mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2026-02-04 18:06:48 +00:00
docs: docs website + installation (#778)
* feat: WIP doc (vibe started and iterated) * install from scratch docs * caddyfile.example * gitignore * authentik script * authentik script * authentik script * llm doc * authentik ongoing * more daily setup logs * doc website * gpu self hosted setup guide (no-mistakes) * doc review round * doc review round * doc review round * update doc site sidebars * feat(docs): add mermaid diagram support * docs polishing * live pipeline doc * move pipeline dev docs to dev docs location * doc pr review iteration * dockerfile healthcheck * docs/pr-comments * remove jwt comment * llm suggestion * pr comments * pr comments * document auto migrations * cleanup docs --------- Co-authored-by: Mathieu Virbel <mat@meltingrocks.com> Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
115
docs/docs/concepts/modes.md
Normal file
115
docs/docs/concepts/modes.md
Normal file
@@ -0,0 +1,115 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
title: Operating Modes
|
||||
---
|
||||
|
||||
# Operating Modes
|
||||
|
||||
Reflector operates in two distinct modes to accommodate different use cases and security requirements.
|
||||
|
||||
## Public Mode
|
||||
|
||||
Public mode provides immediate access to core transcription features without requiring authentication.
|
||||
|
||||
### Features Available
|
||||
- **File Upload**: Process audio files
|
||||
- **Live Transcription**: Stream audio from microphone
|
||||
- **Basic Processing**: Transcription and diarization
|
||||
- **Temporary Storage**: Temporary data retention (configurable)
|
||||
|
||||
### Limitations
|
||||
- No persistent storage
|
||||
- No meeting rooms
|
||||
- Limited to single-user sessions
|
||||
- No team collaboration features
|
||||
|
||||
### Use Cases
|
||||
- Quick transcription needs
|
||||
- Testing and evaluation
|
||||
- Individual users
|
||||
- Public demonstrations
|
||||
|
||||
## Private Mode
|
||||
|
||||
Private mode unlocks the full potential of Reflector with authentication and persistent storage.
|
||||
|
||||
### Additional Features
|
||||
- **Virtual Meeting Rooms**: Whereby and Daily.co integration
|
||||
- **Team Collaboration**: Share transcripts with team
|
||||
- **Persistent Storage**: Long-term transcript archive
|
||||
- **Meeting History**: Search and browse past transcripts
|
||||
- **Custom Integration**: Webhooks and API access
|
||||
- **User Management**: Role-based access control
|
||||
|
||||
### Authentication Options
|
||||
|
||||
#### Authentik Integration
|
||||
Enterprise-grade SSO with support for:
|
||||
- SAML 2.0
|
||||
- OAuth 2.0 / OIDC
|
||||
- LDAP / Active Directory
|
||||
- Multi-factor authentication
|
||||
|
||||
### Room Management
|
||||
|
||||
Virtual rooms provide dedicated spaces for meetings:
|
||||
- **Persistent URLs**: Same link for recurring meetings
|
||||
- **Access Control**: Invite-only or open rooms
|
||||
- **Recording Consent**: Automatic consent management
|
||||
- **Custom Settings**: Per-room configuration
|
||||
|
||||
## Mode Selection
|
||||
|
||||
The mode is determined by your deployment configuration:
|
||||
|
||||
```yaml
|
||||
# Public Mode (no authentication)
|
||||
AUTH_BACKEND=none
|
||||
|
||||
# Private Mode (with authentication)
|
||||
AUTH_BACKEND=jwt
|
||||
```
|
||||
|
||||
See [Authentication Setup](../installation/auth-setup) for configuring JWT authentication.
|
||||
|
||||
## Feature Comparison
|
||||
|
||||
| Feature | Public Mode | Private Mode |
|
||||
|---------|------------|--------------|
|
||||
| File Upload | ✅ | ✅ |
|
||||
| Live Transcription | ✅ | ✅ |
|
||||
| Speaker Diarization | ✅ | ✅ |
|
||||
| Summarization | ✅ | ✅ |
|
||||
| Meeting Rooms | ❌ | ✅ |
|
||||
| Persistent Storage | ❌ | ✅ |
|
||||
| Team Collaboration | ❌ | ✅ |
|
||||
| API Access | Limited | Full |
|
||||
| User Management | ❌ | ✅ |
|
||||
| Custom Branding | ❌ | ✅ |
|
||||
| Meeting History | ❌ | ✅ |
|
||||
| Webhooks | ❌ | ✅ |
|
||||
|
||||
## Security Considerations
|
||||
|
||||
### Public Mode Security
|
||||
- File size restrictions
|
||||
- Automatic cleanup of old data
|
||||
|
||||
### Private Mode Security
|
||||
- Access control lists
|
||||
- Data retention policies
|
||||
|
||||
## Choosing the Right Mode
|
||||
|
||||
### Choose Public Mode if:
|
||||
- You need quick, one-time transcriptions
|
||||
- You're evaluating Reflector
|
||||
- You don't need persistent storage
|
||||
- You're processing non-sensitive content
|
||||
|
||||
### Choose Private Mode if:
|
||||
- You need team collaboration
|
||||
- You require persistent storage
|
||||
- You're processing sensitive content
|
||||
- You need meeting room functionality
|
||||
- You want searchable meeting history
|
||||
201
docs/docs/concepts/overview.md
Normal file
201
docs/docs/concepts/overview.md
Normal file
@@ -0,0 +1,201 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
title: Architecture Overview
|
||||
---
|
||||
|
||||
# Architecture Overview
|
||||
|
||||
Reflector is built as a modern, scalable, microservices-based application designed to handle audio processing workloads efficiently while maintaining data privacy and control.
|
||||
|
||||
## System Components
|
||||
|
||||
### Frontend Application
|
||||
|
||||
The user interface is built with **Next.js 15** using the App Router pattern, providing:
|
||||
|
||||
- Server-side rendering for optimal performance
|
||||
- Real-time WebSocket connections for live transcription
|
||||
- WebRTC support for audio streaming and live meetings (via Daily.co or Whereby)
|
||||
- Responsive design with Chakra UI components
|
||||
|
||||
### Backend API Server
|
||||
|
||||
The core API is powered by **FastAPI**, a modern Python framework that provides:
|
||||
|
||||
- High-performance async request handling
|
||||
- Automatic OpenAPI documentation generation
|
||||
- Type safety with Pydantic models
|
||||
- WebSocket support for real-time updates
|
||||
|
||||
### Processing Pipeline
|
||||
|
||||
Audio processing is handled through a modular pipeline architecture:
|
||||
|
||||
```
|
||||
Audio Input → Chunking → Transcription → Diarization → Post-Processing → Storage
|
||||
```
|
||||
|
||||
Each step can run independently and in parallel, allowing for:
|
||||
- Scalable processing of large files
|
||||
- Real-time streaming capabilities
|
||||
- Fault tolerance and retry mechanisms
|
||||
|
||||
### Worker Architecture
|
||||
|
||||
Background tasks are managed by **Celery** workers with **Redis** as the message broker:
|
||||
|
||||
- Distributed task processing
|
||||
- Priority queues for time-sensitive operations
|
||||
- Automatic retry on failure
|
||||
- Progress tracking and notifications
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
ML models run on GPU-accelerated infrastructure:
|
||||
|
||||
- **Modal.com** for serverless GPU processing
|
||||
- **Self-hosted GPU** with Docker deployment
|
||||
- Automatic scaling based on demand
|
||||
- Cost-effective pay-per-use model
|
||||
|
||||
## Data Flow
|
||||
|
||||
### Daily.co Meeting Recording Flow
|
||||
|
||||
1. **Recording**: Daily.co captures separate audio tracks per participant
|
||||
2. **Webhook**: Daily.co notifies Reflector when recording is ready
|
||||
3. **Track Download**: Individual participant tracks fetched from S3
|
||||
4. **Padding**: Tracks padded with silence based on join time for synchronization
|
||||
5. **Transcription**: Each track transcribed independently (speaker = track index)
|
||||
6. **Merge**: Transcriptions sorted by timestamp and combined
|
||||
7. **Mixdown**: Tracks mixed to single MP3 for playback
|
||||
8. **Post-Processing**: Topics, title, and summaries generated via LLM
|
||||
9. **Delivery**: Results stored and user notified via WebSocket
|
||||
|
||||
### File Upload Flow
|
||||
|
||||
1. **Upload**: User uploads audio file through web interface
|
||||
2. **Storage**: File stored temporarily
|
||||
3. **Transcription**: Full file transcribed via Whisper
|
||||
4. **Diarization**: ML-based speaker identification (Pyannote)
|
||||
5. **Post-Processing**: Topics, title, summaries
|
||||
6. **Delivery**: Results stored and user notified
|
||||
|
||||
### Live Streaming Flow
|
||||
|
||||
1. **WebRTC Connection**: Browser establishes peer connection via Daily.co or Whereby
|
||||
2. **Audio Capture**: Microphone audio streamed to server
|
||||
3. **Buffering**: Audio buffered for processing
|
||||
4. **Real-time Processing**: Segments transcribed as they arrive
|
||||
5. **WebSocket Updates**: Results streamed back to client
|
||||
6. **Continuous Assembly**: Full transcript built progressively
|
||||
|
||||
## Deployment Architecture
|
||||
|
||||
### Container-Based Deployment
|
||||
|
||||
All components are containerized for consistent deployment:
|
||||
|
||||
```yaml
|
||||
services:
|
||||
web: # Next.js application
|
||||
server: # FastAPI server
|
||||
worker: # Celery workers
|
||||
redis: # Message broker
|
||||
postgres: # Database
|
||||
caddy: # Reverse proxy
|
||||
```
|
||||
|
||||
### Networking
|
||||
|
||||
- **Host Network Mode**: Required for WebRTC/ICE compatibility
|
||||
- **Caddy Reverse Proxy**: Handles SSL termination and routing
|
||||
- **WebSocket Upgrade**: Supports real-time connections
|
||||
|
||||
## Scalability Considerations
|
||||
|
||||
### Horizontal Scaling
|
||||
|
||||
- **Stateless Backend**: Multiple API server instances
|
||||
- **Worker Pools**: Add workers based on queue depth
|
||||
- **Database Pooling**: Connection management for concurrent access
|
||||
|
||||
### Vertical Scaling
|
||||
|
||||
- **GPU Workers**: Scale up for faster model inference
|
||||
- **Memory Optimization**: Efficient audio buffering
|
||||
|
||||
## Security Architecture
|
||||
|
||||
### Authentication & Authorization
|
||||
|
||||
- **JWT Tokens**: Stateless authentication
|
||||
- **Authentik Integration**: Enterprise SSO support
|
||||
- **Role-Based Access**: Granular permissions
|
||||
|
||||
### Data Protection
|
||||
|
||||
- **Encryption in Transit**: TLS for all connections
|
||||
- **Temporary Storage**: Automatic cleanup of processed files
|
||||
|
||||
### Privacy by Design
|
||||
|
||||
- **Local Processing**: Option to process entirely on-premises
|
||||
- **No Training on User Data**: Models are pre-trained
|
||||
- **Data Isolation**: Multi-tenant data separation
|
||||
|
||||
## Integration Points
|
||||
|
||||
### External Services
|
||||
|
||||
- **Modal.com**: GPU processing
|
||||
- **AWS S3**: Long-term storage
|
||||
- **Whereby**: Video conferencing rooms
|
||||
- **Zulip**: Chat integration (optional)
|
||||
|
||||
### APIs and Webhooks
|
||||
|
||||
- **RESTful API**: Standard CRUD operations
|
||||
- **WebSocket API**: Real-time updates
|
||||
- **Webhook Notifications**: Processing completion events
|
||||
- **OpenAPI Specification**: Machine-readable API definition
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Caching Strategy
|
||||
|
||||
- **Redis Cache**: Frequently accessed data
|
||||
- **CDN**: Static asset delivery
|
||||
- **Browser Cache**: Client-side optimization
|
||||
|
||||
### Database Optimization
|
||||
|
||||
- **Indexed Queries**: Fast search and retrieval
|
||||
- **Connection Pooling**: Efficient resource usage
|
||||
- **Query Optimization**: N+1 query prevention
|
||||
|
||||
### Processing Optimization
|
||||
|
||||
- **Batch Processing**: Efficient GPU utilization
|
||||
- **Parallel Execution**: Multi-core CPU usage
|
||||
- **Stream Processing**: Reduced memory footprint
|
||||
|
||||
## Monitoring and Observability
|
||||
|
||||
### Metrics Collection
|
||||
|
||||
- **Application Metrics**: Request rates, response times
|
||||
- **System Metrics**: CPU, memory, disk usage
|
||||
- **Business Metrics**: Transcription accuracy, processing times
|
||||
|
||||
### Logging
|
||||
|
||||
- **Structured Logging**: JSON format for analysis
|
||||
- **Log Aggregation**: Centralized log management
|
||||
- **Error Tracking**: Sentry integration
|
||||
|
||||
### Health Checks
|
||||
|
||||
- **Liveness Probes**: Component availability
|
||||
- **Readiness Probes**: Service readiness
|
||||
- **Dependency Checks**: External service status
|
||||
183
docs/docs/concepts/pipeline.md
Normal file
183
docs/docs/concepts/pipeline.md
Normal file
@@ -0,0 +1,183 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
title: Processing Pipeline
|
||||
---
|
||||
|
||||
# Processing Pipeline
|
||||
|
||||
Reflector uses a modular pipeline architecture to process audio efficiently and accurately.
|
||||
|
||||
## Pipeline Overview
|
||||
|
||||
The processing pipeline consists of modular components that can be combined and configured based on your needs:
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Audio Input] --> B[Pre-processing]
|
||||
B --> C[Chunking]
|
||||
C --> D[Transcription]
|
||||
D --> E[Diarization]
|
||||
E --> F[Alignment]
|
||||
F --> G[Post-processing]
|
||||
G --> H[Output]
|
||||
```
|
||||
|
||||
## Pipeline Components
|
||||
|
||||
### Audio Input
|
||||
|
||||
Accepts various input sources:
|
||||
- **File Upload**: MP3, WAV, M4A, WebM, MP4
|
||||
- **WebRTC Stream**: Live browser audio
|
||||
- **Recording Integration**: Daily.co and Whereby recordings
|
||||
- **API Upload**: Direct API submission
|
||||
|
||||
### Pre-processing
|
||||
|
||||
Prepares audio for optimal processing:
|
||||
- **Format Conversion**: Convert to 16kHz mono WAV
|
||||
- **Noise Reduction**: Optional background noise removal
|
||||
- **Validation**: Check duration and quality
|
||||
|
||||
### Chunking
|
||||
|
||||
Splits audio for parallel processing:
|
||||
- **Configurable Size**: Audio split into processable segments
|
||||
- **Silence Detection**: Optional splitting at natural pauses
|
||||
- **Metadata**: Track chunk positions
|
||||
|
||||
### Transcription
|
||||
|
||||
Converts speech to text:
|
||||
- **Model Selection**: Whisper or Parakeet
|
||||
- **Language Detection**: Automatic or specified
|
||||
- **Timestamp Generation**: Word-level timing
|
||||
- **Confidence Scores**: Quality indicators
|
||||
|
||||
### Diarization
|
||||
|
||||
Identifies different speakers:
|
||||
- **Voice Activity Detection**: Find speech segments
|
||||
- **Speaker Embedding**: Extract voice characteristics
|
||||
- **Clustering**: Group similar voices
|
||||
- **Label Assignment**: Assign speaker IDs
|
||||
|
||||
### Alignment
|
||||
|
||||
Merges all processing results:
|
||||
- **Chunk Assembly**: Combine transcription chunks
|
||||
- **Speaker Mapping**: Align speakers with text
|
||||
- **Overlap Resolution**: Handle chunk boundaries
|
||||
- **Timeline Creation**: Build unified timeline
|
||||
|
||||
### Post-processing
|
||||
|
||||
Enhances the final output:
|
||||
- **Formatting**: Apply punctuation and capitalization
|
||||
- **Summarization**: Generate concise summaries
|
||||
- **Topic Extraction**: Identify key themes
|
||||
- **Action Items**: Extract tasks and decisions
|
||||
|
||||
## Processing Modes
|
||||
|
||||
### Batch Processing
|
||||
|
||||
For uploaded files:
|
||||
- Optimized for throughput
|
||||
- Parallel chunk processing
|
||||
- Higher accuracy models
|
||||
- Complete file analysis
|
||||
|
||||
### Stream Processing
|
||||
|
||||
For live audio:
|
||||
- Optimized for latency
|
||||
- Sequential processing
|
||||
- Real-time feedback
|
||||
- Progressive results
|
||||
|
||||
### Hybrid Processing
|
||||
|
||||
For meetings:
|
||||
- Stream during meeting
|
||||
- Batch after completion
|
||||
- Best of both modes
|
||||
- Maximum accuracy
|
||||
|
||||
## Pipeline Orchestration
|
||||
|
||||
### Error Handling
|
||||
|
||||
Error recovery:
|
||||
- **Automatic Retry**: Failed tasks retry up to 3 times
|
||||
- **Partial Recovery**: Continue with successful chunks
|
||||
- **Fallback Models**: Use alternative models on failure
|
||||
- **Error Reporting**: Detailed error messages
|
||||
|
||||
### Progress Tracking
|
||||
|
||||
Real-time progress updates:
|
||||
- **Chunk Progress**: Track individual chunk processing
|
||||
- **Overall Progress**: Percentage completion
|
||||
- **ETA Calculation**: Estimated completion time
|
||||
- **WebSocket Updates**: Live progress to clients
|
||||
|
||||
## Optimization Strategies
|
||||
|
||||
### GPU Utilization
|
||||
|
||||
Maximize GPU efficiency:
|
||||
- **Batch Processing**: Process multiple chunks together
|
||||
- **Model Caching**: Keep models loaded in memory
|
||||
- **Dynamic Batching**: Adjust batch size based on GPU memory
|
||||
- **Multi-GPU Support**: Distribute across available GPUs
|
||||
|
||||
### Memory Management
|
||||
|
||||
Efficient memory usage:
|
||||
- **Streaming Processing**: Process large files in chunks
|
||||
- **Garbage Collection**: Clean up after each chunk
|
||||
- **Memory Limits**: Prevent out-of-memory errors
|
||||
- **Disk Caching**: Use disk for large intermediate results
|
||||
|
||||
### Network Optimization
|
||||
|
||||
Minimize network overhead:
|
||||
- **Compression**: Compress audio before transfer
|
||||
- **CDN Integration**: Use CDN for static assets
|
||||
- **Connection Pooling**: Reuse network connections
|
||||
- **Parallel Uploads**: Multiple concurrent uploads
|
||||
|
||||
## Quality Assurance
|
||||
|
||||
### Accuracy Metrics
|
||||
|
||||
Monitor processing quality:
|
||||
- **Word Error Rate (WER)**: Transcription accuracy
|
||||
- **Diarization Error Rate (DER)**: Speaker identification accuracy
|
||||
- **Summary Coherence**: Summary quality metrics
|
||||
|
||||
### Validation Steps
|
||||
|
||||
Ensure output quality:
|
||||
- **Confidence Thresholds**: Filter low-confidence segments
|
||||
- **Consistency Checks**: Verify timeline consistency
|
||||
- **Language Validation**: Ensure correct language detection
|
||||
- **Format Validation**: Check output format compliance
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Custom Models
|
||||
|
||||
Use your own models:
|
||||
- **Fine-tuned Whisper**: Domain-specific models
|
||||
- **Custom Diarization**: Trained on your speakers
|
||||
- **Specialized Post-processing**: Industry-specific formatting
|
||||
|
||||
### Pipeline Extensions
|
||||
|
||||
Add custom processing steps:
|
||||
- **Sentiment Analysis**: Analyze emotional tone
|
||||
- **Entity Extraction**: Identify people, places, organizations
|
||||
- **Custom Metrics**: Calculate domain-specific metrics
|
||||
- **Integration Hooks**: Call external services
|
||||
285
docs/docs/installation/auth-setup.md
Normal file
285
docs/docs/installation/auth-setup.md
Normal file
@@ -0,0 +1,285 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
title: Authentication Setup
|
||||
---
|
||||
|
||||
# Authentication Setup
|
||||
|
||||
This page covers authentication setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
Reflector uses [Authentik](https://goauthentik.io/) for OAuth/OIDC authentication. This guide walks you through setting up Authentik and connecting it to Reflector.
|
||||
|
||||
The guide simplistically sets Authentic on the same server as Reflector. You can use your own Authentic instance instead.
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector's authentication flow:
|
||||
1. User clicks "Sign In" on frontend
|
||||
2. Frontend redirects to Authentik login page
|
||||
3. User authenticates with Authentik
|
||||
4. Authentik redirects back with OAuth tokens
|
||||
5. Frontend stores tokens, backends verify JWT signature
|
||||
|
||||
## Option 1: Self-Hosted Authentik (Same Server)
|
||||
|
||||
This setup runs Authentik on the same server as Reflector, with Caddy proxying to both.
|
||||
|
||||
### Deploy Authentik
|
||||
|
||||
```bash
|
||||
# Create directory for Authentik
|
||||
mkdir -p ~/authentik && cd ~/authentik
|
||||
|
||||
# Download docker-compose file
|
||||
curl -O https://goauthentik.io/docker-compose.yml
|
||||
|
||||
# Generate secrets and bootstrap credentials
|
||||
cat > .env << 'EOF'
|
||||
PG_PASS=$(openssl rand -base64 36 | tr -d '\n')
|
||||
AUTHENTIK_SECRET_KEY=$(openssl rand -base64 60 | tr -d '\n')
|
||||
# Privacy-focused choice for self-hosted deployments
|
||||
AUTHENTIK_ERROR_REPORTING__ENABLED=false
|
||||
AUTHENTIK_BOOTSTRAP_PASSWORD=YourSecurePassword123
|
||||
AUTHENTIK_BOOTSTRAP_EMAIL=admin@example.com
|
||||
EOF
|
||||
|
||||
# Start Authentik
|
||||
sudo docker compose up -d
|
||||
```
|
||||
|
||||
Authentik takes ~2 minutes to run migrations and apply blueprints on first start.
|
||||
|
||||
### Connect Authentik to Reflector's Network
|
||||
|
||||
If Authentik runs in a separate Docker Compose project, connect it to Reflector's network so Caddy can proxy to it:
|
||||
|
||||
```bash
|
||||
# Wait for Authentik to be healthy
|
||||
# Connect Authentik server to Reflector's network
|
||||
sudo docker network connect reflector_default authentik-server-1
|
||||
```
|
||||
|
||||
**Important:** This step must be repeated if you restart Authentik with `docker compose down`. Add it to your deployment scripts or use `docker compose up -d` (which preserves containers) instead of down/up.
|
||||
|
||||
### Add Authentik to Caddy
|
||||
|
||||
Uncomment the Authentik section in your `Caddyfile` and set your domain:
|
||||
|
||||
```bash
|
||||
nano Caddyfile
|
||||
```
|
||||
|
||||
Uncomment and edit:
|
||||
```
|
||||
{$AUTHENTIK_DOMAIN:authentik.example.com} {
|
||||
reverse_proxy authentik-server-1:9000
|
||||
}
|
||||
```
|
||||
|
||||
Reload Caddy:
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
|
||||
```
|
||||
|
||||
### Create OAuth2 Provider in Authentik
|
||||
|
||||
**Option A: Automated Setup (Recommended)**
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
Run the setup script from the Reflector repository:
|
||||
|
||||
```bash
|
||||
ssh user@your-server-ip
|
||||
cd ~/reflector
|
||||
./scripts/setup-authentik-oauth.sh https://authentik.example.com YourSecurePassword123 https://app.example.com
|
||||
```
|
||||
|
||||
**Important:** The script must be run from the `~/reflector` directory on your server, as it creates files using relative paths.
|
||||
|
||||
The script will output the configuration values to add to your `.env` files. Skip to "Update docker-compose.prod.yml".
|
||||
|
||||
**Option B: Manual Setup**
|
||||
|
||||
1. **Login to Authentik Admin** at `https://authentik.example.com/`
|
||||
- Username: `akadmin`
|
||||
- Password: The `AUTHENTIK_BOOTSTRAP_PASSWORD` you set in .env
|
||||
|
||||
2. **Create OAuth2 Provider:**
|
||||
- Go to **Applications > Providers > Create**
|
||||
- Select **OAuth2/OpenID Provider**
|
||||
- Configure:
|
||||
- **Name**: `Reflector`
|
||||
- **Authorization flow**: `default-provider-authorization-implicit-consent`
|
||||
- **Client type**: `Confidential`
|
||||
- **Client ID**: Note this value (auto-generated)
|
||||
- **Client Secret**: Note this value (auto-generated)
|
||||
- **Redirect URIs**: Add entry with:
|
||||
```
|
||||
https://app.example.com/api/auth/callback/authentik
|
||||
```
|
||||
- Scroll down to **Advanced protocol settings**
|
||||
- In **Scopes**, add these three mappings:
|
||||
- `authentik default OAuth Mapping: OpenID 'email'`
|
||||
- `authentik default OAuth Mapping: OpenID 'openid'`
|
||||
- `authentik default OAuth Mapping: OpenID 'profile'`
|
||||
- Click **Finish**
|
||||
|
||||
3. **Create Application:**
|
||||
- Go to **Applications > Applications > Create**
|
||||
- Configure:
|
||||
- **Name**: `Reflector`
|
||||
- **Slug**: `reflector` (auto-filled)
|
||||
- **Provider**: Select the `Reflector` provider you just created
|
||||
- Click **Create**
|
||||
|
||||
### Get Public Key for JWT Verification
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
Extract the public key from Authentik's JWKS endpoint:
|
||||
|
||||
```bash
|
||||
mkdir -p ~/reflector/server/reflector/auth/jwt/keys
|
||||
curl -s https://authentik.example.com/application/o/reflector/jwks/ | \
|
||||
jq -r '.keys[0].x5c[0]' | base64 -d | openssl x509 -pubkey -noout \
|
||||
> ~/reflector/server/reflector/auth/jwt/keys/authentik_public.pem
|
||||
```
|
||||
|
||||
### Update docker-compose.prod.yml
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
**Note:** This step is already done in the current `docker-compose.prod.yml`. Verify the volume mounts exist:
|
||||
|
||||
```yaml
|
||||
server:
|
||||
image: monadicalsas/reflector-backend:latest
|
||||
# ... other config ...
|
||||
volumes:
|
||||
- server_data:/app/data
|
||||
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
|
||||
|
||||
worker:
|
||||
image: monadicalsas/reflector-backend:latest
|
||||
# ... other config ...
|
||||
volumes:
|
||||
- server_data:/app/data
|
||||
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
|
||||
```
|
||||
|
||||
### Configure Reflector Backend
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
Update `server/.env`:
|
||||
```env
|
||||
# Authentication
|
||||
AUTH_BACKEND=jwt
|
||||
AUTH_JWT_PUBLIC_KEY=authentik_public.pem
|
||||
AUTH_JWT_AUDIENCE=<your-client-id>
|
||||
CORS_ALLOW_CREDENTIALS=true
|
||||
```
|
||||
|
||||
Replace `<your-client-id>` with the Client ID from previous steps.
|
||||
|
||||
### Configure Reflector Frontend
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
Update `www/.env`:
|
||||
```env
|
||||
# Authentication
|
||||
FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Authentik OAuth
|
||||
AUTHENTIK_ISSUER=https://authentik.example.com/application/o/reflector
|
||||
AUTHENTIK_REFRESH_TOKEN_URL=https://authentik.example.com/application/o/token/
|
||||
AUTHENTIK_CLIENT_ID=<your-client-id>
|
||||
AUTHENTIK_CLIENT_SECRET=<your-client-secret>
|
||||
|
||||
# NextAuth
|
||||
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
|
||||
```
|
||||
|
||||
### Restart Services
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
```bash
|
||||
cd ~/reflector
|
||||
sudo docker compose -f docker-compose.prod.yml up -d --force-recreate server worker web
|
||||
```
|
||||
|
||||
### Verify Authentication
|
||||
|
||||
1. Visit `https://app.example.com`
|
||||
2. Click "Log in" or navigate to `/api/auth/signin`
|
||||
3. Click "Sign in with Authentik"
|
||||
4. Login with your Authentik credentials
|
||||
5. You should be redirected back and see "Log out" in the header
|
||||
|
||||
## Option 2: Disable Authentication
|
||||
|
||||
For testing or internal deployments where authentication isn't needed:
|
||||
|
||||
**Backend `server/.env`:**
|
||||
```env
|
||||
AUTH_BACKEND=none
|
||||
```
|
||||
|
||||
**Frontend `www/.env`:**
|
||||
```env
|
||||
FEATURE_REQUIRE_LOGIN=false
|
||||
```
|
||||
|
||||
**Note:** The pre-built Docker images have `FEATURE_REQUIRE_LOGIN=true` baked in. To disable auth, you'll need to rebuild the frontend image with the env var set at build time, or set up Authentik.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "Invalid redirect URI" error
|
||||
- Verify the redirect URI in Authentik matches exactly:
|
||||
```
|
||||
https://app.example.com/api/auth/callback/authentik
|
||||
```
|
||||
- Check for trailing slashes - they must match exactly
|
||||
|
||||
### "Invalid audience" JWT error
|
||||
- Ensure `AUTH_JWT_AUDIENCE` in `server/.env` matches the Client ID from Authentik
|
||||
- The audience value is the OAuth Client ID, not the issuer URL
|
||||
|
||||
### "JWT verification failed" error
|
||||
- Verify the public key file is mounted in the container
|
||||
- Check `AUTH_JWT_PUBLIC_KEY` points to the correct filename
|
||||
- Ensure the key was extracted from the correct provider's JWKS endpoint
|
||||
|
||||
### Caddy returns 503 for Authentik
|
||||
- Verify Authentik container is connected to Reflector's network:
|
||||
```bash
|
||||
sudo docker network connect reflector_default authentik-server-1
|
||||
```
|
||||
- Check Authentik is healthy: `cd ~/authentik && sudo docker compose ps`
|
||||
|
||||
### Users can't access protected pages
|
||||
- Verify `FEATURE_REQUIRE_LOGIN=true` in frontend
|
||||
- Check `AUTH_BACKEND=jwt` in backend
|
||||
- Verify CORS settings allow credentials
|
||||
|
||||
### Token refresh errors
|
||||
- Ensure Redis is running (frontend uses Redis for token caching)
|
||||
- Verify `KV_URL` is set correctly in frontend env
|
||||
- Check `AUTHENTIK_REFRESH_TOKEN_URL` is correct
|
||||
|
||||
## API Key Authentication
|
||||
|
||||
For programmatic access (scripts, integrations), users can generate API keys:
|
||||
|
||||
1. Login to Reflector
|
||||
2. Go to Settings > API Keys
|
||||
3. Click "Generate New Key"
|
||||
4. Use the key in requests:
|
||||
```bash
|
||||
curl -H "X-API-Key: your-api-key" https://api.example.com/v1/transcripts
|
||||
```
|
||||
|
||||
API keys are stored hashed and can be revoked at any time.
|
||||
165
docs/docs/installation/daily-setup.md
Normal file
165
docs/docs/installation/daily-setup.md
Normal file
@@ -0,0 +1,165 @@
|
||||
---
|
||||
sidebar_position: 6
|
||||
title: Daily.co Setup
|
||||
---
|
||||
|
||||
# Daily.co Setup
|
||||
|
||||
This page covers Daily.co video platform setup for live meeting rooms. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
Daily.co enables live video meetings with automatic recording and transcription.
|
||||
|
||||
## What You'll Set Up
|
||||
|
||||
```
|
||||
User joins meeting → Daily.co video room → Recording to S3 → [Webhook] → Reflector transcribes
|
||||
```
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
|
||||
- [ ] **AWS account** - For S3 storage
|
||||
- [ ] **Reflector deployed** - Complete steps from [Deployment Guide](./overview)
|
||||
|
||||
---
|
||||
|
||||
## Create Daily.co Account
|
||||
|
||||
1. Visit https://dashboard.daily.co and sign up
|
||||
2. Verify your email
|
||||
3. Note your subdomain (e.g., `yourname.daily.co` → subdomain is `yourname`)
|
||||
|
||||
---
|
||||
|
||||
## Get Daily.co API Key
|
||||
|
||||
1. In Daily.co dashboard, go to **Developers**
|
||||
2. Click **API Keys**
|
||||
3. Click **Create API Key**
|
||||
4. Copy the key (starts with a long string)
|
||||
|
||||
Save this for later.
|
||||
|
||||
---
|
||||
|
||||
## Create AWS S3 Bucket
|
||||
|
||||
Daily.co needs somewhere to store recordings before Reflector processes them.
|
||||
|
||||
```bash
|
||||
# Choose a unique bucket name
|
||||
BUCKET_NAME="reflector-dailyco-yourname" # -yourname is not a requirement, you can name the bucket as you wish
|
||||
AWS_REGION="us-east-1"
|
||||
|
||||
# Create bucket
|
||||
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
|
||||
|
||||
# Enable versioning (required)
|
||||
aws s3api put-bucket-versioning \
|
||||
--bucket $BUCKET_NAME \
|
||||
--versioning-configuration Status=Enabled
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Create IAM Role for Daily.co
|
||||
|
||||
Daily.co needs permission to write recordings to your S3 bucket.
|
||||
|
||||
Follow the guide https://docs.daily.co/guides/products/live-streaming-recording/storing-recordings-in-a-custom-s3-bucket
|
||||
|
||||
Save the role ARN - you'll need it soon.
|
||||
|
||||
It looks like: `arn:aws:iam::123456789012:role/DailyCo`
|
||||
|
||||
Shortly, you'll need to set up a role and give this role your s3 bucket access
|
||||
|
||||
No additional setup is required from Daily.co settings website side: the app code takes care of letting Daily know where to save the recordings.
|
||||
|
||||
---
|
||||
|
||||
## Configure Reflector
|
||||
|
||||
**Location: Reflector server**
|
||||
|
||||
Add to `server/.env`:
|
||||
|
||||
```env
|
||||
# Daily.co Configuration
|
||||
DEFAULT_VIDEO_PLATFORM=daily
|
||||
DAILY_API_KEY=<your-api-key-from-daily-setup>
|
||||
DAILY_SUBDOMAIN=<your-subdomain-from-daily-setup>
|
||||
|
||||
# S3 Storage for Daily.co recordings
|
||||
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket-from-daily-setup>
|
||||
DAILYCO_STORAGE_AWS_REGION=us-east-1
|
||||
DAILYCO_STORAGE_AWS_ROLE_ARN=<your-role-arn-from-daily-setup>
|
||||
|
||||
# Transcript storage (should already be configured from main setup)
|
||||
# TRANSCRIPT_STORAGE_BACKEND=aws
|
||||
# TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=<your-key>
|
||||
# TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=<your-secret>
|
||||
# TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=<your-bucket-name>
|
||||
# TRANSCRIPT_STORAGE_AWS_REGION=<your-bucket-region>
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Restart Services
|
||||
|
||||
After changing `.env` files, reload with `up -d`:
|
||||
|
||||
```bash
|
||||
sudo docker compose -f docker-compose.prod.yml up -d server worker
|
||||
```
|
||||
|
||||
**Note**: `docker compose up -d` detects env changes and recreates containers automatically.
|
||||
|
||||
---
|
||||
|
||||
## Test Live Room
|
||||
|
||||
1. Visit your Reflector frontend: `https://app.example.com`
|
||||
2. Go to **Rooms**
|
||||
3. Click **Create Room**
|
||||
4. Select **Daily** as the platform
|
||||
5. Allow camera/microphone access
|
||||
6. You should see Daily.co video interface
|
||||
7. Speak for 10-20 seconds
|
||||
8. Leave the meeting
|
||||
9. Recording should appear in **Transcripts** within 5 minutes (if webhooks aren't set up yet, see [Webhook Configuration](#webhook-configuration-optional) below)
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Recording doesn't appear in S3
|
||||
|
||||
1. Check Daily.co dashboard → **Logs** for errors
|
||||
2. Verify IAM role trust policy has correct Daily.co account ID and your Daily.co subdomain
|
||||
3. Verify that the bucket has
|
||||
|
||||
### Recording in S3 but not transcribed
|
||||
|
||||
1. Check webhook is configured (Reflector should auto-create it)
|
||||
2. Check worker logs:
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml logs worker --tail 50
|
||||
```
|
||||
3. Verify `DAILYCO_STORAGE_AWS_*` vars in `server/.env`
|
||||
|
||||
### "Access Denied" when Daily.co tries to write to S3
|
||||
|
||||
1. Double-check IAM role ARN in Daily.co settings
|
||||
2. Verify bucket name matches exactly
|
||||
3. Check IAM policy has `s3:PutObject` permission
|
||||
|
||||
---
|
||||
|
||||
## Webhook Configuration [optional]
|
||||
|
||||
`manage_daily_webhook.py` script guides you through creating a webhook for Daily recordings.
|
||||
|
||||
The webhook isn't required - polling mechanism is the default and performed automatically.
|
||||
|
||||
This guide won't go deep into webhook setup.
|
||||
192
docs/docs/installation/docker-setup.md
Normal file
192
docs/docs/installation/docker-setup.md
Normal file
@@ -0,0 +1,192 @@
|
||||
---
|
||||
sidebar_position: 3
|
||||
title: Docker Reference
|
||||
---
|
||||
|
||||
# Docker Reference
|
||||
|
||||
This page documents the Docker Compose configuration for Reflector. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
## Services
|
||||
|
||||
The `docker-compose.prod.yml` includes these services:
|
||||
|
||||
| Service | Image | Purpose |
|
||||
|---------|-------|---------|
|
||||
| `web` | `monadicalsas/reflector-frontend` | Next.js frontend |
|
||||
| `server` | `monadicalsas/reflector-backend` | FastAPI backend |
|
||||
| `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks |
|
||||
| `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler |
|
||||
| `redis` | `redis:7.2-alpine` | Message broker and cache |
|
||||
| `postgres` | `postgres:17-alpine` | Primary database |
|
||||
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL |
|
||||
|
||||
## Environment Files
|
||||
|
||||
Reflector uses two separate environment files:
|
||||
|
||||
### Backend (`server/.env`)
|
||||
|
||||
Used by: `server`, `worker`, `beat`
|
||||
|
||||
Key variables:
|
||||
```env
|
||||
# Database connection
|
||||
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
|
||||
|
||||
# Redis
|
||||
REDIS_HOST=redis
|
||||
CELERY_BROKER_URL=redis://redis:6379/1
|
||||
CELERY_RESULT_BACKEND=redis://redis:6379/1
|
||||
|
||||
# API domain and CORS
|
||||
BASE_URL=https://api.example.com
|
||||
CORS_ORIGIN=https://app.example.com
|
||||
|
||||
# Modal GPU processing
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://...
|
||||
TRANSCRIPT_MODAL_API_KEY=...
|
||||
```
|
||||
|
||||
### Frontend (`www/.env`)
|
||||
|
||||
Used by: `web`
|
||||
|
||||
Key variables:
|
||||
```env
|
||||
# Domain configuration
|
||||
SITE_URL=https://app.example.com
|
||||
API_URL=https://api.example.com
|
||||
WEBSOCKET_URL=wss://api.example.com
|
||||
SERVER_API_URL=http://server:1250
|
||||
|
||||
# Authentication
|
||||
NEXTAUTH_URL=https://app.example.com
|
||||
NEXTAUTH_SECRET=...
|
||||
```
|
||||
|
||||
Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-side (SSR).
|
||||
|
||||
## Volumes
|
||||
|
||||
| Volume | Purpose |
|
||||
|--------|---------|
|
||||
| `redis_data` | Redis persistence |
|
||||
| `postgres_data` | PostgreSQL data |
|
||||
| `server_data` | Uploaded files, local storage |
|
||||
| `caddy_data` | SSL certificates |
|
||||
| `caddy_config` | Caddy configuration |
|
||||
|
||||
## Network
|
||||
|
||||
All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join.
|
||||
|
||||
## Common Commands
|
||||
|
||||
### Start all services
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml up -d
|
||||
```
|
||||
|
||||
### View logs
|
||||
```bash
|
||||
# All services
|
||||
docker compose -f docker-compose.prod.yml logs -f
|
||||
|
||||
# Specific service
|
||||
docker compose -f docker-compose.prod.yml logs server --tail 50
|
||||
```
|
||||
|
||||
### Restart a service
|
||||
```bash
|
||||
# Quick restart (doesn't reload .env changes)
|
||||
docker compose -f docker-compose.prod.yml restart server
|
||||
|
||||
# Reload .env and restart
|
||||
docker compose -f docker-compose.prod.yml up -d server
|
||||
```
|
||||
|
||||
### Run database migrations
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
|
||||
```
|
||||
|
||||
### Access database
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml exec postgres psql -U reflector
|
||||
```
|
||||
|
||||
### Pull latest images
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml pull
|
||||
docker compose -f docker-compose.prod.yml up -d
|
||||
```
|
||||
|
||||
### Stop all services
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml down
|
||||
```
|
||||
|
||||
### Full reset (WARNING: deletes data)
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml down -v
|
||||
```
|
||||
|
||||
## Customization
|
||||
|
||||
### Using a different database
|
||||
|
||||
To use an external PostgreSQL:
|
||||
|
||||
1. Remove `postgres` service from compose file
|
||||
2. Update `DATABASE_URL` in `server/.env`:
|
||||
```env
|
||||
DATABASE_URL=postgresql+asyncpg://user:pass@external-host:5432/reflector
|
||||
```
|
||||
|
||||
### Using external Redis
|
||||
|
||||
1. Remove `redis` service from compose file
|
||||
2. Update Redis settings in `server/.env`:
|
||||
```env
|
||||
REDIS_HOST=external-redis-host
|
||||
CELERY_BROKER_URL=redis://external-redis-host:6379/1
|
||||
```
|
||||
|
||||
### Adding Authentik
|
||||
|
||||
To add Authentik for authentication, see [Authentication Setup](./auth-setup). Quick steps:
|
||||
|
||||
1. Deploy Authentik separately
|
||||
2. Connect to Reflector's network:
|
||||
```bash
|
||||
docker network connect reflector_default authentik-server-1
|
||||
```
|
||||
3. Add to Caddyfile:
|
||||
```
|
||||
authentik.example.com {
|
||||
reverse_proxy authentik-server-1:9000
|
||||
}
|
||||
```
|
||||
|
||||
## Caddyfile Reference
|
||||
|
||||
The Caddyfile supports environment variable substitution:
|
||||
|
||||
```
|
||||
{$FRONTEND_DOMAIN:app.example.com} {
|
||||
reverse_proxy web:3000
|
||||
}
|
||||
|
||||
{$API_DOMAIN:api.example.com} {
|
||||
reverse_proxy server:1250
|
||||
}
|
||||
```
|
||||
|
||||
Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly.
|
||||
|
||||
### Reload Caddy after changes
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
|
||||
```
|
||||
139
docs/docs/installation/docs-deployment.md
Normal file
139
docs/docs/installation/docs-deployment.md
Normal file
@@ -0,0 +1,139 @@
|
||||
---
|
||||
sidebar_position: 10
|
||||
title: Docs Website Deployment
|
||||
---
|
||||
|
||||
# Docs Website Deployment
|
||||
|
||||
This guide covers deploying the Reflector documentation website. **This is optional and intended for internal/experimental use only.**
|
||||
|
||||
## Overview
|
||||
|
||||
The documentation is built using Docusaurus and deployed as a static nginx-served site.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Reflector already deployed (Steps 1-7 from [Deployment Guide](./overview))
|
||||
- DNS A record for docs subdomain (e.g., `docs.example.com`)
|
||||
|
||||
## Deployment Steps
|
||||
|
||||
### Step 1: Pre-fetch OpenAPI Spec
|
||||
|
||||
The docs site includes API reference from your running backend. Fetch it before building:
|
||||
|
||||
```bash
|
||||
cd ~/reflector
|
||||
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
|
||||
```
|
||||
|
||||
This creates `docs/static/openapi.json` (should be ~70KB) which will be copied during Docker build.
|
||||
|
||||
**Why not fetch during build?** Docker build containers are network-isolated and can't access the running backend services.
|
||||
|
||||
### Step 2: Verify Dockerfile
|
||||
|
||||
The Dockerfile is already in `docs/Dockerfile`:
|
||||
|
||||
```dockerfile
|
||||
FROM node:18-alpine AS builder
|
||||
WORKDIR /app
|
||||
|
||||
# Copy package files
|
||||
COPY package*.json ./
|
||||
|
||||
# Inshall dependencies
|
||||
RUN npm ci
|
||||
|
||||
# Copy source (includes static/openapi.json if pre-fetched)
|
||||
COPY . .
|
||||
|
||||
# Fix docusaurus config: change onBrokenLinks to 'warn' for Docker build
|
||||
RUN sed -i "s/onBrokenLinks: 'throw'/onBrokenLinks: 'warn'/g" docusaurus.config.ts
|
||||
|
||||
# Build static site
|
||||
RUN npx docusaurus build
|
||||
|
||||
FROM nginx:alpine
|
||||
COPY --from=builder /app/build /usr/share/nginx/html
|
||||
EXPOSE 80
|
||||
CMD ["nginx", "-g", "daemon off;"]
|
||||
```
|
||||
|
||||
### Step 3: Add Docs Service to docker-compose.prod.yml
|
||||
|
||||
Add this service to `docker-compose.prod.yml`:
|
||||
|
||||
```yaml
|
||||
docs:
|
||||
build: ./docs
|
||||
restart: unless-stopped
|
||||
networks:
|
||||
- default
|
||||
```
|
||||
|
||||
### Step 4: Add Caddy Route
|
||||
|
||||
Add to `Caddyfile`:
|
||||
|
||||
```
|
||||
{$DOCS_DOMAIN:docs.example.com} {
|
||||
reverse_proxy docs:80
|
||||
}
|
||||
```
|
||||
|
||||
### Step 5: Build and Deploy
|
||||
|
||||
```bash
|
||||
cd ~/reflector
|
||||
docker compose -f docker-compose.prod.yml up -d --build docs
|
||||
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
|
||||
```
|
||||
|
||||
### Step 6: Verify
|
||||
|
||||
```bash
|
||||
# Check container status
|
||||
docker compose -f docker-compose.prod.yml ps docs
|
||||
# Should show "Up"
|
||||
|
||||
# Test URL
|
||||
curl -I https://docs.example.com
|
||||
# Should return HTTP/2 200
|
||||
```
|
||||
|
||||
Visit `https://docs.example.com` in your browser
|
||||
|
||||
## Updating Documentation
|
||||
|
||||
When docs are updated:
|
||||
|
||||
```bash
|
||||
cd ~/reflector
|
||||
git pull
|
||||
|
||||
# Refresh OpenAPI spec from backend
|
||||
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
|
||||
|
||||
# Rebuild docs
|
||||
docker compose -f docker-compose.prod.yml up -d --build docs
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Missing openapi.json during build
|
||||
- Make sure you ran the pre-fetch step first (Step 1)
|
||||
- Verify `docs/static/openapi.json` exists and is ~70KB
|
||||
- Re-run: `docker compose exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json`
|
||||
|
||||
### Build fails with "Docusaurus found broken links"
|
||||
- This happens if `onBrokenLinks: 'throw'` is set in docusaurus.config.ts
|
||||
- Solution is already in Dockerfile: uses `sed` to change to `'warn'` during build
|
||||
|
||||
### 404 on all pages
|
||||
- Docusaurus baseUrl might be wrong - should be `/` for custom domain
|
||||
- Check `docs/docusaurus.config.ts`: `baseUrl: '/'`
|
||||
|
||||
### Docs not updating after rebuild
|
||||
- Force rebuild: `docker compose -f docker-compose.prod.yml build --no-cache docs`
|
||||
- Then: `docker compose -f docker-compose.prod.yml up -d docs`
|
||||
171
docs/docs/installation/modal-setup.md
Normal file
171
docs/docs/installation/modal-setup.md
Normal file
@@ -0,0 +1,171 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
title: Modal.com Setup
|
||||
---
|
||||
|
||||
# Modal.com Setup
|
||||
|
||||
This page covers Modal.com GPU setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
Reflector uses [Modal.com](https://modal.com) for GPU-accelerated audio processing. This guide walks you through deploying the required GPU functions.
|
||||
|
||||
## What is Modal.com?
|
||||
|
||||
Modal is a serverless GPU platform. You deploy Python code that runs on their GPUs, and pay only for actual compute time. Reflector uses Modal for:
|
||||
|
||||
- **Transcription**: Whisper model for speech-to-text
|
||||
- **Diarization**: Pyannote model for speaker identification
|
||||
|
||||
## Prerequisites
|
||||
|
||||
1. **Modal.com account** - Sign up at https://modal.com (free tier available)
|
||||
2. **HuggingFace account** - Required for Pyannote diarization models:
|
||||
- Create account at https://huggingface.co
|
||||
- Accept **both** Pyannote licenses:
|
||||
- https://huggingface.co/pyannote/speaker-diarization-3.1
|
||||
- https://huggingface.co/pyannote/segmentation-3.0
|
||||
- Generate access token at https://huggingface.co/settings/tokens
|
||||
|
||||
## Deployment
|
||||
|
||||
**Location: YOUR LOCAL COMPUTER (laptop/desktop)**
|
||||
|
||||
Modal CLI requires browser authentication, so this must run on a machine with a browser - not on a headless server.
|
||||
|
||||
### Install Modal CLI
|
||||
|
||||
```bash
|
||||
uv tool install modal
|
||||
```
|
||||
|
||||
### Authenticate with Modal
|
||||
|
||||
```bash
|
||||
modal setup
|
||||
```
|
||||
|
||||
This opens your browser for authentication. Complete the login flow.
|
||||
|
||||
### Clone Repository and Deploy
|
||||
|
||||
```bash
|
||||
git clone https://github.com/monadical-sas/reflector.git
|
||||
cd reflector/gpu/modal_deployments
|
||||
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
|
||||
```
|
||||
|
||||
Or run interactively (script will prompt for token):
|
||||
```bash
|
||||
./deploy-all.sh
|
||||
```
|
||||
|
||||
### What the Script Does
|
||||
|
||||
1. **Prompts for HuggingFace token** - Needed to download the Pyannote diarization model
|
||||
2. **Generates API key** - Creates a secure random key for authenticating requests to GPU functions
|
||||
3. **Creates Modal secrets**:
|
||||
- `hf_token` - Your HuggingFace token
|
||||
- `reflector-gpu` - The generated API key
|
||||
4. **Deploys GPU functions** - Transcriber (Whisper) and Diarizer (Pyannote)
|
||||
5. **Outputs configuration** - Prints URLs and API key to console
|
||||
|
||||
### Example Output
|
||||
|
||||
```
|
||||
==========================================
|
||||
Reflector GPU Functions Deployment
|
||||
==========================================
|
||||
|
||||
Generating API key for GPU services...
|
||||
Creating Modal secrets...
|
||||
-> Creating secret: hf_token
|
||||
-> Creating secret: reflector-gpu
|
||||
|
||||
Deploying transcriber (Whisper)...
|
||||
-> https://yourname--reflector-transcriber-web.modal.run
|
||||
|
||||
Deploying diarizer (Pyannote)...
|
||||
-> https://yourname--reflector-diarizer-web.modal.run
|
||||
|
||||
==========================================
|
||||
Deployment complete!
|
||||
==========================================
|
||||
|
||||
Copy these values to your server's server/.env file:
|
||||
|
||||
# --- Modal GPU Configuration ---
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=abc123...
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=abc123...
|
||||
# --- End Modal Configuration ---
|
||||
```
|
||||
|
||||
Copy the output and paste it into your `server/.env` file on your server.
|
||||
|
||||
## Costs
|
||||
|
||||
Modal charges based on GPU compute time:
|
||||
- Functions scale to zero when not in use (no cost when idle)
|
||||
- You only pay for actual processing time
|
||||
- Free tier includes $30/month of credits
|
||||
|
||||
Typical costs for audio processing:
|
||||
- Transcription: ~$0.01-0.05 per minute of audio
|
||||
- Diarization: ~$0.02-0.10 per minute of audio
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "Modal CLI not installed"
|
||||
```bash
|
||||
uv tool install modal
|
||||
```
|
||||
|
||||
### "Not authenticated with Modal"
|
||||
```bash
|
||||
modal setup
|
||||
# Complete browser authentication
|
||||
```
|
||||
|
||||
### "Failed to create secret hf_token"
|
||||
- Verify your HuggingFace token is valid
|
||||
- Ensure you've accepted the Pyannote license
|
||||
- Token needs `read` permission
|
||||
|
||||
### Deployment fails
|
||||
Check the Modal dashboard for detailed error logs:
|
||||
- Visit https://modal.com/apps
|
||||
- Click on the failed function
|
||||
- View build and runtime logs
|
||||
|
||||
### Re-running deployment
|
||||
The script is safe to re-run. It will:
|
||||
- Update existing secrets if they exist
|
||||
- Redeploy functions with latest code
|
||||
- Output new configuration (API key stays the same if secret exists)
|
||||
|
||||
## Manual Deployment (Advanced)
|
||||
|
||||
If you prefer to deploy functions individually:
|
||||
|
||||
```bash
|
||||
cd gpu/modal_deployments
|
||||
|
||||
# Create secrets manually
|
||||
modal secret create hf_token HF_TOKEN=your-hf-token
|
||||
modal secret create reflector-gpu REFLECTOR_GPU_APIKEY=$(openssl rand -hex 32)
|
||||
|
||||
# Deploy each function
|
||||
modal deploy reflector_transcriber.py
|
||||
modal deploy reflector_diarizer.py
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
View your deployed functions and their usage:
|
||||
- **Modal Dashboard**: https://modal.com/apps
|
||||
- **Function logs**: Click on any function to view logs
|
||||
- **Usage**: View compute time and costs in the dashboard
|
||||
411
docs/docs/installation/overview.md
Normal file
411
docs/docs/installation/overview.md
Normal file
@@ -0,0 +1,411 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
title: Deployment Guide
|
||||
---
|
||||
|
||||
# Deployment Guide
|
||||
|
||||
This guide walks you through deploying Reflector from scratch. Follow these steps in order.
|
||||
|
||||
## What You'll Set Up
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
User --> Caddy["Caddy (auto-SSL)"]
|
||||
Caddy --> Frontend["Frontend (Next.js)"]
|
||||
Caddy --> Backend["Backend (FastAPI)"]
|
||||
Backend --> PostgreSQL
|
||||
Backend --> Redis
|
||||
Backend --> Workers["Celery Workers"]
|
||||
Workers --> PostgreSQL
|
||||
Workers --> Redis
|
||||
Workers --> GPU["GPU Processing<br/>(Modal.com OR Self-hosted)"]
|
||||
```
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before starting, you need:
|
||||
|
||||
- **Production server** - 4+ cores, 8GB+ RAM, public IP
|
||||
- **Two domain names** - e.g., `app.example.com` (frontend) and `api.example.com` (backend)
|
||||
- **GPU processing** - Choose one:
|
||||
- Modal.com account, OR
|
||||
- GPU server with NVIDIA GPU (8GB+ VRAM)
|
||||
- **HuggingFace account** - Free at https://huggingface.co
|
||||
- Accept both Pyannote licenses (required for speaker diarization):
|
||||
- https://huggingface.co/pyannote/speaker-diarization-3.1
|
||||
- https://huggingface.co/pyannote/segmentation-3.0
|
||||
- **LLM API** - For summaries and topic detection. Choose one:
|
||||
- OpenAI API key at https://platform.openai.com/account/api-keys, OR
|
||||
- Any OpenAI-compatible endpoint (vLLM, LiteLLM, Ollama, etc.)
|
||||
- **AWS S3 bucket** - For storing audio files and transcripts (see [S3 Setup](#create-s3-bucket-for-transcript-storage) below)
|
||||
|
||||
### Optional (for live meeting rooms)
|
||||
|
||||
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
|
||||
- [ ] **AWS S3 bucket + IAM Role** - For Daily.co recording storage (separate from transcript storage)
|
||||
|
||||
---
|
||||
|
||||
## Configure DNS
|
||||
|
||||
```
|
||||
Type: A Name: app Value: <your-server-ip>
|
||||
Type: A Name: api Value: <your-server-ip>
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Deploy GPU Processing
|
||||
|
||||
Reflector requires GPU processing for transcription and speaker diarization. Choose one option:
|
||||
|
||||
| | **Modal.com (Cloud)** | **Self-Hosted GPU** |
|
||||
|---|---|---|
|
||||
| **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control |
|
||||
| **Pricing** | Pay-per-use | Fixed infrastructure cost |
|
||||
|
||||
### Option A: Modal.com (Serverless Cloud GPU)
|
||||
|
||||
#### Accept HuggingFace Licenses
|
||||
|
||||
Visit both pages and click "Accept":
|
||||
- https://huggingface.co/pyannote/speaker-diarization-3.1
|
||||
- https://huggingface.co/pyannote/segmentation-3.0
|
||||
|
||||
Generate a token at https://huggingface.co/settings/tokens
|
||||
|
||||
#### Deploy to Modal
|
||||
|
||||
There's an install script to help with this setup. It's using modal API to set all necessary moving parts.
|
||||
|
||||
As an alternative, all those operations that script does could be performed in modal settings in modal UI.
|
||||
|
||||
```bash
|
||||
uv tool install modal
|
||||
modal setup # opens browser for authentication
|
||||
|
||||
git clone https://github.com/monadical-sas/reflector.git
|
||||
cd reflector/gpu/modal_deployments
|
||||
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
|
||||
```
|
||||
|
||||
**Save the output** - copy the configuration block, you'll need it soon.
|
||||
|
||||
See [Modal Setup](./modal-setup) for troubleshooting and details.
|
||||
|
||||
### Option B: Self-Hosted GPU
|
||||
|
||||
**Location: YOUR GPU SERVER**
|
||||
|
||||
Requires: NVIDIA GPU with 8GB+ VRAM, Ubuntu 22.04+, 40-50GB disk.
|
||||
|
||||
See [Self-Hosted GPU Setup](./self-hosted-gpu-setup) for complete instructions. Quick summary:
|
||||
|
||||
1. Install NVIDIA drivers and Docker
|
||||
2. Clone repository: `git clone https://github.com/monadical-sas/reflector.git`
|
||||
3. Configure `.env` with HuggingFace token
|
||||
4. Start service with Docker compose
|
||||
5. Set up Caddy reverse proxy for HTTPS
|
||||
|
||||
**Save your API key and HTTPS URL** - you'll need them soon.
|
||||
|
||||
---
|
||||
|
||||
## Prepare Server
|
||||
|
||||
**Location: dedicated reflector server**
|
||||
|
||||
### Install Docker
|
||||
|
||||
```bash
|
||||
ssh user@your-server-ip
|
||||
|
||||
curl -fsSL https://get.docker.com | sh
|
||||
sudo usermod -aG docker $USER
|
||||
|
||||
# Log out and back in for group changes
|
||||
exit
|
||||
ssh user@your-server-ip
|
||||
|
||||
docker --version # verify
|
||||
```
|
||||
|
||||
### Firewall
|
||||
|
||||
Ensure ports 80 (HTTP) and 443 (HTTPS) are open for inbound traffic. The method varies by cloud provider and OS configuration.
|
||||
|
||||
**For live transcription without Daily/Whereby rooms**: WebRTC requires UDP port range 49152-65535 for media traffic.
|
||||
|
||||
### Clone Repository
|
||||
|
||||
The Docker images contain all application code. You clone the repository for configuration files and the compose definition:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/monadical-sas/reflector.git
|
||||
cd reflector
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Create S3 Bucket for Transcript Storage
|
||||
|
||||
Reflector requires AWS S3 to store audio files during processing.
|
||||
|
||||
### Create Bucket
|
||||
|
||||
```bash
|
||||
# Choose a unique bucket name
|
||||
BUCKET_NAME="reflector-transcripts-yourname"
|
||||
AWS_REGION="us-east-1"
|
||||
|
||||
# Create bucket
|
||||
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
|
||||
```
|
||||
|
||||
### Create IAM User
|
||||
|
||||
Create an IAM user with S3 access for Reflector:
|
||||
|
||||
1. Go to AWS IAM Console → Users → Create User
|
||||
2. Name: `reflector-transcripts`
|
||||
3. Attach policy: `AmazonS3FullAccess` (or create a custom policy for just your bucket)
|
||||
4. Create access key (Access key ID + Secret access key)
|
||||
|
||||
Save these credentials - you'll need them in the next step.
|
||||
|
||||
---
|
||||
|
||||
## Configure Environment
|
||||
|
||||
Reflector has two env files:
|
||||
- `server/.env` - Backend configuration
|
||||
- `www/.env` - Frontend configuration
|
||||
|
||||
### Backend Configuration
|
||||
|
||||
```bash
|
||||
cp server/.env.example server/.env
|
||||
nano server/.env
|
||||
```
|
||||
|
||||
**Required settings:**
|
||||
```env
|
||||
# Database (defaults work with docker-compose.prod.yml)
|
||||
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
|
||||
|
||||
# Redis
|
||||
REDIS_HOST=redis
|
||||
CELERY_BROKER_URL=redis://redis:6379/1
|
||||
CELERY_RESULT_BACKEND=redis://redis:6379/1
|
||||
|
||||
# Your domains
|
||||
BASE_URL=https://api.example.com
|
||||
CORS_ORIGIN=https://app.example.com
|
||||
CORS_ALLOW_CREDENTIALS=true
|
||||
|
||||
# Secret key - generate with: openssl rand -hex 32
|
||||
SECRET_KEY=<your-generated-secret>
|
||||
|
||||
# GPU Processing - choose ONE option:
|
||||
|
||||
# Option A: Modal.com (paste from deploy-all.sh output)
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<from-deploy-all.sh-output>
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=<from-deploy-all.sh-output>
|
||||
|
||||
# Option B: Self-hosted GPU (use your GPU server URL and API key)
|
||||
# TRANSCRIPT_BACKEND=modal
|
||||
# TRANSCRIPT_URL=https://gpu.example.com
|
||||
# TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
|
||||
# DIARIZATION_BACKEND=modal
|
||||
# DIARIZATION_URL=https://gpu.example.com
|
||||
# DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
|
||||
|
||||
# Storage - where to store audio files and transcripts (requires AWS S3)
|
||||
TRANSCRIPT_STORAGE_BACKEND=aws
|
||||
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=your-aws-access-key
|
||||
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=your-aws-secret-key
|
||||
TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=reflector-media
|
||||
TRANSCRIPT_STORAGE_AWS_REGION=us-east-1
|
||||
|
||||
# LLM - for generating titles, summaries, and topics
|
||||
LLM_API_KEY=sk-your-openai-api-key
|
||||
LLM_MODEL=gpt-4o-mini
|
||||
# LLM_URL=https://api.openai.com/v1 # Optional: custom endpoint (vLLM, LiteLLM, Ollama, etc.)
|
||||
|
||||
# Auth - disable for initial setup (see a dedicated step for authentication)
|
||||
AUTH_BACKEND=none
|
||||
```
|
||||
|
||||
### Frontend Configuration
|
||||
|
||||
```bash
|
||||
cp www/.env.example www/.env
|
||||
nano www/.env
|
||||
```
|
||||
|
||||
**Required settings:**
|
||||
```env
|
||||
# Your domains
|
||||
SITE_URL=https://app.example.com
|
||||
API_URL=https://api.example.com
|
||||
WEBSOCKET_URL=wss://api.example.com
|
||||
SERVER_API_URL=http://server:1250
|
||||
|
||||
# NextAuth
|
||||
NEXTAUTH_URL=https://app.example.com
|
||||
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
|
||||
|
||||
# Disable login requirement for initial setup
|
||||
FEATURE_REQUIRE_LOGIN=false
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Configure Caddy
|
||||
|
||||
```bash
|
||||
cp Caddyfile.example Caddyfile
|
||||
nano Caddyfile
|
||||
```
|
||||
|
||||
Replace `example.com` with your domains. The `{$VAR:default}` syntax uses Caddy's env var substitution - you can either edit the file directly or set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables.
|
||||
|
||||
```
|
||||
{$FRONTEND_DOMAIN:app.example.com} {
|
||||
reverse_proxy web:3000
|
||||
}
|
||||
|
||||
{$API_DOMAIN:api.example.com} {
|
||||
reverse_proxy server:1250
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Start Services
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml up -d
|
||||
```
|
||||
|
||||
Wait for containers to start (first run may take 1-2 minutes to pull images and initialize).
|
||||
|
||||
---
|
||||
|
||||
## Verify Deployment
|
||||
|
||||
### Check services
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml ps
|
||||
# All should show "Up"
|
||||
```
|
||||
|
||||
### Test API
|
||||
```bash
|
||||
curl https://api.example.com/health
|
||||
# Should return: {"status":"healthy"}
|
||||
```
|
||||
|
||||
### Test Frontend
|
||||
- Visit https://app.example.com
|
||||
- You should see the Reflector interface
|
||||
- Try uploading an audio file to test transcription
|
||||
|
||||
If any verification fails, see [Troubleshooting](#troubleshooting) below.
|
||||
|
||||
---
|
||||
|
||||
## Enable Authentication (Required for Live Rooms)
|
||||
|
||||
By default, Reflector is open (no login required). **Authentication is required if you want to use Live Meeting Rooms.**
|
||||
|
||||
See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration.
|
||||
|
||||
Quick summary:
|
||||
1. Deploy Authentik on your server
|
||||
2. Create OAuth provider in Authentik
|
||||
3. Extract public key for JWT verification
|
||||
4. Update `server/.env`: `AUTH_BACKEND=jwt` + `AUTH_JWT_AUDIENCE`
|
||||
5. Update `www/.env`: `FEATURE_REQUIRE_LOGIN=true` + Authentik credentials
|
||||
6. Mount JWT keys volume and restart services
|
||||
|
||||
---
|
||||
|
||||
## Enable Live Meeting Rooms
|
||||
|
||||
**Requires: Authentication Step**
|
||||
|
||||
Live rooms require Daily.co and AWS S3. See [Daily.co Setup](./daily-setup) for complete S3/IAM configuration instructions.
|
||||
|
||||
Note that Reflector also supports Whereby as a call provider - this doc doesn't cover its setup yet.
|
||||
|
||||
Quick config - Add to `server/.env`:
|
||||
|
||||
```env
|
||||
DEFAULT_VIDEO_PLATFORM=daily
|
||||
DAILY_API_KEY=<from-daily.co-dashboard>
|
||||
DAILY_SUBDOMAIN=<your-daily-subdomain>
|
||||
|
||||
# S3 for recording storage
|
||||
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket>
|
||||
DAILYCO_STORAGE_AWS_REGION=us-east-1
|
||||
DAILYCO_STORAGE_AWS_ROLE_ARN=<arn:aws:iam::ACCOUNT:role/DailyCo>
|
||||
```
|
||||
|
||||
Reload env and restart:
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml up -d server worker
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Check logs for errors
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml logs server --tail 20
|
||||
docker compose -f docker-compose.prod.yml logs worker --tail 20
|
||||
```
|
||||
|
||||
### Services won't start
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml logs
|
||||
```
|
||||
|
||||
### CORS errors in browser
|
||||
- Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`)
|
||||
- Reload env: `docker compose -f docker-compose.prod.yml up -d server`
|
||||
|
||||
### SSL certificate errors
|
||||
- Caddy auto-provisions Let's Encrypt certificates
|
||||
- Ensure ports 80 and 443 are open
|
||||
- Check: `docker compose -f docker-compose.prod.yml logs caddy`
|
||||
|
||||
### Transcription not working
|
||||
- Check Modal dashboard: https://modal.com/apps
|
||||
- Verify URLs in `server/.env` match deployed functions
|
||||
- Check worker logs: `docker compose -f docker-compose.prod.yml logs worker`
|
||||
|
||||
### "Login required" but auth not configured
|
||||
- Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env`
|
||||
- Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web`
|
||||
|
||||
### Database migrations or connectivity issues
|
||||
Migrations run automatically on server startup. To check database connectivity or debug migration failures:
|
||||
|
||||
```bash
|
||||
# Check server logs for migration errors
|
||||
docker compose -f docker-compose.prod.yml logs server | grep -i -E "(alembic|migration|database|postgres)"
|
||||
|
||||
# Verify database connectivity
|
||||
docker compose -f docker-compose.prod.yml exec server uv run python -c "from reflector.db import engine; print('DB connected')"
|
||||
|
||||
# Manually run migrations (if needed)
|
||||
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
|
||||
```
|
||||
|
||||
63
docs/docs/installation/requirements.md
Normal file
63
docs/docs/installation/requirements.md
Normal file
@@ -0,0 +1,63 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
title: System Requirements
|
||||
---
|
||||
|
||||
# System Requirements
|
||||
|
||||
This page lists hardware and software requirements. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
## Server Requirements
|
||||
|
||||
### Minimum Requirements
|
||||
|
||||
- **CPU**: 4 cores
|
||||
- **RAM**: 8 GB
|
||||
- **Storage**: 50 GB SSD
|
||||
- **OS**: Ubuntu 22.04+ or compatible Linux
|
||||
- **Network**: Public IP address
|
||||
|
||||
### Recommended Requirements
|
||||
|
||||
- **CPU**: 8+ cores
|
||||
- **RAM**: 16 GB
|
||||
- **Storage**: 100 GB SSD
|
||||
- **Network**: 1 Gbps connection
|
||||
|
||||
## Software Requirements
|
||||
|
||||
- Docker Engine 20.10+
|
||||
- Docker Compose 2.0+
|
||||
|
||||
## External Services
|
||||
|
||||
### Required
|
||||
|
||||
- **Two domain names** - One for frontend (e.g., `app.example.com`), one for API (e.g., `api.example.com`)
|
||||
- **Modal.com account** - For GPU-accelerated transcription and diarization (free tier available)
|
||||
- **HuggingFace account** - For Pyannote diarization model access
|
||||
- **LLM API** - For generating summaries and topic detection. Options:
|
||||
- OpenAI API (https://platform.openai.com/account/api-keys)
|
||||
- Any OpenAI-compatible endpoint (vLLM, LiteLLM, Ollama)
|
||||
- Self-hosted: Phi-4 14B 4-bit recommended (~8GB VRAM)
|
||||
|
||||
### Required for Live Meeting Rooms
|
||||
|
||||
- **Daily.co account** - For video conferencing (free tier available at https://dashboard.daily.co)
|
||||
- **AWS S3 bucket + IAM Role** - For Daily.co to store recordings
|
||||
- **Another AWS S3 bucket (optional, can reuse the one above)** - For Reflector to store "compiled" mp3 files and transient diarization process temporary files
|
||||
|
||||
### Optional
|
||||
|
||||
- **AWS S3** - For cloud storage of recordings and transcripts
|
||||
- **Authentik** - For SSO/OIDC authentication
|
||||
- **Sentry** - For error tracking
|
||||
|
||||
## Development Requirements
|
||||
|
||||
For local development only (not required for production deployment):
|
||||
|
||||
- Node.js 22+ (for frontend development)
|
||||
- Python 3.12+ (for backend development)
|
||||
- pnpm (for frontend package management)
|
||||
- uv (for Python package management)
|
||||
307
docs/docs/installation/self-hosted-gpu-setup.md
Normal file
307
docs/docs/installation/self-hosted-gpu-setup.md
Normal file
@@ -0,0 +1,307 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
title: Self-Hosted GPU Setup
|
||||
---
|
||||
|
||||
# Self-Hosted GPU Setup
|
||||
|
||||
This guide covers deploying Reflector's GPU processing on your own server instead of Modal.com. For the complete deployment guide, see [Deployment Guide](./overview).
|
||||
|
||||
## When to Use Self-Hosted GPU
|
||||
|
||||
**Choose self-hosted GPU if you:**
|
||||
- Have GPU hardware available (NVIDIA required)
|
||||
- Want full control over processing
|
||||
- Prefer fixed infrastructure costs over pay-per-use
|
||||
- Have privacy or data locality requirements
|
||||
- Need to process audio without external API calls
|
||||
|
||||
**Choose Modal.com instead if you:**
|
||||
- Don't have GPU hardware
|
||||
- Want zero infrastructure management
|
||||
- Prefer pay-per-use pricing
|
||||
- Need instant scaling for variable workloads
|
||||
|
||||
See [Modal.com Setup](./modal-setup) for cloud GPU deployment.
|
||||
|
||||
## What Gets Deployed
|
||||
|
||||
The self-hosted GPU service provides the same API endpoints as Modal:
|
||||
- `POST /v1/audio/transcriptions` - Whisper transcription
|
||||
- `POST /v1/audio/transcriptions-from-url` - Transcribe from URL
|
||||
- `POST /diarize` - Pyannote speaker diarization
|
||||
- `POST /translate` - Audio translation
|
||||
|
||||
Your main Reflector server connects to this service exactly like it connects to Modal - only the URL changes.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
### Hardware
|
||||
- **GPU**: NVIDIA GPU with 8GB+ VRAM (tested on Tesla T4 with 15GB)
|
||||
- **CPU**: 4+ cores recommended
|
||||
- **RAM**: 8GB minimum, 16GB recommended
|
||||
- **Disk**: 40-50GB minimum
|
||||
|
||||
### Software
|
||||
- Public IP address
|
||||
- Domain name with DNS A record pointing to server
|
||||
|
||||
### Accounts
|
||||
- **HuggingFace account** with accepted Pyannote licenses:
|
||||
- https://huggingface.co/pyannote/speaker-diarization-3.1
|
||||
- https://huggingface.co/pyannote/segmentation-3.0
|
||||
- **HuggingFace access token** from https://huggingface.co/settings/tokens
|
||||
|
||||
## Docker Deployment
|
||||
|
||||
### Step 1: Install NVIDIA Driver
|
||||
|
||||
```bash
|
||||
sudo apt update
|
||||
sudo apt install -y nvidia-driver-535
|
||||
sudo reboot
|
||||
|
||||
# After reboot, verify installation
|
||||
nvidia-smi
|
||||
```
|
||||
|
||||
Expected output: GPU details with driver version and CUDA version.
|
||||
|
||||
### Step 2: Install Docker
|
||||
|
||||
Follow the [official Docker installation guide](https://docs.docker.com/engine/install/ubuntu/) for your distribution.
|
||||
|
||||
After installation, add your user to the docker group:
|
||||
|
||||
```bash
|
||||
sudo usermod -aG docker $USER
|
||||
|
||||
# Log out and back in for group changes
|
||||
exit
|
||||
# SSH back in
|
||||
```
|
||||
|
||||
### Step 3: Install NVIDIA Container Toolkit
|
||||
|
||||
```bash
|
||||
# Add NVIDIA repository and install toolkit
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \
|
||||
sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
|
||||
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
|
||||
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
|
||||
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
### Step 4: Clone Repository and Configure
|
||||
|
||||
```bash
|
||||
git clone https://github.com/monadical-sas/reflector.git
|
||||
cd reflector/gpu/self_hosted
|
||||
|
||||
# Create environment file
|
||||
cat > .env << EOF
|
||||
REFLECTOR_GPU_APIKEY=$(openssl rand -hex 16)
|
||||
HF_TOKEN=your_huggingface_token_here
|
||||
EOF
|
||||
|
||||
# Note the generated API key - you'll need it for main server config
|
||||
cat .env
|
||||
```
|
||||
|
||||
### Step 5: Build and Start
|
||||
|
||||
The repository includes a `compose.yml` file. Build and start:
|
||||
|
||||
|
||||
```bash
|
||||
# Build image (takes ~5 minutes, downloads ~10GB)
|
||||
sudo docker compose build
|
||||
|
||||
# Start service
|
||||
sudo docker compose up -d
|
||||
|
||||
# Wait for startup and verify
|
||||
sleep 30
|
||||
sudo docker compose logs
|
||||
```
|
||||
|
||||
Look for: `INFO: Application startup complete. Uvicorn running on http://0.0.0.0:8000`
|
||||
|
||||
### Step 7: Verify GPU Access
|
||||
|
||||
```bash
|
||||
# Check GPU is accessible from container
|
||||
sudo docker exec $(sudo docker ps -q) nvidia-smi
|
||||
```
|
||||
|
||||
Should show GPU with ~3GB VRAM used (models loaded).
|
||||
|
||||
---
|
||||
|
||||
## Configure HTTPS with Caddy
|
||||
|
||||
Caddy handles SSL automatically.
|
||||
|
||||
### Install Caddy
|
||||
|
||||
```bash
|
||||
sudo apt install -y debian-keyring debian-archive-keyring apt-transport-https curl
|
||||
|
||||
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/gpg.key' | \
|
||||
sudo gpg --dearmor -o /usr/share/keyrings/caddy-stable-archive-keyring.gpg
|
||||
|
||||
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt' | \
|
||||
sudo tee /etc/apt/sources.list.d/caddy-stable.list
|
||||
|
||||
sudo apt update
|
||||
sudo apt install -y caddy
|
||||
```
|
||||
|
||||
### Configure Reverse Proxy
|
||||
|
||||
Edit the Caddyfile with your domain:
|
||||
|
||||
```bash
|
||||
sudo nano /etc/caddy/Caddyfile
|
||||
```
|
||||
|
||||
Add (replace `gpu.example.com` with your domain):
|
||||
|
||||
```
|
||||
gpu.example.com {
|
||||
reverse_proxy localhost:8000
|
||||
}
|
||||
```
|
||||
|
||||
Reload Caddy (auto-provisions SSL certificate):
|
||||
|
||||
```bash
|
||||
sudo systemctl reload caddy
|
||||
```
|
||||
|
||||
### Verify HTTPS
|
||||
|
||||
```bash
|
||||
curl -I https://gpu.example.com/docs
|
||||
# Should return HTTP/2 200
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Configure Main Reflector Server
|
||||
|
||||
On your main Reflector server, update `server/.env`:
|
||||
|
||||
```env
|
||||
# GPU Processing - Self-hosted
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://gpu.example.com
|
||||
TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://gpu.example.com
|
||||
DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
|
||||
```
|
||||
|
||||
**Note:** The backend type is `modal` because the self-hosted GPU service implements the same API contract as Modal.com. This allows you to switch between cloud and self-hosted GPU processing by only changing the URL and API key.
|
||||
|
||||
Restart services to apply:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.prod.yml restart server worker
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Service Management
|
||||
|
||||
All commands in this section assume you're in `~/reflector/gpu/self_hosted/`.
|
||||
|
||||
```bash
|
||||
# View logs
|
||||
sudo docker compose logs -f
|
||||
|
||||
# Restart service
|
||||
sudo docker compose restart
|
||||
|
||||
# Stop service
|
||||
sudo docker compose down
|
||||
|
||||
# Check status
|
||||
sudo docker compose ps
|
||||
```
|
||||
|
||||
### Monitor GPU
|
||||
|
||||
```bash
|
||||
# Check GPU usage
|
||||
nvidia-smi
|
||||
|
||||
# Watch in real-time
|
||||
watch -n 1 nvidia-smi
|
||||
```
|
||||
|
||||
**Typical GPU memory usage:**
|
||||
- Idle (models loaded): ~3GB VRAM
|
||||
- During transcription: ~4-5GB VRAM
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### nvidia-smi fails after driver install
|
||||
|
||||
```bash
|
||||
# Manually load kernel modules
|
||||
sudo modprobe nvidia
|
||||
nvidia-smi
|
||||
```
|
||||
|
||||
### Service fails with "Could not download pyannote pipeline"
|
||||
|
||||
1. Verify HF_TOKEN is valid: `echo $HF_TOKEN`
|
||||
2. Check model access at https://huggingface.co/pyannote/speaker-diarization-3.1
|
||||
3. Update .env with correct token
|
||||
4. Restart service: `sudo docker compose restart`
|
||||
|
||||
### Cannot connect to HTTPS endpoint
|
||||
|
||||
1. Verify DNS resolves: `dig +short gpu.example.com`
|
||||
2. Check firewall: `sudo ufw status` (ports 80, 443 must be open)
|
||||
3. Check Caddy: `sudo systemctl status caddy`
|
||||
4. View Caddy logs: `sudo journalctl -u caddy -n 50`
|
||||
|
||||
### SSL certificate not provisioning
|
||||
|
||||
Requirements for Let's Encrypt:
|
||||
- Ports 80 and 443 publicly accessible
|
||||
- DNS resolves to server's public IP
|
||||
- Valid domain (not localhost or private IP)
|
||||
|
||||
### Docker container won't start
|
||||
|
||||
```bash
|
||||
# Check logs
|
||||
sudo docker compose logs
|
||||
|
||||
# Common issues:
|
||||
# - Port 8000 already in use
|
||||
# - GPU not accessible (nvidia-ctk not configured)
|
||||
# - Missing .env file
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Updating
|
||||
|
||||
```bash
|
||||
cd ~/reflector/gpu/self_hosted
|
||||
git pull
|
||||
sudo docker compose build
|
||||
sudo docker compose up -d
|
||||
```
|
||||
61
docs/docs/intro.md
Normal file
61
docs/docs/intro.md
Normal file
@@ -0,0 +1,61 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
title: Introduction
|
||||
---
|
||||
|
||||
# Welcome to Reflector
|
||||
|
||||
Reflector is a privacy-focused, self-hosted AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, and summarization for audio content and live meetings. With complete control over your data and infrastructure, you can run models on your own hardware (roadmap - currently supports Modal.com for GPU processing).
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes AI to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://github.com/NVIDIA/NeMo) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||

|
||||
|
||||
## Features
|
||||
|
||||
| Feature | Public Mode | Private Mode |
|
||||
|--------------------------------------------|------------|--------------|
|
||||
| **Authentication** | None required | Required |
|
||||
| **Audio Upload** | ✅ | ✅ |
|
||||
| **Live Microphone Streaming** | ✅ | ✅ |
|
||||
| **Transcription** | ✅ | ✅ |
|
||||
| **Speaker Diarization** | ✅ | ✅ |
|
||||
| **Topic Detection** | ✅ | ✅ |
|
||||
| **Summarization** | ✅ | ✅ |
|
||||
| **Virtual Meeting Rooms (Whereby, Daily)** | ❌ | ✅ |
|
||||
| **Browse Transcripts Page** | ❌ | ✅ |
|
||||
| **Search Functionality** | ❌ | ✅ |
|
||||
| **Persistent Storage** | ❌ | ✅ |
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
Reflector consists of three main components:
|
||||
|
||||
- **Frontend**: React application built with Next.js
|
||||
- **Backend**: Python server using FastAPI
|
||||
- **Processing**: Scalable GPU workers for ML inference (Modal.com or local)
|
||||
|
||||
## Getting Started
|
||||
|
||||
Ready to deploy Reflector? Head over to our [Installation Guide](./installation/overview) to set up your own instance.
|
||||
|
||||
For a quick overview of how Reflector processes audio, check out our [Pipeline Documentation](./pipelines/overview).
|
||||
|
||||
## Open Source
|
||||
|
||||
Reflector is open source software developed by [Monadical](https://monadical.com) and licensed under the **MIT License**. We welcome contributions from the community!
|
||||
|
||||
- [GitHub Repository](https://github.com/monadical-sas/reflector)
|
||||
- [Issue Tracker](https://github.com/monadical-sas/reflector/issues)
|
||||
- [Pull Requests](https://github.com/monadical-sas/reflector/pulls)
|
||||
|
||||
## Support
|
||||
|
||||
Need help? Reach out to the community through GitHub Discussions.
|
||||
83
docs/docs/pipelines/file-pipeline.md
Normal file
83
docs/docs/pipelines/file-pipeline.md
Normal file
@@ -0,0 +1,83 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
title: File Processing Pipeline
|
||||
---
|
||||
|
||||
# File Processing Pipeline
|
||||
|
||||
The file processing pipeline handles uploaded audio files, optimizing for accuracy and throughput.
|
||||
|
||||
## Pipeline Stages
|
||||
|
||||
### 1. Input Stage
|
||||
|
||||
**Accepted Formats:**
|
||||
- MP3 (most common)
|
||||
- WAV (uncompressed)
|
||||
- M4A (Apple format)
|
||||
- WebM (browser recordings)
|
||||
- MP4 (video with audio track)
|
||||
|
||||
**File Validation:**
|
||||
- Sample rate: Any (will be resampled to 16kHz)
|
||||
|
||||
### 2. Pre-processing
|
||||
|
||||
**Audio Normalization:**
|
||||
```yaml
|
||||
# Convert to standard format
|
||||
- Sample rate: 16kHz (Whisper requirement)
|
||||
- Channels: Mono
|
||||
- Bit depth: 16-bit
|
||||
- Format: WAV
|
||||
```
|
||||
|
||||
**Noise Reduction (Optional):**
|
||||
- Background noise removal
|
||||
- Echo cancellation
|
||||
- High-pass filter for rumble
|
||||
|
||||
### 3. Chunking Strategy
|
||||
|
||||
Audio is split into segments for processing:
|
||||
- Configurable chunk sizes
|
||||
- Optional silence detection for natural breaks
|
||||
- Parallel processing of chunks
|
||||
|
||||
### 4. Transcription Processing
|
||||
|
||||
Transcription uses OpenAI Whisper models via Modal.com or self-hosted GPU:
|
||||
- Automatic language detection
|
||||
- Word-level timestamps
|
||||
|
||||
### 5. Diarization (Speaker Identification)
|
||||
|
||||
Speaker diarization uses Pyannote 3.1:
|
||||
|
||||
1. **Voice Activity Detection (VAD)** - Identifies speech segments
|
||||
2. **Speaker Embedding** - Extracts voice characteristics
|
||||
3. **Clustering** - Groups similar voices
|
||||
4. **Segmentation** - Assigns speaker labels to time segments
|
||||
|
||||
### 6. Alignment & Merging
|
||||
|
||||
- Combines transcription with speaker diarization
|
||||
- Maps speaker labels to transcript segments
|
||||
- Resolves timing overlaps
|
||||
- Validates timeline consistency
|
||||
|
||||
### 7. Post-processing Chain
|
||||
|
||||
- **Text Formatting**: Punctuation, capitalization
|
||||
- **Topic Detection**: LLM-based topic extraction
|
||||
- **Summarization**: AI-generated summaries and action items
|
||||
|
||||
### 8. Storage & Delivery
|
||||
|
||||
**File Storage:**
|
||||
- Original audio: S3 (optional)
|
||||
- Transcript exports: JSON, VTT, TXT
|
||||
|
||||
**Notifications:**
|
||||
- WebSocket updates during processing
|
||||
- Webhook notifications on completion (optional)
|
||||
28
docs/docs/reference/api.md
Normal file
28
docs/docs/reference/api.md
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
title: API Reference
|
||||
---
|
||||
|
||||
# API Reference
|
||||
|
||||
The complete API documentation is auto-generated from the OpenAPI specification.
|
||||
|
||||
## Interactive Documentation
|
||||
|
||||
When running Reflector, interactive API docs are available at:
|
||||
|
||||
- **Swagger UI**: `https://your-api-domain/docs`
|
||||
- **ReDoc**: `https://your-api-domain/redoc`
|
||||
|
||||
## OpenAPI Specification
|
||||
|
||||
The raw OpenAPI 3.0 specification can be downloaded from:
|
||||
|
||||
```
|
||||
https://your-api-domain/openapi.json
|
||||
```
|
||||
|
||||
A static copy is also available: [openapi.json](/openapi.json)
|
||||
|
||||
## Authentication
|
||||
|
||||
See [Authentication Setup](../installation/auth-setup) for configuring API authentication.
|
||||
112
docs/docs/roadmap.md
Normal file
112
docs/docs/roadmap.md
Normal file
@@ -0,0 +1,112 @@
|
||||
---
|
||||
sidebar_position: 100
|
||||
title: Roadmap
|
||||
---
|
||||
|
||||
# Product Roadmap
|
||||
|
||||
Our development roadmap for Reflector, focusing on expanding capabilities while maintaining privacy and performance.
|
||||
|
||||
## Planned Features
|
||||
|
||||
### 🌍 Multi-Language Support Enhancement
|
||||
|
||||
**Current State:**
|
||||
- Whisper supports multi-language transcription
|
||||
- Parakeet supports English only with high accuracy
|
||||
|
||||
**Planned Improvements:**
|
||||
- Default language selection per room/user
|
||||
- Automatic language detection improvements
|
||||
- Multi-language diarization support
|
||||
- RTL (Right-to-Left) language UI support
|
||||
- Language-specific post-processing rules
|
||||
|
||||
### 🏠 Self-Hosted Room Providers
|
||||
|
||||
**Jitsi Integration**
|
||||
|
||||
Moving beyond Whereby to support self-hosted video conferencing:
|
||||
|
||||
- No API keys required
|
||||
- Complete control over video infrastructure
|
||||
- Custom branding and configuration
|
||||
- Lower operational costs
|
||||
- Enhanced privacy with self-hosted video
|
||||
|
||||
**Implementation Plan:**
|
||||
- WebRTC bridge for Jitsi Meet
|
||||
- Room management API integration
|
||||
- Recording synchronization
|
||||
- Participant tracking
|
||||
|
||||
### 📅 Calendar Integration
|
||||
|
||||
**Planned Capabilities:**
|
||||
- Google Calendar synchronization
|
||||
- Microsoft Outlook integration
|
||||
- Automatic meeting room creation
|
||||
- Pre-meeting document preparation
|
||||
- Post-meeting transcript delivery
|
||||
- Recurring meeting support
|
||||
|
||||
**Features:**
|
||||
- Auto-join scheduled meetings
|
||||
- Calendar-based access control
|
||||
- Meeting agenda import
|
||||
- Action item export to calendar
|
||||
|
||||
## Future Considerations
|
||||
|
||||
### Enhanced Analytics
|
||||
- Meeting insights dashboard
|
||||
- Speaker participation metrics
|
||||
- Topic trends over time
|
||||
- Team collaboration patterns
|
||||
|
||||
### Advanced AI Features
|
||||
- Real-time sentiment analysis
|
||||
- Emotion detection
|
||||
- Meeting quality scores
|
||||
- Automated coaching suggestions
|
||||
|
||||
### Integration Ecosystem
|
||||
- Slack/Teams notifications
|
||||
- CRM integration (Salesforce, HubSpot)
|
||||
- Project management tools (Jira, Asana)
|
||||
- Knowledge bases (Notion, Confluence)
|
||||
|
||||
### Performance Improvements
|
||||
- WebAssembly for client-side processing
|
||||
- Edge computing support
|
||||
- 5G network optimization
|
||||
- Blockchain for transcript verification
|
||||
|
||||
## Contributing
|
||||
|
||||
We welcome community contributions! Areas where you can help:
|
||||
|
||||
1. **Language Support**: Add support for your language
|
||||
2. **Integrations**: Connect with your favorite tools
|
||||
3. **Models**: Fine-tune models for specific domains
|
||||
4. **Documentation**: Improve guides and examples
|
||||
|
||||
See our [Contributing Guide](https://github.com/monadical-sas/reflector/blob/main/CONTRIBUTING.md) for details.
|
||||
|
||||
## Timeline
|
||||
|
||||
We don't provide specific dates as development depends on community contributions and priorities. Features are generally released when they're ready and properly tested.
|
||||
|
||||
## Feature Requests
|
||||
|
||||
Have an idea for Reflector? We'd love to hear it!
|
||||
|
||||
- [Open a GitHub Issue](https://github.com/monadical-sas/reflector/issues/new)
|
||||
- [Join our Discord](#)
|
||||
- [Email us](mailto:reflector@monadical.com)
|
||||
|
||||
## Stay Updated
|
||||
|
||||
- Watch our [GitHub repository](https://github.com/monadical-sas/reflector)
|
||||
- Follow our [blog](#)
|
||||
- Subscribe to our [newsletter](#)
|
||||
Reference in New Issue
Block a user