJ71XJB4RCUrzo/1GM2CQwhkJGaf9Hgr7BOugMRpgGUrqRg/DrBDl4H40+8g==
ts-interface-checker@^0.1.9:
version "0.1.13"
resolved "https://registry.npmjs.org/ts-interface-checker/-/ts-interface-checker-0.1.13.tgz"
@@ -2117,6 +2527,57 @@ uid@2.0.1:
dependencies:
"@lukeed/csprng" "^1.0.0"
unified@^11.0.0:
version "11.0.3"
resolved "https://registry.yarnpkg.com/unified/-/unified-11.0.3.tgz#e141be0fe466a2d28b2160f62712bc9cbc08fdd4"
integrity sha512-jlCV402P+YDcFcB2VcN/n8JasOddqIiaxv118wNBoZXEhOn+lYG7BR4Bfg2BwxvlK58dwbuH2w7GX2esAjL6Mg==
dependencies:
"@types/unist" "^3.0.0"
bail "^2.0.0"
devlop "^1.0.0"
extend "^3.0.0"
is-plain-obj "^4.0.0"
trough "^2.0.0"
vfile "^6.0.0"
unist-util-is@^6.0.0:
version "6.0.0"
resolved "https://registry.yarnpkg.com/unist-util-is/-/unist-util-is-6.0.0.tgz#b775956486aff107a9ded971d996c173374be424"
integrity sha512-2qCTHimwdxLfz+YzdGfkqNlH0tLi9xjTnHddPmJwtIG9MGsdbutfTc4P+haPD7l7Cjxf/WZj+we5qfVPvvxfYw==
dependencies:
"@types/unist" "^3.0.0"
unist-util-position@^5.0.0:
version "5.0.0"
resolved "https://registry.yarnpkg.com/unist-util-position/-/unist-util-position-5.0.0.tgz#678f20ab5ca1207a97d7ea8a388373c9cf896be4"
integrity sha512-fucsC7HjXvkB5R3kTCO7kUjRdrS0BJt3M/FPxmHMBOm8JQi2BsHAHFsy27E0EolP8rp0NzXsJ+jNPyDWvOJZPA==
dependencies:
"@types/unist" "^3.0.0"
unist-util-stringify-position@^4.0.0:
version "4.0.0"
resolved "https://registry.yarnpkg.com/unist-util-stringify-position/-/unist-util-stringify-position-4.0.0.tgz#449c6e21a880e0855bf5aabadeb3a740314abac2"
integrity sha512-0ASV06AAoKCDkS2+xw5RXJywruurpbC4JZSm7nr7MOt1ojAzvyyaO+UxZf18j8FCF6kmzCZKcAgN/yu2gm2XgQ==
dependencies:
"@types/unist" "^3.0.0"
unist-util-visit-parents@^6.0.0:
version "6.0.1"
resolved "https://registry.yarnpkg.com/unist-util-visit-parents/-/unist-util-visit-parents-6.0.1.tgz#4d5f85755c3b8f0dc69e21eca5d6d82d22162815"
integrity sha512-L/PqWzfTP9lzzEa6CKs0k2nARxTdZduw3zyh8d2NVBnsyvHjSX4TWse388YrrQKbvI8w20fGjGlhgT96WwKykw==
dependencies:
"@types/unist" "^3.0.0"
unist-util-is "^6.0.0"
unist-util-visit@^5.0.0:
version "5.0.0"
resolved "https://registry.yarnpkg.com/unist-util-visit/-/unist-util-visit-5.0.0.tgz#a7de1f31f72ffd3519ea71814cccf5fd6a9217d6"
integrity sha512-MR04uvD+07cwl/yhVuVWAtw+3GOR/knlL55Nd/wAdblk27GCVt3lqpTivy/tkJcZoNPzTwS1Y+KMojlLDhoTzg==
dependencies:
"@types/unist" "^3.0.0"
unist-util-is "^6.0.0"
unist-util-visit-parents "^6.0.0"
universalify@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/universalify/-/universalify-2.0.0.tgz#75a4984efedc4b08975c5aeb73f530d02df25717"
@@ -2135,6 +2596,23 @@ util-deprecate@^1.0.1, util-deprecate@^1.0.2:
resolved "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz"
integrity sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==
vfile-message@^4.0.0:
version "4.0.2"
resolved "https://registry.yarnpkg.com/vfile-message/-/vfile-message-4.0.2.tgz#c883c9f677c72c166362fd635f21fc165a7d1181"
integrity sha512-jRDZ1IMLttGj41KcZvlrYAaI3CfqpLpfpf+Mfig13viT6NKvRzWZ+lXz0Y5D60w6uJIBAOGq9mSHf0gktF0duw==
dependencies:
"@types/unist" "^3.0.0"
unist-util-stringify-position "^4.0.0"
vfile@^6.0.0:
version "6.0.1"
resolved "https://registry.yarnpkg.com/vfile/-/vfile-6.0.1.tgz#1e8327f41eac91947d4fe9d237a2dd9209762536"
integrity sha512-1bYqc7pt6NIADBJ98UiG0Bn/CHIVOoZ/IyEkqIruLg0mE1BKzkOXY2D6CSqQIcKqgadppE5lrxgWXJmXd7zZJw==
dependencies:
"@types/unist" "^3.0.0"
unist-util-stringify-position "^4.0.0"
vfile-message "^4.0.0"
watchpack@2.4.0:
version "2.4.0"
resolved "https://registry.npmjs.org/watchpack/-/watchpack-2.4.0.tgz"