server: implement warmup event for llm and transcription

This commit is contained in:
Mathieu Virbel
2023-08-11 15:32:41 +02:00
parent a2518df3bd
commit 38a5ee0da2
8 changed files with 85 additions and 5 deletions

View File

@@ -1,6 +1,7 @@
from reflector.settings import settings
from reflector.utils.retry import retry
from reflector.logger import logger as reflector_logger
from time import monotonic
import importlib
import json
import re
@@ -29,6 +30,21 @@ class LLM:
importlib.import_module(module_name)
return cls._registry[name]()
async def warmup(self, logger: reflector_logger):
start = monotonic()
name = self.__class__.__name__
logger.info(f"LLM[{name}] warming up...")
try:
await retry(self._warmup)(logger=logger)
duration = monotonic() - start
logger.info(f"LLM[{name}] warmup took {duration:.2f} seconds")
except Exception:
logger.exception(f"LLM[{name}] warmup failed")
raise
async def _warmup(self, logger: reflector_logger):
pass
async def generate(self, prompt: str, logger: reflector_logger, **kwargs) -> dict:
logger.info("LLM generate", prompt=repr(prompt))
try:

View File

@@ -9,10 +9,20 @@ class ModalLLM(LLM):
super().__init__()
self.timeout = settings.LLM_TIMEOUT
self.llm_url = settings.LLM_URL + "/llm"
self.llm_warmup_url = settings.LLM_URL + "/warmup"
self.headers = {
"Authorization": f"Bearer {settings.LLM_MODAL_API_KEY}",
}
async def _warmup(self, logger):
async with httpx.AsyncClient() as client:
response = await client.post(
self.llm_warmup_url,
headers=self.headers,
timeout=self.timeout,
)
response.raise_for_status()
async def _generate(self, prompt: str, **kwargs):
async with httpx.AsyncClient() as client:
response = await retry(client.post)(

View File

@@ -47,6 +47,9 @@ class AudioTranscriptAutoProcessor(AudioTranscriptProcessor):
def off(self, callback):
self.processor.off(callback)
async def _warmup(self):
return await self.processor._warmup()
async def _push(self, data: AudioFile):
return await self.processor._push(data)

View File

@@ -16,6 +16,7 @@ from reflector.processors.audio_transcript_auto import AudioTranscriptAutoProces
from reflector.processors.types import AudioFile, Transcript, Word
from reflector.settings import settings
from reflector.utils.retry import retry
from time import monotonic
import httpx
@@ -23,24 +24,37 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
def __init__(self, modal_api_key: str):
super().__init__()
self.transcript_url = settings.TRANSCRIPT_URL + "/transcribe"
self.warmup_url = settings.TRANSCRIPT_URL + "/warmup"
self.timeout = settings.TRANSCRIPT_TIMEOUT
self.headers = {
"Authorization": f"Bearer {modal_api_key}",
}
async def _warmup(self):
try:
async with httpx.AsyncClient() as client:
start = monotonic()
self.logger.debug("Transcribe modal: warming up...")
response = await client.post(
self.warmup_url,
headers=self.headers,
timeout=self.timeout,
)
response.raise_for_status()
duration = monotonic() - start
self.logger.debug(f"Transcribe modal: warmup took {duration:.2f}s")
except Exception:
self.logger.exception("Transcribe modal: warmup failed")
async def _transcript(self, data: AudioFile):
async with httpx.AsyncClient() as client:
print(f"Try to transcribe audio {data.path.name}")
files = {
"file": (data.path.name, data.path.open("rb")),
}
form = {
"timestamp": float(round(data.timestamp, 2)),
}
response = await retry(client.post)(
self.transcript_url,
files=files,
data=form,
timeout=self.timeout,
headers=self.headers,
)
@@ -51,10 +65,15 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
transcript = Transcript(
text=result["text"],
words=[
Word(text=word["text"], start=word["start"], end=word["end"])
Word(
text=word["text"],
start=word["start"],
end=word["end"],
)
for word in result["words"]
],
)
transcript.add_offset(data.timestamp)
return transcript

View File

@@ -7,6 +7,7 @@ import asyncio
class Processor:
INPUT_TYPE: type = None
OUTPUT_TYPE: type = None
WARMUP_EVENT: str = "WARMUP_EVENT"
def __init__(self, callback=None, custom_logger=None):
self._processors = []
@@ -85,12 +86,21 @@ class Processor:
def describe(self, level=0):
logger.info(" " * level + self.__class__.__name__)
async def warmup(self):
"""
Warmup the processor
"""
await self._warmup()
async def _push(self, data):
raise NotImplementedError
async def _flush(self):
pass
async def _warmup(self):
pass
@classmethod
def as_threaded(cls, *args, **kwargs):
"""
@@ -129,10 +139,17 @@ class ThreadedProcessor(Processor):
if data is None:
await self.processor.flush()
break
if data == self.WARMUP_EVENT:
self.logger.debug(f"Warming up {self.processor.__class__.__name__}")
await self.processor.warmup()
continue
await self.processor.push(data)
finally:
self.queue.task_done()
async def _warmup(self):
await self.queue.put(self.WARMUP_EVENT)
async def _push(self, data):
await self.queue.put(data)
@@ -163,6 +180,7 @@ class Pipeline(Processor):
OUTPUT_TYPE = None
def __init__(self, *processors: Processor):
self._warmed_up = False
super().__init__()
self.logger = logger.bind(pipeline=self.uid)
self.logger.info("Pipeline created")
@@ -178,6 +196,11 @@ class Pipeline(Processor):
self.INPUT_TYPE = processors[0].INPUT_TYPE
self.OUTPUT_TYPE = processors[-1].OUTPUT_TYPE
async def _warmup(self):
for processor in self.processors:
self.logger.debug(f"Warming up {processor.__class__.__name__}")
await processor.warmup()
async def _push(self, data):
await self.processors[0].push(data)

View File

@@ -31,6 +31,9 @@ class TranscriptTopicDetectorProcessor(Processor):
self.min_transcript_length = min_transcript_length
self.llm = LLM.get_instance()
async def _warmup(self):
await self.llm.warmup(logger=self.logger)
async def _push(self, data: Transcript):
if self.transcript is None:
self.transcript = data

View File

@@ -49,6 +49,11 @@ class Transcript(BaseModel):
self.words.extend(other.words)
self.text += other.text
def add_offset(self, offset: float):
for word in self.words:
word.start += offset
word.end += offset
def clone(self):
words = [
Word(text=word.text, start=word.start, end=word.end) for word in self.words

View File

@@ -159,6 +159,7 @@ async def rtc_offer_base(
TranscriptTopicDetectorProcessor.as_threaded(callback=on_topic),
TranscriptFinalSummaryProcessor.as_threaded(callback=on_final_summary),
)
await ctx.pipeline.warmup()
# handle RTC peer connection
pc = RTCPeerConnection()