docs: docs website + installation (#778)

* feat: WIP doc (vibe started and iterated)

* install from scratch docs

* caddyfile.example

* gitignore

* authentik script

* authentik script

* authentik script

* llm doc

* authentik ongoing

* more daily setup logs

* doc website

* gpu self hosted setup guide (no-mistakes)

* doc review round

* doc review round

* doc review round

* update doc site sidebars

* feat(docs): add mermaid diagram support

* docs polishing

* live pipeline doc

* move pipeline dev docs to dev docs location

* doc pr review iteration

* dockerfile healthcheck

* docs/pr-comments

* remove jwt comment

* llm suggestion

* pr comments

* pr comments

* document auto migrations

* cleanup docs

---------

Co-authored-by: Mathieu Virbel <mat@meltingrocks.com>
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
2026-01-06 17:25:02 -05:00
committed by GitHub
parent e644d6497b
commit 407c15299f
61 changed files with 32653 additions and 26 deletions

View File

@@ -0,0 +1,183 @@
---
sidebar_position: 4
title: Processing Pipeline
---
# Processing Pipeline
Reflector uses a modular pipeline architecture to process audio efficiently and accurately.
## Pipeline Overview
The processing pipeline consists of modular components that can be combined and configured based on your needs:
```mermaid
graph LR
A[Audio Input] --> B[Pre-processing]
B --> C[Chunking]
C --> D[Transcription]
D --> E[Diarization]
E --> F[Alignment]
F --> G[Post-processing]
G --> H[Output]
```
## Pipeline Components
### Audio Input
Accepts various input sources:
- **File Upload**: MP3, WAV, M4A, WebM, MP4
- **WebRTC Stream**: Live browser audio
- **Recording Integration**: Daily.co and Whereby recordings
- **API Upload**: Direct API submission
### Pre-processing
Prepares audio for optimal processing:
- **Format Conversion**: Convert to 16kHz mono WAV
- **Noise Reduction**: Optional background noise removal
- **Validation**: Check duration and quality
### Chunking
Splits audio for parallel processing:
- **Configurable Size**: Audio split into processable segments
- **Silence Detection**: Optional splitting at natural pauses
- **Metadata**: Track chunk positions
### Transcription
Converts speech to text:
- **Model Selection**: Whisper or Parakeet
- **Language Detection**: Automatic or specified
- **Timestamp Generation**: Word-level timing
- **Confidence Scores**: Quality indicators
### Diarization
Identifies different speakers:
- **Voice Activity Detection**: Find speech segments
- **Speaker Embedding**: Extract voice characteristics
- **Clustering**: Group similar voices
- **Label Assignment**: Assign speaker IDs
### Alignment
Merges all processing results:
- **Chunk Assembly**: Combine transcription chunks
- **Speaker Mapping**: Align speakers with text
- **Overlap Resolution**: Handle chunk boundaries
- **Timeline Creation**: Build unified timeline
### Post-processing
Enhances the final output:
- **Formatting**: Apply punctuation and capitalization
- **Summarization**: Generate concise summaries
- **Topic Extraction**: Identify key themes
- **Action Items**: Extract tasks and decisions
## Processing Modes
### Batch Processing
For uploaded files:
- Optimized for throughput
- Parallel chunk processing
- Higher accuracy models
- Complete file analysis
### Stream Processing
For live audio:
- Optimized for latency
- Sequential processing
- Real-time feedback
- Progressive results
### Hybrid Processing
For meetings:
- Stream during meeting
- Batch after completion
- Best of both modes
- Maximum accuracy
## Pipeline Orchestration
### Error Handling
Error recovery:
- **Automatic Retry**: Failed tasks retry up to 3 times
- **Partial Recovery**: Continue with successful chunks
- **Fallback Models**: Use alternative models on failure
- **Error Reporting**: Detailed error messages
### Progress Tracking
Real-time progress updates:
- **Chunk Progress**: Track individual chunk processing
- **Overall Progress**: Percentage completion
- **ETA Calculation**: Estimated completion time
- **WebSocket Updates**: Live progress to clients
## Optimization Strategies
### GPU Utilization
Maximize GPU efficiency:
- **Batch Processing**: Process multiple chunks together
- **Model Caching**: Keep models loaded in memory
- **Dynamic Batching**: Adjust batch size based on GPU memory
- **Multi-GPU Support**: Distribute across available GPUs
### Memory Management
Efficient memory usage:
- **Streaming Processing**: Process large files in chunks
- **Garbage Collection**: Clean up after each chunk
- **Memory Limits**: Prevent out-of-memory errors
- **Disk Caching**: Use disk for large intermediate results
### Network Optimization
Minimize network overhead:
- **Compression**: Compress audio before transfer
- **CDN Integration**: Use CDN for static assets
- **Connection Pooling**: Reuse network connections
- **Parallel Uploads**: Multiple concurrent uploads
## Quality Assurance
### Accuracy Metrics
Monitor processing quality:
- **Word Error Rate (WER)**: Transcription accuracy
- **Diarization Error Rate (DER)**: Speaker identification accuracy
- **Summary Coherence**: Summary quality metrics
### Validation Steps
Ensure output quality:
- **Confidence Thresholds**: Filter low-confidence segments
- **Consistency Checks**: Verify timeline consistency
- **Language Validation**: Ensure correct language detection
- **Format Validation**: Check output format compliance
## Advanced Features
### Custom Models
Use your own models:
- **Fine-tuned Whisper**: Domain-specific models
- **Custom Diarization**: Trained on your speakers
- **Specialized Post-processing**: Industry-specific formatting
### Pipeline Extensions
Add custom processing steps:
- **Sentiment Analysis**: Analyze emotional tone
- **Entity Extraction**: Identify people, places, organizations
- **Custom Metrics**: Calculate domain-specific metrics
- **Integration Hooks**: Call external services