mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 04:39:06 +00:00
feat: pipeline improvement with file processing, parakeet, silero-vad (#540)
* feat: improve pipeline threading, and transcriber (parakeet and silero vad) * refactor: remove whisperx, implement parakeet * refactor: make audio_chunker more smart and wait for speech, instead of fixed frame * refactor: make audio merge to always downscale the audio to 16k for transcription * refactor: make the audio transcript modal accepting batches * refactor: improve type safety and remove prometheus metrics - Add DiarizationSegment TypedDict for proper diarization typing - Replace List/Optional with modern Python list/| None syntax - Remove all Prometheus metrics from TranscriptDiarizationAssemblerProcessor - Add comprehensive file processing pipeline with parallel execution - Update processor imports and type annotations throughout - Implement optimized file pipeline as default in process.py tool * refactor: convert FileDiarizationProcessor I/O types to BaseModel Update FileDiarizationInput and FileDiarizationOutput to inherit from BaseModel instead of plain classes, following the standard pattern used by other processors in the codebase. * test: add tests for file transcript and diarization with pytest-recording * build: add pytest-recording * feat: add local pyannote for testing * fix: replace PyAV AudioResampler with torchaudio for reliable audio processing - Replace problematic PyAV AudioResampler that was causing ValueError: [Errno 22] Invalid argument - Use torchaudio.functional.resample for robust sample rate conversion - Optimize processing: skip conversion for already 16kHz mono audio - Add direct WAV writing with Python wave module for better performance - Consolidate duplicate downsample checks for cleaner code - Maintain list[av.AudioFrame] input interface - Required for Silero VAD which needs 16kHz mono audio * fix: replace PyAV AudioResampler with torchaudio solution - Resolves ValueError: [Errno 22] Invalid argument in AudioMergeProcessor - Replaces problematic PyAV AudioResampler with torchaudio.functional.resample - Optimizes processing to skip unnecessary conversions when audio is already 16kHz mono - Uses direct WAV writing with Python's wave module for better performance - Fixes test_basic_process to disable diarization (pyannote dependency not installed) - Updates test expectations to match actual processor behavior - Removes unused pydub dependency from pyproject.toml - Adds comprehensive TEST_ANALYSIS.md documenting test suite status * feat: add parameterized test for both diarization modes - Adds @pytest.mark.parametrize to test_basic_process with enable_diarization=[False, True] - Test with diarization=False always passes (tests core AudioMergeProcessor functionality) - Test with diarization=True gracefully skips when pyannote.audio is not installed - Provides comprehensive test coverage for both pipeline configurations * fix: resolve pipeline property naming conflict in AudioDiarizationPyannoteProcessor - Renames 'pipeline' property to 'diarization_pipeline' to avoid conflict with base Processor.pipeline attribute - Fixes AttributeError: 'property 'pipeline' object has no setter' when set_pipeline() is called - Updates property usage in _diarize method to use new name - Now correctly supports pipeline initialization for diarization processing * fix: add local for pyannote * test: add diarization test * fix: resample on audio merge now working * fix: correctly restore timestamp * fix: display exception in a threaded processor if that happen * Update pyproject.toml * ci: remove option * ci: update astral-sh/setup-uv * test: add monadical url for pytest-recording * refactor: remove previous version * build: move faster whisper to local dep * test: fix missing import * refactor: improve main_file_pipeline organization and error handling - Move all imports to the top of the file - Create unified EmptyPipeline class to replace duplicate mock pipeline code - Remove timeout and fallback logic - let processors handle their own retries - Fix error handling to raise any exception from parallel tasks - Add proper type hints and validation for captured results * fix: wrong function * fix: remove task_done * feat: add configurable file processing timeouts for modal processors - Add TRANSCRIPT_FILE_TIMEOUT setting (default: 600s) for file transcription - Add DIARIZATION_FILE_TIMEOUT setting (default: 600s) for file diarization - Replace hardcoded timeout=600 with configurable settings in modal processors - Allows customization of timeout values via environment variables * fix: use logger * fix: worker process meetings now use file pipeline * fix: topic not gathered * refactor: remove prepare(), pipeline now work * refactor: implement many review from Igor * test: add test for test_pipeline_main_file * refactor: remove doc * doc: add doc * ci: update build to use native arm64 builder * fix: merge fixes * refactor: changes from Igor review + add test (not by default) to test gpu modal part * ci: update to our own runner linux-amd64 * ci: try using suggested mode=min * fix: update diarizer for latest modal, and use volume * fix: modal file extension detection * fix: put the diarizer as A100
This commit is contained in:
375
server/reflector/pipelines/main_file_pipeline.py
Normal file
375
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,375 @@
|
||||
"""
|
||||
File-based processing pipeline
|
||||
==============================
|
||||
|
||||
Optimized pipeline for processing complete audio/video files.
|
||||
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
|
||||
from reflector.db.transcripts import (
|
||||
Transcript,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import PipelineMainBase, asynctask
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_diarization import FileDiarizationInput
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerInput,
|
||||
TranscriptDiarizationAssemblerProcessor,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
"""Empty pipeline for processors that need a pipeline reference"""
|
||||
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainFile(PipelineMainBase):
|
||||
"""
|
||||
Optimized file processing pipeline.
|
||||
Processes complete audio/video files with parallel execution.
|
||||
"""
|
||||
|
||||
logger: structlog.BoundLogger = None
|
||||
empty_pipeline = None
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||
for i, result in enumerate(results):
|
||||
if not isinstance(result, Exception):
|
||||
continue
|
||||
self.logger.error(
|
||||
f"Error in {operation} (task {i}): {result}",
|
||||
transcript_id=self.transcript_id,
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
# Upload for processing
|
||||
audio_url = await self.upload_audio(audio_path, transcript)
|
||||
|
||||
# Run parallel processing
|
||||
await self.run_parallel_processing(
|
||||
audio_path,
|
||||
audio_url,
|
||||
transcript.source_language,
|
||||
transcript.target_language,
|
||||
)
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||
self.logger.info(f"Processing audio file: {file_path}")
|
||||
|
||||
# Check if it's already audio-only
|
||||
container = av.open(str(file_path))
|
||||
has_video = len(container.streams.video) > 0
|
||||
container.close()
|
||||
|
||||
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=transcript.audio_mp3_filename,
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
|
||||
# Process audio frames and write to transcript location
|
||||
input_container = av.open(str(file_path))
|
||||
for frame in input_container.decode(audio=0):
|
||||
await mp3_writer.push(frame)
|
||||
|
||||
await mp3_writer.flush()
|
||||
input_container.close()
|
||||
|
||||
if has_video:
|
||||
self.logger.info(
|
||||
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
else:
|
||||
self.logger.info(
|
||||
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
|
||||
return transcript.audio_mp3_filename
|
||||
|
||||
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||
"""Upload audio to storage for processing"""
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
if not storage:
|
||||
raise Exception(
|
||||
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||
)
|
||||
|
||||
self.logger.info("Uploading audio to storage")
|
||||
|
||||
with open(audio_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||
await storage.put_file(storage_path, audio_data)
|
||||
|
||||
audio_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||
return audio_url
|
||||
|
||||
async def run_parallel_processing(
|
||||
self,
|
||||
audio_path: Path,
|
||||
audio_url: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
):
|
||||
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||
self.logger.info(
|
||||
"Starting parallel processing", transcript_id=self.transcript_id
|
||||
)
|
||||
|
||||
# Phase 1: Parallel processing of independent tasks
|
||||
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||
diarization_task = self.diarize_file(audio_url)
|
||||
waveform_task = self.generate_waveform(audio_path)
|
||||
|
||||
results = await asyncio.gather(
|
||||
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||
)
|
||||
|
||||
transcript_result = results[0]
|
||||
diarization_result = results[1]
|
||||
|
||||
# Handle errors - raise any exception that occurred
|
||||
self._handle_gather_exceptions(results, "parallel processing")
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
raise result
|
||||
|
||||
# Phase 2: Assemble transcript with diarization
|
||||
self.logger.info(
|
||||
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||
)
|
||||
processor = TranscriptDiarizationAssemblerProcessor()
|
||||
input_data = TranscriptDiarizationAssemblerInput(
|
||||
transcript=transcript_result, diarization=diarization_result or []
|
||||
)
|
||||
|
||||
# Store result for retrieval
|
||||
diarized_transcript: Transcript | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal diarized_transcript
|
||||
diarized_transcript = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not diarized_transcript:
|
||||
raise ValueError("No diarized transcript captured")
|
||||
|
||||
# Phase 3: Generate topics from diarized transcript
|
||||
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||
|
||||
# Phase 4: Generate title and summaries in parallel
|
||||
self.logger.info(
|
||||
"Generating title and summaries", transcript_id=self.transcript_id
|
||||
)
|
||||
results = await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
self._handle_gather_exceptions(results, "title and summary generation")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
"""Transcribe complete file"""
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
# Store result for retrieval
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||
"""Get diarization for file"""
|
||||
if not settings.DIARIZATION_BACKEND:
|
||||
self.logger.info("Diarization disabled")
|
||||
return None
|
||||
|
||||
processor = FileDiarizationAutoProcessor()
|
||||
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||
|
||||
# Store result for retrieval
|
||||
result = None
|
||||
|
||||
async def capture_result(diarization_output):
|
||||
nonlocal result
|
||||
result = diarization_output.diarization
|
||||
|
||||
try:
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
return result
|
||||
except Exception as e:
|
||||
self.logger.error(f"Diarization failed: {e}")
|
||||
return None
|
||||
|
||||
async def generate_waveform(self, audio_path: Path):
|
||||
"""Generate and save waveform"""
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
processor = AudioWaveformProcessor(
|
||||
audio_path=audio_path,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
"""Detect topics from complete transcript"""
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
"""Generate title from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
"""Generate long and short summaries from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_file_process(*, transcript_id: str):
|
||||
"""Celery task for file pipeline processing"""
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
# Run file pipeline
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process(audio_file)
|
||||
Reference in New Issue
Block a user