docs: docs website + installation (#778)

* feat: WIP doc (vibe started and iterated)

* install from scratch docs

* caddyfile.example

* gitignore

* authentik script

* authentik script

* authentik script

* llm doc

* authentik ongoing

* more daily setup logs

* doc website

* gpu self hosted setup guide (no-mistakes)

* doc review round

* doc review round

* doc review round

* update doc site sidebars

* feat(docs): add mermaid diagram support

* docs polishing

* live pipeline doc

* move pipeline dev docs to dev docs location

* doc pr review iteration

* dockerfile healthcheck

* docs/pr-comments

* remove jwt comment

* llm suggestion

* pr comments

* pr comments

* document auto migrations

* cleanup docs

---------

Co-authored-by: Mathieu Virbel <mat@meltingrocks.com>
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
2026-01-06 17:25:02 -05:00
committed by GitHub
parent e644d6497b
commit 407c15299f
61 changed files with 32653 additions and 26 deletions

View File

@@ -0,0 +1,285 @@
---
sidebar_position: 5
title: Authentication Setup
---
# Authentication Setup
This page covers authentication setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
Reflector uses [Authentik](https://goauthentik.io/) for OAuth/OIDC authentication. This guide walks you through setting up Authentik and connecting it to Reflector.
The guide simplistically sets Authentic on the same server as Reflector. You can use your own Authentic instance instead.
## Overview
Reflector's authentication flow:
1. User clicks "Sign In" on frontend
2. Frontend redirects to Authentik login page
3. User authenticates with Authentik
4. Authentik redirects back with OAuth tokens
5. Frontend stores tokens, backends verify JWT signature
## Option 1: Self-Hosted Authentik (Same Server)
This setup runs Authentik on the same server as Reflector, with Caddy proxying to both.
### Deploy Authentik
```bash
# Create directory for Authentik
mkdir -p ~/authentik && cd ~/authentik
# Download docker-compose file
curl -O https://goauthentik.io/docker-compose.yml
# Generate secrets and bootstrap credentials
cat > .env << 'EOF'
PG_PASS=$(openssl rand -base64 36 | tr -d '\n')
AUTHENTIK_SECRET_KEY=$(openssl rand -base64 60 | tr -d '\n')
# Privacy-focused choice for self-hosted deployments
AUTHENTIK_ERROR_REPORTING__ENABLED=false
AUTHENTIK_BOOTSTRAP_PASSWORD=YourSecurePassword123
AUTHENTIK_BOOTSTRAP_EMAIL=admin@example.com
EOF
# Start Authentik
sudo docker compose up -d
```
Authentik takes ~2 minutes to run migrations and apply blueprints on first start.
### Connect Authentik to Reflector's Network
If Authentik runs in a separate Docker Compose project, connect it to Reflector's network so Caddy can proxy to it:
```bash
# Wait for Authentik to be healthy
# Connect Authentik server to Reflector's network
sudo docker network connect reflector_default authentik-server-1
```
**Important:** This step must be repeated if you restart Authentik with `docker compose down`. Add it to your deployment scripts or use `docker compose up -d` (which preserves containers) instead of down/up.
### Add Authentik to Caddy
Uncomment the Authentik section in your `Caddyfile` and set your domain:
```bash
nano Caddyfile
```
Uncomment and edit:
```
{$AUTHENTIK_DOMAIN:authentik.example.com} {
reverse_proxy authentik-server-1:9000
}
```
Reload Caddy:
```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```
### Create OAuth2 Provider in Authentik
**Option A: Automated Setup (Recommended)**
**Location: Reflector server**
Run the setup script from the Reflector repository:
```bash
ssh user@your-server-ip
cd ~/reflector
./scripts/setup-authentik-oauth.sh https://authentik.example.com YourSecurePassword123 https://app.example.com
```
**Important:** The script must be run from the `~/reflector` directory on your server, as it creates files using relative paths.
The script will output the configuration values to add to your `.env` files. Skip to "Update docker-compose.prod.yml".
**Option B: Manual Setup**
1. **Login to Authentik Admin** at `https://authentik.example.com/`
- Username: `akadmin`
- Password: The `AUTHENTIK_BOOTSTRAP_PASSWORD` you set in .env
2. **Create OAuth2 Provider:**
- Go to **Applications > Providers > Create**
- Select **OAuth2/OpenID Provider**
- Configure:
- **Name**: `Reflector`
- **Authorization flow**: `default-provider-authorization-implicit-consent`
- **Client type**: `Confidential`
- **Client ID**: Note this value (auto-generated)
- **Client Secret**: Note this value (auto-generated)
- **Redirect URIs**: Add entry with:
```
https://app.example.com/api/auth/callback/authentik
```
- Scroll down to **Advanced protocol settings**
- In **Scopes**, add these three mappings:
- `authentik default OAuth Mapping: OpenID 'email'`
- `authentik default OAuth Mapping: OpenID 'openid'`
- `authentik default OAuth Mapping: OpenID 'profile'`
- Click **Finish**
3. **Create Application:**
- Go to **Applications > Applications > Create**
- Configure:
- **Name**: `Reflector`
- **Slug**: `reflector` (auto-filled)
- **Provider**: Select the `Reflector` provider you just created
- Click **Create**
### Get Public Key for JWT Verification
**Location: Reflector server**
Extract the public key from Authentik's JWKS endpoint:
```bash
mkdir -p ~/reflector/server/reflector/auth/jwt/keys
curl -s https://authentik.example.com/application/o/reflector/jwks/ | \
jq -r '.keys[0].x5c[0]' | base64 -d | openssl x509 -pubkey -noout \
> ~/reflector/server/reflector/auth/jwt/keys/authentik_public.pem
```
### Update docker-compose.prod.yml
**Location: Reflector server**
**Note:** This step is already done in the current `docker-compose.prod.yml`. Verify the volume mounts exist:
```yaml
server:
image: monadicalsas/reflector-backend:latest
# ... other config ...
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
worker:
image: monadicalsas/reflector-backend:latest
# ... other config ...
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
```
### Configure Reflector Backend
**Location: Reflector server**
Update `server/.env`:
```env
# Authentication
AUTH_BACKEND=jwt
AUTH_JWT_PUBLIC_KEY=authentik_public.pem
AUTH_JWT_AUDIENCE=<your-client-id>
CORS_ALLOW_CREDENTIALS=true
```
Replace `<your-client-id>` with the Client ID from previous steps.
### Configure Reflector Frontend
**Location: Reflector server**
Update `www/.env`:
```env
# Authentication
FEATURE_REQUIRE_LOGIN=true
# Authentik OAuth
AUTHENTIK_ISSUER=https://authentik.example.com/application/o/reflector
AUTHENTIK_REFRESH_TOKEN_URL=https://authentik.example.com/application/o/token/
AUTHENTIK_CLIENT_ID=<your-client-id>
AUTHENTIK_CLIENT_SECRET=<your-client-secret>
# NextAuth
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
```
### Restart Services
**Location: Reflector server**
```bash
cd ~/reflector
sudo docker compose -f docker-compose.prod.yml up -d --force-recreate server worker web
```
### Verify Authentication
1. Visit `https://app.example.com`
2. Click "Log in" or navigate to `/api/auth/signin`
3. Click "Sign in with Authentik"
4. Login with your Authentik credentials
5. You should be redirected back and see "Log out" in the header
## Option 2: Disable Authentication
For testing or internal deployments where authentication isn't needed:
**Backend `server/.env`:**
```env
AUTH_BACKEND=none
```
**Frontend `www/.env`:**
```env
FEATURE_REQUIRE_LOGIN=false
```
**Note:** The pre-built Docker images have `FEATURE_REQUIRE_LOGIN=true` baked in. To disable auth, you'll need to rebuild the frontend image with the env var set at build time, or set up Authentik.
## Troubleshooting
### "Invalid redirect URI" error
- Verify the redirect URI in Authentik matches exactly:
```
https://app.example.com/api/auth/callback/authentik
```
- Check for trailing slashes - they must match exactly
### "Invalid audience" JWT error
- Ensure `AUTH_JWT_AUDIENCE` in `server/.env` matches the Client ID from Authentik
- The audience value is the OAuth Client ID, not the issuer URL
### "JWT verification failed" error
- Verify the public key file is mounted in the container
- Check `AUTH_JWT_PUBLIC_KEY` points to the correct filename
- Ensure the key was extracted from the correct provider's JWKS endpoint
### Caddy returns 503 for Authentik
- Verify Authentik container is connected to Reflector's network:
```bash
sudo docker network connect reflector_default authentik-server-1
```
- Check Authentik is healthy: `cd ~/authentik && sudo docker compose ps`
### Users can't access protected pages
- Verify `FEATURE_REQUIRE_LOGIN=true` in frontend
- Check `AUTH_BACKEND=jwt` in backend
- Verify CORS settings allow credentials
### Token refresh errors
- Ensure Redis is running (frontend uses Redis for token caching)
- Verify `KV_URL` is set correctly in frontend env
- Check `AUTHENTIK_REFRESH_TOKEN_URL` is correct
## API Key Authentication
For programmatic access (scripts, integrations), users can generate API keys:
1. Login to Reflector
2. Go to Settings > API Keys
3. Click "Generate New Key"
4. Use the key in requests:
```bash
curl -H "X-API-Key: your-api-key" https://api.example.com/v1/transcripts
```
API keys are stored hashed and can be revoked at any time.

View File

@@ -0,0 +1,165 @@
---
sidebar_position: 6
title: Daily.co Setup
---
# Daily.co Setup
This page covers Daily.co video platform setup for live meeting rooms. For the complete deployment guide, see [Deployment Guide](./overview).
Daily.co enables live video meetings with automatic recording and transcription.
## What You'll Set Up
```
User joins meeting → Daily.co video room → Recording to S3 → [Webhook] → Reflector transcribes
```
## Prerequisites
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
- [ ] **AWS account** - For S3 storage
- [ ] **Reflector deployed** - Complete steps from [Deployment Guide](./overview)
---
## Create Daily.co Account
1. Visit https://dashboard.daily.co and sign up
2. Verify your email
3. Note your subdomain (e.g., `yourname.daily.co` → subdomain is `yourname`)
---
## Get Daily.co API Key
1. In Daily.co dashboard, go to **Developers**
2. Click **API Keys**
3. Click **Create API Key**
4. Copy the key (starts with a long string)
Save this for later.
---
## Create AWS S3 Bucket
Daily.co needs somewhere to store recordings before Reflector processes them.
```bash
# Choose a unique bucket name
BUCKET_NAME="reflector-dailyco-yourname" # -yourname is not a requirement, you can name the bucket as you wish
AWS_REGION="us-east-1"
# Create bucket
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
# Enable versioning (required)
aws s3api put-bucket-versioning \
--bucket $BUCKET_NAME \
--versioning-configuration Status=Enabled
```
---
## Create IAM Role for Daily.co
Daily.co needs permission to write recordings to your S3 bucket.
Follow the guide https://docs.daily.co/guides/products/live-streaming-recording/storing-recordings-in-a-custom-s3-bucket
Save the role ARN - you'll need it soon.
It looks like: `arn:aws:iam::123456789012:role/DailyCo`
Shortly, you'll need to set up a role and give this role your s3 bucket access
No additional setup is required from Daily.co settings website side: the app code takes care of letting Daily know where to save the recordings.
---
## Configure Reflector
**Location: Reflector server**
Add to `server/.env`:
```env
# Daily.co Configuration
DEFAULT_VIDEO_PLATFORM=daily
DAILY_API_KEY=<your-api-key-from-daily-setup>
DAILY_SUBDOMAIN=<your-subdomain-from-daily-setup>
# S3 Storage for Daily.co recordings
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket-from-daily-setup>
DAILYCO_STORAGE_AWS_REGION=us-east-1
DAILYCO_STORAGE_AWS_ROLE_ARN=<your-role-arn-from-daily-setup>
# Transcript storage (should already be configured from main setup)
# TRANSCRIPT_STORAGE_BACKEND=aws
# TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=<your-key>
# TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=<your-secret>
# TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=<your-bucket-name>
# TRANSCRIPT_STORAGE_AWS_REGION=<your-bucket-region>
```
---
## Restart Services
After changing `.env` files, reload with `up -d`:
```bash
sudo docker compose -f docker-compose.prod.yml up -d server worker
```
**Note**: `docker compose up -d` detects env changes and recreates containers automatically.
---
## Test Live Room
1. Visit your Reflector frontend: `https://app.example.com`
2. Go to **Rooms**
3. Click **Create Room**
4. Select **Daily** as the platform
5. Allow camera/microphone access
6. You should see Daily.co video interface
7. Speak for 10-20 seconds
8. Leave the meeting
9. Recording should appear in **Transcripts** within 5 minutes (if webhooks aren't set up yet, see [Webhook Configuration](#webhook-configuration-optional) below)
---
## Troubleshooting
### Recording doesn't appear in S3
1. Check Daily.co dashboard → **Logs** for errors
2. Verify IAM role trust policy has correct Daily.co account ID and your Daily.co subdomain
3. Verify that the bucket has
### Recording in S3 but not transcribed
1. Check webhook is configured (Reflector should auto-create it)
2. Check worker logs:
```bash
docker compose -f docker-compose.prod.yml logs worker --tail 50
```
3. Verify `DAILYCO_STORAGE_AWS_*` vars in `server/.env`
### "Access Denied" when Daily.co tries to write to S3
1. Double-check IAM role ARN in Daily.co settings
2. Verify bucket name matches exactly
3. Check IAM policy has `s3:PutObject` permission
---
## Webhook Configuration [optional]
`manage_daily_webhook.py` script guides you through creating a webhook for Daily recordings.
The webhook isn't required - polling mechanism is the default and performed automatically.
This guide won't go deep into webhook setup.

View File

@@ -0,0 +1,192 @@
---
sidebar_position: 3
title: Docker Reference
---
# Docker Reference
This page documents the Docker Compose configuration for Reflector. For the complete deployment guide, see [Deployment Guide](./overview).
## Services
The `docker-compose.prod.yml` includes these services:
| Service | Image | Purpose |
|---------|-------|---------|
| `web` | `monadicalsas/reflector-frontend` | Next.js frontend |
| `server` | `monadicalsas/reflector-backend` | FastAPI backend |
| `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks |
| `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler |
| `redis` | `redis:7.2-alpine` | Message broker and cache |
| `postgres` | `postgres:17-alpine` | Primary database |
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL |
## Environment Files
Reflector uses two separate environment files:
### Backend (`server/.env`)
Used by: `server`, `worker`, `beat`
Key variables:
```env
# Database connection
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
# Redis
REDIS_HOST=redis
CELERY_BROKER_URL=redis://redis:6379/1
CELERY_RESULT_BACKEND=redis://redis:6379/1
# API domain and CORS
BASE_URL=https://api.example.com
CORS_ORIGIN=https://app.example.com
# Modal GPU processing
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://...
TRANSCRIPT_MODAL_API_KEY=...
```
### Frontend (`www/.env`)
Used by: `web`
Key variables:
```env
# Domain configuration
SITE_URL=https://app.example.com
API_URL=https://api.example.com
WEBSOCKET_URL=wss://api.example.com
SERVER_API_URL=http://server:1250
# Authentication
NEXTAUTH_URL=https://app.example.com
NEXTAUTH_SECRET=...
```
Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-side (SSR).
## Volumes
| Volume | Purpose |
|--------|---------|
| `redis_data` | Redis persistence |
| `postgres_data` | PostgreSQL data |
| `server_data` | Uploaded files, local storage |
| `caddy_data` | SSL certificates |
| `caddy_config` | Caddy configuration |
## Network
All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join.
## Common Commands
### Start all services
```bash
docker compose -f docker-compose.prod.yml up -d
```
### View logs
```bash
# All services
docker compose -f docker-compose.prod.yml logs -f
# Specific service
docker compose -f docker-compose.prod.yml logs server --tail 50
```
### Restart a service
```bash
# Quick restart (doesn't reload .env changes)
docker compose -f docker-compose.prod.yml restart server
# Reload .env and restart
docker compose -f docker-compose.prod.yml up -d server
```
### Run database migrations
```bash
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```
### Access database
```bash
docker compose -f docker-compose.prod.yml exec postgres psql -U reflector
```
### Pull latest images
```bash
docker compose -f docker-compose.prod.yml pull
docker compose -f docker-compose.prod.yml up -d
```
### Stop all services
```bash
docker compose -f docker-compose.prod.yml down
```
### Full reset (WARNING: deletes data)
```bash
docker compose -f docker-compose.prod.yml down -v
```
## Customization
### Using a different database
To use an external PostgreSQL:
1. Remove `postgres` service from compose file
2. Update `DATABASE_URL` in `server/.env`:
```env
DATABASE_URL=postgresql+asyncpg://user:pass@external-host:5432/reflector
```
### Using external Redis
1. Remove `redis` service from compose file
2. Update Redis settings in `server/.env`:
```env
REDIS_HOST=external-redis-host
CELERY_BROKER_URL=redis://external-redis-host:6379/1
```
### Adding Authentik
To add Authentik for authentication, see [Authentication Setup](./auth-setup). Quick steps:
1. Deploy Authentik separately
2. Connect to Reflector's network:
```bash
docker network connect reflector_default authentik-server-1
```
3. Add to Caddyfile:
```
authentik.example.com {
reverse_proxy authentik-server-1:9000
}
```
## Caddyfile Reference
The Caddyfile supports environment variable substitution:
```
{$FRONTEND_DOMAIN:app.example.com} {
reverse_proxy web:3000
}
{$API_DOMAIN:api.example.com} {
reverse_proxy server:1250
}
```
Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly.
### Reload Caddy after changes
```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```

View File

@@ -0,0 +1,139 @@
---
sidebar_position: 10
title: Docs Website Deployment
---
# Docs Website Deployment
This guide covers deploying the Reflector documentation website. **This is optional and intended for internal/experimental use only.**
## Overview
The documentation is built using Docusaurus and deployed as a static nginx-served site.
## Prerequisites
- Reflector already deployed (Steps 1-7 from [Deployment Guide](./overview))
- DNS A record for docs subdomain (e.g., `docs.example.com`)
## Deployment Steps
### Step 1: Pre-fetch OpenAPI Spec
The docs site includes API reference from your running backend. Fetch it before building:
```bash
cd ~/reflector
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
```
This creates `docs/static/openapi.json` (should be ~70KB) which will be copied during Docker build.
**Why not fetch during build?** Docker build containers are network-isolated and can't access the running backend services.
### Step 2: Verify Dockerfile
The Dockerfile is already in `docs/Dockerfile`:
```dockerfile
FROM node:18-alpine AS builder
WORKDIR /app
# Copy package files
COPY package*.json ./
# Inshall dependencies
RUN npm ci
# Copy source (includes static/openapi.json if pre-fetched)
COPY . .
# Fix docusaurus config: change onBrokenLinks to 'warn' for Docker build
RUN sed -i "s/onBrokenLinks: 'throw'/onBrokenLinks: 'warn'/g" docusaurus.config.ts
# Build static site
RUN npx docusaurus build
FROM nginx:alpine
COPY --from=builder /app/build /usr/share/nginx/html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]
```
### Step 3: Add Docs Service to docker-compose.prod.yml
Add this service to `docker-compose.prod.yml`:
```yaml
docs:
build: ./docs
restart: unless-stopped
networks:
- default
```
### Step 4: Add Caddy Route
Add to `Caddyfile`:
```
{$DOCS_DOMAIN:docs.example.com} {
reverse_proxy docs:80
}
```
### Step 5: Build and Deploy
```bash
cd ~/reflector
docker compose -f docker-compose.prod.yml up -d --build docs
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```
### Step 6: Verify
```bash
# Check container status
docker compose -f docker-compose.prod.yml ps docs
# Should show "Up"
# Test URL
curl -I https://docs.example.com
# Should return HTTP/2 200
```
Visit `https://docs.example.com` in your browser
## Updating Documentation
When docs are updated:
```bash
cd ~/reflector
git pull
# Refresh OpenAPI spec from backend
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
# Rebuild docs
docker compose -f docker-compose.prod.yml up -d --build docs
```
## Troubleshooting
### Missing openapi.json during build
- Make sure you ran the pre-fetch step first (Step 1)
- Verify `docs/static/openapi.json` exists and is ~70KB
- Re-run: `docker compose exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json`
### Build fails with "Docusaurus found broken links"
- This happens if `onBrokenLinks: 'throw'` is set in docusaurus.config.ts
- Solution is already in Dockerfile: uses `sed` to change to `'warn'` during build
### 404 on all pages
- Docusaurus baseUrl might be wrong - should be `/` for custom domain
- Check `docs/docusaurus.config.ts`: `baseUrl: '/'`
### Docs not updating after rebuild
- Force rebuild: `docker compose -f docker-compose.prod.yml build --no-cache docs`
- Then: `docker compose -f docker-compose.prod.yml up -d docs`

View File

@@ -0,0 +1,171 @@
---
sidebar_position: 4
title: Modal.com Setup
---
# Modal.com Setup
This page covers Modal.com GPU setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
Reflector uses [Modal.com](https://modal.com) for GPU-accelerated audio processing. This guide walks you through deploying the required GPU functions.
## What is Modal.com?
Modal is a serverless GPU platform. You deploy Python code that runs on their GPUs, and pay only for actual compute time. Reflector uses Modal for:
- **Transcription**: Whisper model for speech-to-text
- **Diarization**: Pyannote model for speaker identification
## Prerequisites
1. **Modal.com account** - Sign up at https://modal.com (free tier available)
2. **HuggingFace account** - Required for Pyannote diarization models:
- Create account at https://huggingface.co
- Accept **both** Pyannote licenses:
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- Generate access token at https://huggingface.co/settings/tokens
## Deployment
**Location: YOUR LOCAL COMPUTER (laptop/desktop)**
Modal CLI requires browser authentication, so this must run on a machine with a browser - not on a headless server.
### Install Modal CLI
```bash
uv tool install modal
```
### Authenticate with Modal
```bash
modal setup
```
This opens your browser for authentication. Complete the login flow.
### Clone Repository and Deploy
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/modal_deployments
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
```
Or run interactively (script will prompt for token):
```bash
./deploy-all.sh
```
### What the Script Does
1. **Prompts for HuggingFace token** - Needed to download the Pyannote diarization model
2. **Generates API key** - Creates a secure random key for authenticating requests to GPU functions
3. **Creates Modal secrets**:
- `hf_token` - Your HuggingFace token
- `reflector-gpu` - The generated API key
4. **Deploys GPU functions** - Transcriber (Whisper) and Diarizer (Pyannote)
5. **Outputs configuration** - Prints URLs and API key to console
### Example Output
```
==========================================
Reflector GPU Functions Deployment
==========================================
Generating API key for GPU services...
Creating Modal secrets...
-> Creating secret: hf_token
-> Creating secret: reflector-gpu
Deploying transcriber (Whisper)...
-> https://yourname--reflector-transcriber-web.modal.run
Deploying diarizer (Pyannote)...
-> https://yourname--reflector-diarizer-web.modal.run
==========================================
Deployment complete!
==========================================
Copy these values to your server's server/.env file:
# --- Modal GPU Configuration ---
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=abc123...
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
DIARIZATION_MODAL_API_KEY=abc123...
# --- End Modal Configuration ---
```
Copy the output and paste it into your `server/.env` file on your server.
## Costs
Modal charges based on GPU compute time:
- Functions scale to zero when not in use (no cost when idle)
- You only pay for actual processing time
- Free tier includes $30/month of credits
Typical costs for audio processing:
- Transcription: ~$0.01-0.05 per minute of audio
- Diarization: ~$0.02-0.10 per minute of audio
## Troubleshooting
### "Modal CLI not installed"
```bash
uv tool install modal
```
### "Not authenticated with Modal"
```bash
modal setup
# Complete browser authentication
```
### "Failed to create secret hf_token"
- Verify your HuggingFace token is valid
- Ensure you've accepted the Pyannote license
- Token needs `read` permission
### Deployment fails
Check the Modal dashboard for detailed error logs:
- Visit https://modal.com/apps
- Click on the failed function
- View build and runtime logs
### Re-running deployment
The script is safe to re-run. It will:
- Update existing secrets if they exist
- Redeploy functions with latest code
- Output new configuration (API key stays the same if secret exists)
## Manual Deployment (Advanced)
If you prefer to deploy functions individually:
```bash
cd gpu/modal_deployments
# Create secrets manually
modal secret create hf_token HF_TOKEN=your-hf-token
modal secret create reflector-gpu REFLECTOR_GPU_APIKEY=$(openssl rand -hex 32)
# Deploy each function
modal deploy reflector_transcriber.py
modal deploy reflector_diarizer.py
```
## Monitoring
View your deployed functions and their usage:
- **Modal Dashboard**: https://modal.com/apps
- **Function logs**: Click on any function to view logs
- **Usage**: View compute time and costs in the dashboard

View File

@@ -0,0 +1,411 @@
---
sidebar_position: 1
title: Deployment Guide
---
# Deployment Guide
This guide walks you through deploying Reflector from scratch. Follow these steps in order.
## What You'll Set Up
```mermaid
flowchart LR
User --> Caddy["Caddy (auto-SSL)"]
Caddy --> Frontend["Frontend (Next.js)"]
Caddy --> Backend["Backend (FastAPI)"]
Backend --> PostgreSQL
Backend --> Redis
Backend --> Workers["Celery Workers"]
Workers --> PostgreSQL
Workers --> Redis
Workers --> GPU["GPU Processing<br/>(Modal.com OR Self-hosted)"]
```
## Prerequisites
Before starting, you need:
- **Production server** - 4+ cores, 8GB+ RAM, public IP
- **Two domain names** - e.g., `app.example.com` (frontend) and `api.example.com` (backend)
- **GPU processing** - Choose one:
- Modal.com account, OR
- GPU server with NVIDIA GPU (8GB+ VRAM)
- **HuggingFace account** - Free at https://huggingface.co
- Accept both Pyannote licenses (required for speaker diarization):
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- **LLM API** - For summaries and topic detection. Choose one:
- OpenAI API key at https://platform.openai.com/account/api-keys, OR
- Any OpenAI-compatible endpoint (vLLM, LiteLLM, Ollama, etc.)
- **AWS S3 bucket** - For storing audio files and transcripts (see [S3 Setup](#create-s3-bucket-for-transcript-storage) below)
### Optional (for live meeting rooms)
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
- [ ] **AWS S3 bucket + IAM Role** - For Daily.co recording storage (separate from transcript storage)
---
## Configure DNS
```
Type: A Name: app Value: <your-server-ip>
Type: A Name: api Value: <your-server-ip>
```
---
## Deploy GPU Processing
Reflector requires GPU processing for transcription and speaker diarization. Choose one option:
| | **Modal.com (Cloud)** | **Self-Hosted GPU** |
|---|---|---|
| **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control |
| **Pricing** | Pay-per-use | Fixed infrastructure cost |
### Option A: Modal.com (Serverless Cloud GPU)
#### Accept HuggingFace Licenses
Visit both pages and click "Accept":
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
Generate a token at https://huggingface.co/settings/tokens
#### Deploy to Modal
There's an install script to help with this setup. It's using modal API to set all necessary moving parts.
As an alternative, all those operations that script does could be performed in modal settings in modal UI.
```bash
uv tool install modal
modal setup # opens browser for authentication
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/modal_deployments
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
```
**Save the output** - copy the configuration block, you'll need it soon.
See [Modal Setup](./modal-setup) for troubleshooting and details.
### Option B: Self-Hosted GPU
**Location: YOUR GPU SERVER**
Requires: NVIDIA GPU with 8GB+ VRAM, Ubuntu 22.04+, 40-50GB disk.
See [Self-Hosted GPU Setup](./self-hosted-gpu-setup) for complete instructions. Quick summary:
1. Install NVIDIA drivers and Docker
2. Clone repository: `git clone https://github.com/monadical-sas/reflector.git`
3. Configure `.env` with HuggingFace token
4. Start service with Docker compose
5. Set up Caddy reverse proxy for HTTPS
**Save your API key and HTTPS URL** - you'll need them soon.
---
## Prepare Server
**Location: dedicated reflector server**
### Install Docker
```bash
ssh user@your-server-ip
curl -fsSL https://get.docker.com | sh
sudo usermod -aG docker $USER
# Log out and back in for group changes
exit
ssh user@your-server-ip
docker --version # verify
```
### Firewall
Ensure ports 80 (HTTP) and 443 (HTTPS) are open for inbound traffic. The method varies by cloud provider and OS configuration.
**For live transcription without Daily/Whereby rooms**: WebRTC requires UDP port range 49152-65535 for media traffic.
### Clone Repository
The Docker images contain all application code. You clone the repository for configuration files and the compose definition:
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector
```
---
## Create S3 Bucket for Transcript Storage
Reflector requires AWS S3 to store audio files during processing.
### Create Bucket
```bash
# Choose a unique bucket name
BUCKET_NAME="reflector-transcripts-yourname"
AWS_REGION="us-east-1"
# Create bucket
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
```
### Create IAM User
Create an IAM user with S3 access for Reflector:
1. Go to AWS IAM Console → Users → Create User
2. Name: `reflector-transcripts`
3. Attach policy: `AmazonS3FullAccess` (or create a custom policy for just your bucket)
4. Create access key (Access key ID + Secret access key)
Save these credentials - you'll need them in the next step.
---
## Configure Environment
Reflector has two env files:
- `server/.env` - Backend configuration
- `www/.env` - Frontend configuration
### Backend Configuration
```bash
cp server/.env.example server/.env
nano server/.env
```
**Required settings:**
```env
# Database (defaults work with docker-compose.prod.yml)
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
# Redis
REDIS_HOST=redis
CELERY_BROKER_URL=redis://redis:6379/1
CELERY_RESULT_BACKEND=redis://redis:6379/1
# Your domains
BASE_URL=https://api.example.com
CORS_ORIGIN=https://app.example.com
CORS_ALLOW_CREDENTIALS=true
# Secret key - generate with: openssl rand -hex 32
SECRET_KEY=<your-generated-secret>
# GPU Processing - choose ONE option:
# Option A: Modal.com (paste from deploy-all.sh output)
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=<from-deploy-all.sh-output>
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
DIARIZATION_MODAL_API_KEY=<from-deploy-all.sh-output>
# Option B: Self-hosted GPU (use your GPU server URL and API key)
# TRANSCRIPT_BACKEND=modal
# TRANSCRIPT_URL=https://gpu.example.com
# TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
# DIARIZATION_BACKEND=modal
# DIARIZATION_URL=https://gpu.example.com
# DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
# Storage - where to store audio files and transcripts (requires AWS S3)
TRANSCRIPT_STORAGE_BACKEND=aws
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=your-aws-access-key
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=your-aws-secret-key
TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=reflector-media
TRANSCRIPT_STORAGE_AWS_REGION=us-east-1
# LLM - for generating titles, summaries, and topics
LLM_API_KEY=sk-your-openai-api-key
LLM_MODEL=gpt-4o-mini
# LLM_URL=https://api.openai.com/v1 # Optional: custom endpoint (vLLM, LiteLLM, Ollama, etc.)
# Auth - disable for initial setup (see a dedicated step for authentication)
AUTH_BACKEND=none
```
### Frontend Configuration
```bash
cp www/.env.example www/.env
nano www/.env
```
**Required settings:**
```env
# Your domains
SITE_URL=https://app.example.com
API_URL=https://api.example.com
WEBSOCKET_URL=wss://api.example.com
SERVER_API_URL=http://server:1250
# NextAuth
NEXTAUTH_URL=https://app.example.com
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
# Disable login requirement for initial setup
FEATURE_REQUIRE_LOGIN=false
```
---
## Configure Caddy
```bash
cp Caddyfile.example Caddyfile
nano Caddyfile
```
Replace `example.com` with your domains. The `{$VAR:default}` syntax uses Caddy's env var substitution - you can either edit the file directly or set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables.
```
{$FRONTEND_DOMAIN:app.example.com} {
reverse_proxy web:3000
}
{$API_DOMAIN:api.example.com} {
reverse_proxy server:1250
}
```
---
## Start Services
```bash
docker compose -f docker-compose.prod.yml up -d
```
Wait for containers to start (first run may take 1-2 minutes to pull images and initialize).
---
## Verify Deployment
### Check services
```bash
docker compose -f docker-compose.prod.yml ps
# All should show "Up"
```
### Test API
```bash
curl https://api.example.com/health
# Should return: {"status":"healthy"}
```
### Test Frontend
- Visit https://app.example.com
- You should see the Reflector interface
- Try uploading an audio file to test transcription
If any verification fails, see [Troubleshooting](#troubleshooting) below.
---
## Enable Authentication (Required for Live Rooms)
By default, Reflector is open (no login required). **Authentication is required if you want to use Live Meeting Rooms.**
See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration.
Quick summary:
1. Deploy Authentik on your server
2. Create OAuth provider in Authentik
3. Extract public key for JWT verification
4. Update `server/.env`: `AUTH_BACKEND=jwt` + `AUTH_JWT_AUDIENCE`
5. Update `www/.env`: `FEATURE_REQUIRE_LOGIN=true` + Authentik credentials
6. Mount JWT keys volume and restart services
---
## Enable Live Meeting Rooms
**Requires: Authentication Step**
Live rooms require Daily.co and AWS S3. See [Daily.co Setup](./daily-setup) for complete S3/IAM configuration instructions.
Note that Reflector also supports Whereby as a call provider - this doc doesn't cover its setup yet.
Quick config - Add to `server/.env`:
```env
DEFAULT_VIDEO_PLATFORM=daily
DAILY_API_KEY=<from-daily.co-dashboard>
DAILY_SUBDOMAIN=<your-daily-subdomain>
# S3 for recording storage
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket>
DAILYCO_STORAGE_AWS_REGION=us-east-1
DAILYCO_STORAGE_AWS_ROLE_ARN=<arn:aws:iam::ACCOUNT:role/DailyCo>
```
Reload env and restart:
```bash
docker compose -f docker-compose.prod.yml up -d server worker
```
---
## Troubleshooting
### Check logs for errors
```bash
docker compose -f docker-compose.prod.yml logs server --tail 20
docker compose -f docker-compose.prod.yml logs worker --tail 20
```
### Services won't start
```bash
docker compose -f docker-compose.prod.yml logs
```
### CORS errors in browser
- Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`)
- Reload env: `docker compose -f docker-compose.prod.yml up -d server`
### SSL certificate errors
- Caddy auto-provisions Let's Encrypt certificates
- Ensure ports 80 and 443 are open
- Check: `docker compose -f docker-compose.prod.yml logs caddy`
### Transcription not working
- Check Modal dashboard: https://modal.com/apps
- Verify URLs in `server/.env` match deployed functions
- Check worker logs: `docker compose -f docker-compose.prod.yml logs worker`
### "Login required" but auth not configured
- Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env`
- Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web`
### Database migrations or connectivity issues
Migrations run automatically on server startup. To check database connectivity or debug migration failures:
```bash
# Check server logs for migration errors
docker compose -f docker-compose.prod.yml logs server | grep -i -E "(alembic|migration|database|postgres)"
# Verify database connectivity
docker compose -f docker-compose.prod.yml exec server uv run python -c "from reflector.db import engine; print('DB connected')"
# Manually run migrations (if needed)
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```

View File

@@ -0,0 +1,63 @@
---
sidebar_position: 2
title: System Requirements
---
# System Requirements
This page lists hardware and software requirements. For the complete deployment guide, see [Deployment Guide](./overview).
## Server Requirements
### Minimum Requirements
- **CPU**: 4 cores
- **RAM**: 8 GB
- **Storage**: 50 GB SSD
- **OS**: Ubuntu 22.04+ or compatible Linux
- **Network**: Public IP address
### Recommended Requirements
- **CPU**: 8+ cores
- **RAM**: 16 GB
- **Storage**: 100 GB SSD
- **Network**: 1 Gbps connection
## Software Requirements
- Docker Engine 20.10+
- Docker Compose 2.0+
## External Services
### Required
- **Two domain names** - One for frontend (e.g., `app.example.com`), one for API (e.g., `api.example.com`)
- **Modal.com account** - For GPU-accelerated transcription and diarization (free tier available)
- **HuggingFace account** - For Pyannote diarization model access
- **LLM API** - For generating summaries and topic detection. Options:
- OpenAI API (https://platform.openai.com/account/api-keys)
- Any OpenAI-compatible endpoint (vLLM, LiteLLM, Ollama)
- Self-hosted: Phi-4 14B 4-bit recommended (~8GB VRAM)
### Required for Live Meeting Rooms
- **Daily.co account** - For video conferencing (free tier available at https://dashboard.daily.co)
- **AWS S3 bucket + IAM Role** - For Daily.co to store recordings
- **Another AWS S3 bucket (optional, can reuse the one above)** - For Reflector to store "compiled" mp3 files and transient diarization process temporary files
### Optional
- **AWS S3** - For cloud storage of recordings and transcripts
- **Authentik** - For SSO/OIDC authentication
- **Sentry** - For error tracking
## Development Requirements
For local development only (not required for production deployment):
- Node.js 22+ (for frontend development)
- Python 3.12+ (for backend development)
- pnpm (for frontend package management)
- uv (for Python package management)

View File

@@ -0,0 +1,307 @@
---
sidebar_position: 5
title: Self-Hosted GPU Setup
---
# Self-Hosted GPU Setup
This guide covers deploying Reflector's GPU processing on your own server instead of Modal.com. For the complete deployment guide, see [Deployment Guide](./overview).
## When to Use Self-Hosted GPU
**Choose self-hosted GPU if you:**
- Have GPU hardware available (NVIDIA required)
- Want full control over processing
- Prefer fixed infrastructure costs over pay-per-use
- Have privacy or data locality requirements
- Need to process audio without external API calls
**Choose Modal.com instead if you:**
- Don't have GPU hardware
- Want zero infrastructure management
- Prefer pay-per-use pricing
- Need instant scaling for variable workloads
See [Modal.com Setup](./modal-setup) for cloud GPU deployment.
## What Gets Deployed
The self-hosted GPU service provides the same API endpoints as Modal:
- `POST /v1/audio/transcriptions` - Whisper transcription
- `POST /v1/audio/transcriptions-from-url` - Transcribe from URL
- `POST /diarize` - Pyannote speaker diarization
- `POST /translate` - Audio translation
Your main Reflector server connects to this service exactly like it connects to Modal - only the URL changes.
## Prerequisites
### Hardware
- **GPU**: NVIDIA GPU with 8GB+ VRAM (tested on Tesla T4 with 15GB)
- **CPU**: 4+ cores recommended
- **RAM**: 8GB minimum, 16GB recommended
- **Disk**: 40-50GB minimum
### Software
- Public IP address
- Domain name with DNS A record pointing to server
### Accounts
- **HuggingFace account** with accepted Pyannote licenses:
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- **HuggingFace access token** from https://huggingface.co/settings/tokens
## Docker Deployment
### Step 1: Install NVIDIA Driver
```bash
sudo apt update
sudo apt install -y nvidia-driver-535
sudo reboot
# After reboot, verify installation
nvidia-smi
```
Expected output: GPU details with driver version and CUDA version.
### Step 2: Install Docker
Follow the [official Docker installation guide](https://docs.docker.com/engine/install/ubuntu/) for your distribution.
After installation, add your user to the docker group:
```bash
sudo usermod -aG docker $USER
# Log out and back in for group changes
exit
# SSH back in
```
### Step 3: Install NVIDIA Container Toolkit
```bash
# Add NVIDIA repository and install toolkit
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \
sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
### Step 4: Clone Repository and Configure
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/self_hosted
# Create environment file
cat > .env << EOF
REFLECTOR_GPU_APIKEY=$(openssl rand -hex 16)
HF_TOKEN=your_huggingface_token_here
EOF
# Note the generated API key - you'll need it for main server config
cat .env
```
### Step 5: Build and Start
The repository includes a `compose.yml` file. Build and start:
```bash
# Build image (takes ~5 minutes, downloads ~10GB)
sudo docker compose build
# Start service
sudo docker compose up -d
# Wait for startup and verify
sleep 30
sudo docker compose logs
```
Look for: `INFO: Application startup complete. Uvicorn running on http://0.0.0.0:8000`
### Step 7: Verify GPU Access
```bash
# Check GPU is accessible from container
sudo docker exec $(sudo docker ps -q) nvidia-smi
```
Should show GPU with ~3GB VRAM used (models loaded).
---
## Configure HTTPS with Caddy
Caddy handles SSL automatically.
### Install Caddy
```bash
sudo apt install -y debian-keyring debian-archive-keyring apt-transport-https curl
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/gpg.key' | \
sudo gpg --dearmor -o /usr/share/keyrings/caddy-stable-archive-keyring.gpg
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt' | \
sudo tee /etc/apt/sources.list.d/caddy-stable.list
sudo apt update
sudo apt install -y caddy
```
### Configure Reverse Proxy
Edit the Caddyfile with your domain:
```bash
sudo nano /etc/caddy/Caddyfile
```
Add (replace `gpu.example.com` with your domain):
```
gpu.example.com {
reverse_proxy localhost:8000
}
```
Reload Caddy (auto-provisions SSL certificate):
```bash
sudo systemctl reload caddy
```
### Verify HTTPS
```bash
curl -I https://gpu.example.com/docs
# Should return HTTP/2 200
```
---
## Configure Main Reflector Server
On your main Reflector server, update `server/.env`:
```env
# GPU Processing - Self-hosted
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://gpu.example.com
TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://gpu.example.com
DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
```
**Note:** The backend type is `modal` because the self-hosted GPU service implements the same API contract as Modal.com. This allows you to switch between cloud and self-hosted GPU processing by only changing the URL and API key.
Restart services to apply:
```bash
docker compose -f docker-compose.prod.yml restart server worker
```
---
## Service Management
All commands in this section assume you're in `~/reflector/gpu/self_hosted/`.
```bash
# View logs
sudo docker compose logs -f
# Restart service
sudo docker compose restart
# Stop service
sudo docker compose down
# Check status
sudo docker compose ps
```
### Monitor GPU
```bash
# Check GPU usage
nvidia-smi
# Watch in real-time
watch -n 1 nvidia-smi
```
**Typical GPU memory usage:**
- Idle (models loaded): ~3GB VRAM
- During transcription: ~4-5GB VRAM
---
## Troubleshooting
### nvidia-smi fails after driver install
```bash
# Manually load kernel modules
sudo modprobe nvidia
nvidia-smi
```
### Service fails with "Could not download pyannote pipeline"
1. Verify HF_TOKEN is valid: `echo $HF_TOKEN`
2. Check model access at https://huggingface.co/pyannote/speaker-diarization-3.1
3. Update .env with correct token
4. Restart service: `sudo docker compose restart`
### Cannot connect to HTTPS endpoint
1. Verify DNS resolves: `dig +short gpu.example.com`
2. Check firewall: `sudo ufw status` (ports 80, 443 must be open)
3. Check Caddy: `sudo systemctl status caddy`
4. View Caddy logs: `sudo journalctl -u caddy -n 50`
### SSL certificate not provisioning
Requirements for Let's Encrypt:
- Ports 80 and 443 publicly accessible
- DNS resolves to server's public IP
- Valid domain (not localhost or private IP)
### Docker container won't start
```bash
# Check logs
sudo docker compose logs
# Common issues:
# - Port 8000 already in use
# - GPU not accessible (nvidia-ctk not configured)
# - Missing .env file
```
---
## Updating
```bash
cd ~/reflector/gpu/self_hosted
git pull
sudo docker compose build
sudo docker compose up -d
```