mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
2
server/.gitignore
vendored
2
server/.gitignore
vendored
@@ -165,7 +165,7 @@ cython_debug/
|
||||
transcript_*.txt
|
||||
test_*.txt
|
||||
wordcloud*.png
|
||||
utils/config.ini
|
||||
utils/secrets.ini
|
||||
test_samples/
|
||||
*.wav
|
||||
*.mp3
|
||||
|
||||
@@ -36,7 +36,7 @@ class TitleSummaryInput:
|
||||
|
||||
### Assistant:
|
||||
"""
|
||||
self.data = {"data": self.prompt}
|
||||
self.data = {"prompt": self.prompt}
|
||||
self.headers = {"Content-Type": "application/json"}
|
||||
|
||||
|
||||
@@ -49,11 +49,13 @@ class IncrementalResult:
|
||||
title = str
|
||||
description = str
|
||||
transcript = str
|
||||
timestamp = str
|
||||
|
||||
def __init__(self, title, desc, transcript):
|
||||
def __init__(self, title, desc, transcript, timestamp):
|
||||
self.title = title
|
||||
self.description = desc
|
||||
self.transcript = transcript
|
||||
self.timestamp = timestamp
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -67,8 +69,13 @@ class TitleSummaryOutput:
|
||||
|
||||
def __init__(self, inc_responses):
|
||||
self.topics = inc_responses
|
||||
self.cmd = "UPDATE_TOPICS"
|
||||
|
||||
def get_result(self):
|
||||
def get_result(self) -> dict:
|
||||
"""
|
||||
Return the result dict for displaying the transcription
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
"cmd": self.cmd,
|
||||
"topics": self.topics
|
||||
@@ -81,18 +88,25 @@ class ParseLLMResult:
|
||||
Data class to parse the result returned by the LLM while generating title
|
||||
and summaries. The result will be sent back to the client.
|
||||
"""
|
||||
title = str
|
||||
description = str
|
||||
transcript = str
|
||||
timestamp = str
|
||||
|
||||
def __init__(self, param: TitleSummaryInput, output: dict):
|
||||
self.title = output["title"]
|
||||
self.transcript = param.input_text
|
||||
self.description = output.pop("summary")
|
||||
self.timestamp = \
|
||||
str(datetime.timedelta(seconds=round(param.transcribed_time)))
|
||||
|
||||
def get_result(self):
|
||||
def get_result(self) -> dict:
|
||||
"""
|
||||
Return the result dict after parsing the response from LLM
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
"title": self.title,
|
||||
"description": self.description,
|
||||
"transcript": self.transcript,
|
||||
"timestamp": self.timestamp
|
||||
@@ -124,7 +138,11 @@ class TranscriptionOutput:
|
||||
self.cmd = "SHOW_TRANSCRIPTION"
|
||||
self.result_text = result_text
|
||||
|
||||
def get_result(self):
|
||||
def get_result(self) -> dict:
|
||||
"""
|
||||
Return the result dict for displaying the transcription
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
"cmd": self.cmd,
|
||||
"text": self.result_text
|
||||
@@ -144,9 +162,13 @@ class FinalSummaryResult:
|
||||
def __init__(self, final_summary, time):
|
||||
self.duration = str(datetime.timedelta(seconds=round(time)))
|
||||
self.final_summary = final_summary
|
||||
self.cmd = ""
|
||||
self.cmd = "DISPLAY_FINAL_SUMMARY"
|
||||
|
||||
def get_result(self):
|
||||
def get_result(self) -> dict:
|
||||
"""
|
||||
Return the result dict for displaying the final summary
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
"cmd": self.cmd,
|
||||
"duration": self.duration,
|
||||
|
||||
@@ -6,7 +6,7 @@ import os
|
||||
import uuid
|
||||
import wave
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Union, NoReturn
|
||||
from typing import NoReturn, Union
|
||||
|
||||
import aiohttp_cors
|
||||
import av
|
||||
@@ -17,33 +17,50 @@ from aiortc.contrib.media import MediaRelay
|
||||
from faster_whisper import WhisperModel
|
||||
from sortedcontainers import SortedDict
|
||||
|
||||
from reflector_dataclasses import FinalSummaryResult, ParseLLMResult,\
|
||||
TitleSummaryInput, TitleSummaryOutput, TranscriptionInput,\
|
||||
TranscriptionOutput, BlackListedMessages
|
||||
from utils.run_utils import CONFIG, run_in_executor
|
||||
from reflector_dataclasses import BlackListedMessages, FinalSummaryResult, ParseLLMResult, TitleSummaryInput, \
|
||||
TitleSummaryOutput, TranscriptionInput, TranscriptionOutput
|
||||
from utils.log_utils import LOGGER
|
||||
from utils.run_utils import CONFIG, run_in_executor, SECRETS
|
||||
|
||||
# WebRTC components
|
||||
pcs = set()
|
||||
relay = MediaRelay()
|
||||
data_channel = None
|
||||
audio_buffer = av.AudioFifo()
|
||||
executor = ThreadPoolExecutor()
|
||||
|
||||
# Transcription model
|
||||
model = WhisperModel("tiny", device="cpu",
|
||||
compute_type="float32",
|
||||
num_workers=12)
|
||||
|
||||
CHANNELS = 2
|
||||
RATE = 48000
|
||||
audio_buffer = av.AudioFifo()
|
||||
executor = ThreadPoolExecutor()
|
||||
# Audio configurations
|
||||
CHANNELS = int(CONFIG["AUDIO"]["CHANNELS"])
|
||||
RATE = int(CONFIG["AUDIO"]["SAMPLING_RATE"])
|
||||
|
||||
# Global vars
|
||||
transcription_text = ""
|
||||
last_transcribed_time = 0.0
|
||||
LLM_MACHINE_IP = CONFIG["LLM"]["LLM_MACHINE_IP"]
|
||||
LLM_MACHINE_PORT = CONFIG["LLM"]["LLM_MACHINE_PORT"]
|
||||
|
||||
# LLM
|
||||
LLM_MACHINE_IP = SECRETS["LLM"]["LLM_MACHINE_IP"]
|
||||
LLM_MACHINE_PORT = SECRETS["LLM"]["LLM_MACHINE_PORT"]
|
||||
LLM_URL = f"http://{LLM_MACHINE_IP}:{LLM_MACHINE_PORT}/api/v1/generate"
|
||||
|
||||
# Topic and summary responses
|
||||
incremental_responses = []
|
||||
|
||||
# To synchronize the thread results before returning to the client
|
||||
sorted_transcripts = SortedDict()
|
||||
|
||||
|
||||
def parse_llm_output(param: TitleSummaryInput, response: requests.Response) -> Union[None, ParseLLMResult]:
|
||||
"""
|
||||
Function to parse the LLM response
|
||||
:param param:
|
||||
:param response:
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
output = json.loads(response.json()["results"][0]["text"])
|
||||
return ParseLLMResult(param, output)
|
||||
@@ -53,6 +70,12 @@ def parse_llm_output(param: TitleSummaryInput, response: requests.Response) -> U
|
||||
|
||||
|
||||
def get_title_and_summary(param: TitleSummaryInput) -> Union[None, TitleSummaryOutput]:
|
||||
"""
|
||||
From the input provided (transcript), query the LLM to generate
|
||||
topics and summaries
|
||||
:param param:
|
||||
:return:
|
||||
"""
|
||||
LOGGER.info("Generating title and summary")
|
||||
|
||||
# TODO : Handle unexpected output formats from the model
|
||||
@@ -71,21 +94,45 @@ def get_title_and_summary(param: TitleSummaryInput) -> Union[None, TitleSummaryO
|
||||
|
||||
|
||||
def channel_log(channel, t: str, message: str) -> NoReturn:
|
||||
"""
|
||||
Add logs
|
||||
:param channel:
|
||||
:param t:
|
||||
:param message:
|
||||
:return:
|
||||
"""
|
||||
LOGGER.info("channel(%s) %s %s" % (channel.label, t, message))
|
||||
|
||||
|
||||
def channel_send(channel, message: str) -> NoReturn:
|
||||
"""
|
||||
Send text messages via the data channel
|
||||
:param channel:
|
||||
:param message:
|
||||
:return:
|
||||
"""
|
||||
if channel:
|
||||
channel.send(message)
|
||||
|
||||
|
||||
def channel_send_increment(channel, param: Union[FinalSummaryResult, TitleSummaryOutput]) -> NoReturn:
|
||||
"""
|
||||
Send the incremental topics and summaries via the data channel
|
||||
:param channel:
|
||||
:param param:
|
||||
:return:
|
||||
"""
|
||||
if channel and param:
|
||||
message = param.get_result()
|
||||
channel.send(json.dumps(message))
|
||||
|
||||
|
||||
def channel_send_transcript(channel) -> NoReturn:
|
||||
"""
|
||||
Send the transcription result via the data channel
|
||||
:param channel:
|
||||
:return:
|
||||
"""
|
||||
# channel_log(channel, ">", message)
|
||||
if channel:
|
||||
try:
|
||||
@@ -106,6 +153,12 @@ def channel_send_transcript(channel) -> NoReturn:
|
||||
|
||||
|
||||
def get_transcription(input_frames: TranscriptionInput) -> Union[None, TranscriptionOutput]:
|
||||
"""
|
||||
From the collected audio frames create transcription by inferring from
|
||||
the chosen transcription model
|
||||
:param input_frames:
|
||||
:return:
|
||||
"""
|
||||
LOGGER.info("Transcribing..")
|
||||
sorted_transcripts[input_frames.frames[0].time] = None
|
||||
|
||||
@@ -290,6 +343,12 @@ async def offer(request: requests.Request) -> web.Response:
|
||||
|
||||
|
||||
async def on_shutdown(application: web.Application) -> NoReturn:
|
||||
"""
|
||||
On shutdown, the coroutines that shutdown client connections are
|
||||
executed
|
||||
:param application:
|
||||
:return:
|
||||
"""
|
||||
coroutines = [pc.close() for pc in pcs]
|
||||
await asyncio.gather(*coroutines)
|
||||
pcs.clear()
|
||||
|
||||
25
server/utils/config.ini
Normal file
25
server/utils/config.ini
Normal file
@@ -0,0 +1,25 @@
|
||||
[DEFAULT]
|
||||
#Set exception rule for OpenMP error
|
||||
#to allow duplicate lib initialization
|
||||
KMP_DUPLICATE_LIB_OK = TRUE
|
||||
|
||||
[WHISPER]
|
||||
#ExportWhisperModelSize
|
||||
WHISPER_MODEL_SIZE = tiny
|
||||
WHISPER_REAL_TIME_MODEL_SIZE = tiny
|
||||
|
||||
[SUMMARIZER]
|
||||
#Summarizerconfig
|
||||
SUMMARY_MODEL = facebook/bart-large-cnn
|
||||
INPUT_ENCODING_MAX_LENGTH = 1024
|
||||
MAX_LENGTH = 2048
|
||||
BEAM_SIZE = 6
|
||||
MAX_CHUNK_LENGTH = 1024
|
||||
SUMMARIZE_USING_CHUNKS = YES
|
||||
|
||||
[AUDIO]
|
||||
# Audiodevice
|
||||
BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME = aggregator
|
||||
AV_FOUNDATION_DEVICE_ID = 1
|
||||
CHANNELS = 2
|
||||
SAMPLING_RATE = 48000
|
||||
@@ -4,21 +4,22 @@ uploads to cloud storage
|
||||
"""
|
||||
|
||||
import sys
|
||||
from typing import List, NoReturn
|
||||
|
||||
import boto3
|
||||
import botocore
|
||||
|
||||
from .log_utils import LOGGER
|
||||
from .run_utils import CONFIG
|
||||
from .run_utils import SECRETS
|
||||
|
||||
BUCKET_NAME = CONFIG["AWS"]["BUCKET_NAME"]
|
||||
BUCKET_NAME = SECRETS["AWS-S3"]["BUCKET_NAME"]
|
||||
|
||||
s3 = boto3.client('s3',
|
||||
aws_access_key_id=CONFIG["AWS"]["AWS_ACCESS_KEY"],
|
||||
aws_secret_access_key=CONFIG["AWS"]["AWS_SECRET_KEY"])
|
||||
aws_access_key_id=SECRETS["AWS-S3"]["AWS_ACCESS_KEY"],
|
||||
aws_secret_access_key=SECRETS["AWS-S3"]["AWS_SECRET_KEY"])
|
||||
|
||||
|
||||
def upload_files(files_to_upload):
|
||||
def upload_files(files_to_upload: List[str]) -> NoReturn:
|
||||
"""
|
||||
Upload a list of files to the configured S3 bucket
|
||||
:param files_to_upload: List of files to upload
|
||||
@@ -32,7 +33,7 @@ def upload_files(files_to_upload):
|
||||
print(exception.response)
|
||||
|
||||
|
||||
def download_files(files_to_download):
|
||||
def download_files(files_to_download: List[str]) -> NoReturn:
|
||||
"""
|
||||
Download a list of files from the configured S3 bucket
|
||||
:param files_to_download: List of files to download
|
||||
|
||||
@@ -15,16 +15,33 @@ class ReflectorConfig:
|
||||
Create a single config object to share across the project
|
||||
"""
|
||||
__config = None
|
||||
__secrets = None
|
||||
|
||||
@staticmethod
|
||||
def get_config():
|
||||
"""
|
||||
Load the configurations from the local config.ini file
|
||||
:return:
|
||||
"""
|
||||
if ReflectorConfig.__config is None:
|
||||
ReflectorConfig.__config = configparser.ConfigParser()
|
||||
ReflectorConfig.__config.read('utils/config.ini')
|
||||
return ReflectorConfig.__config
|
||||
|
||||
@staticmethod
|
||||
def get_secrets():
|
||||
"""
|
||||
Load the configurations from the local config.ini file
|
||||
:return:
|
||||
"""
|
||||
if ReflectorConfig.__secrets is None:
|
||||
ReflectorConfig.__secrets = configparser.ConfigParser()
|
||||
ReflectorConfig.__secrets.read('utils/secrets.ini')
|
||||
return ReflectorConfig.__secrets
|
||||
|
||||
|
||||
CONFIG = ReflectorConfig.get_config()
|
||||
SECRETS = ReflectorConfig.get_secrets()
|
||||
|
||||
|
||||
def run_in_executor(func, *args, executor=None, **kwargs):
|
||||
|
||||
14
server/utils/secrets.ini.example
Normal file
14
server/utils/secrets.ini.example
Normal file
@@ -0,0 +1,14 @@
|
||||
[LLM]
|
||||
# LLM configs
|
||||
LLM_MACHINE_IP=
|
||||
LLM_MACHINE_PORT=
|
||||
|
||||
[AWS-S3]
|
||||
#AWSconfig
|
||||
AWS_ACCESS_KEY=
|
||||
AWS_SECRET_KEY=
|
||||
BUCKET_NAME=
|
||||
|
||||
[OPENAI]
|
||||
#ExportOpenAIAPIKey
|
||||
OPENAI_APIKEY=
|
||||
@@ -1,6 +1,8 @@
|
||||
"""
|
||||
Utility file for all text processing related functionalities
|
||||
"""
|
||||
import datetime
|
||||
from typing import List
|
||||
|
||||
import nltk
|
||||
import torch
|
||||
@@ -16,7 +18,12 @@ from run_utils import CONFIG
|
||||
nltk.download('punkt', quiet=True)
|
||||
|
||||
|
||||
def preprocess_sentence(sentence):
|
||||
def preprocess_sentence(sentence: str) -> str:
|
||||
"""
|
||||
Filter out undesirable tokens from thr sentence
|
||||
:param sentence:
|
||||
:return:
|
||||
"""
|
||||
stop_words = set(stopwords.words('english'))
|
||||
tokens = word_tokenize(sentence.lower())
|
||||
tokens = [token for token in tokens
|
||||
@@ -24,7 +31,7 @@ def preprocess_sentence(sentence):
|
||||
return ' '.join(tokens)
|
||||
|
||||
|
||||
def compute_similarity(sent1, sent2):
|
||||
def compute_similarity(sent1: str, sent2: str) -> float:
|
||||
"""
|
||||
Compute the similarity
|
||||
"""
|
||||
@@ -35,7 +42,7 @@ def compute_similarity(sent1, sent2):
|
||||
return 0.0
|
||||
|
||||
|
||||
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
def remove_almost_alike_sentences(sentences: List[str], threshold=0.7) -> List[str]:
|
||||
"""
|
||||
Filter sentences that are similar beyond a set threshold
|
||||
:param sentences:
|
||||
@@ -71,7 +78,7 @@ def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
return filtered_sentences
|
||||
|
||||
|
||||
def remove_outright_duplicate_sentences_from_chunk(chunk):
|
||||
def remove_outright_duplicate_sentences_from_chunk(chunk: str) -> List[str]:
|
||||
"""
|
||||
Remove repetitive sentences
|
||||
:param chunk:
|
||||
@@ -83,7 +90,7 @@ def remove_outright_duplicate_sentences_from_chunk(chunk):
|
||||
return nonduplicate_sentences
|
||||
|
||||
|
||||
def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
|
||||
def remove_whisper_repetitive_hallucination(nonduplicate_sentences: List[str]) -> List[str]:
|
||||
"""
|
||||
Remove sentences that are repeated as a result of Whisper
|
||||
hallucinations
|
||||
@@ -111,7 +118,7 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
|
||||
return chunk_sentences
|
||||
|
||||
|
||||
def post_process_transcription(whisper_result):
|
||||
def post_process_transcription(whisper_result: dict) -> dict:
|
||||
"""
|
||||
Parent function to perform post-processing on the transcription result
|
||||
:param whisper_result:
|
||||
@@ -131,7 +138,7 @@ def post_process_transcription(whisper_result):
|
||||
return whisper_result
|
||||
|
||||
|
||||
def summarize_chunks(chunks, tokenizer, model):
|
||||
def summarize_chunks(chunks: List[str], tokenizer, model) -> List[str]:
|
||||
"""
|
||||
Summarize each chunk using a summarizer model
|
||||
:param chunks:
|
||||
@@ -157,8 +164,8 @@ def summarize_chunks(chunks, tokenizer, model):
|
||||
return summaries
|
||||
|
||||
|
||||
def chunk_text(text,
|
||||
max_chunk_length=int(CONFIG["SUMMARIZER"]["MAX_CHUNK_LENGTH"])):
|
||||
def chunk_text(text: str,
|
||||
max_chunk_length: int = int(CONFIG["SUMMARIZER"]["MAX_CHUNK_LENGTH"])) -> List[str]:
|
||||
"""
|
||||
Split text into smaller chunks.
|
||||
:param text: Text to be chunked
|
||||
@@ -178,9 +185,9 @@ def chunk_text(text,
|
||||
return chunks
|
||||
|
||||
|
||||
def summarize(transcript_text, timestamp,
|
||||
real_time=False,
|
||||
chunk_summarize=CONFIG["SUMMARIZER"]["SUMMARIZE_USING_CHUNKS"]):
|
||||
def summarize(transcript_text: str, timestamp: datetime.datetime.timestamp,
|
||||
real_time: bool = False,
|
||||
chunk_summarize: str = CONFIG["SUMMARIZER"]["SUMMARIZE_USING_CHUNKS"]):
|
||||
"""
|
||||
Summarize the given text either as a whole or as chunks as needed
|
||||
:param transcript_text:
|
||||
|
||||
@@ -4,8 +4,10 @@ Utility file for all visualization related functions
|
||||
|
||||
import ast
|
||||
import collections
|
||||
import datetime
|
||||
import os
|
||||
import pickle
|
||||
from typing import NoReturn
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
@@ -21,7 +23,8 @@ STOPWORDS = set(STOPWORDS).union(set(stopwords.words("english"))). \
|
||||
union(set(spacy_stopwords))
|
||||
|
||||
|
||||
def create_wordcloud(timestamp, real_time=False):
|
||||
def create_wordcloud(timestamp: datetime.datetime.timestamp,
|
||||
real_time: bool = False) -> NoReturn:
|
||||
"""
|
||||
Create a basic word cloud visualization of transcribed text
|
||||
:return: None. The wordcloud image is saved locally
|
||||
@@ -52,14 +55,15 @@ def create_wordcloud(timestamp, real_time=False):
|
||||
wordcloud = "wordcloud"
|
||||
if real_time:
|
||||
wordcloud = "real_time_" + wordcloud + "_" + \
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
else:
|
||||
wordcloud += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
|
||||
plt.savefig("./artefacts/" + wordcloud)
|
||||
|
||||
|
||||
def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
def create_talk_diff_scatter_viz(timestamp: datetime.datetime.timestamp,
|
||||
real_time: bool = False) -> NoReturn:
|
||||
"""
|
||||
Perform agenda vs transcription diff to see covered topics.
|
||||
Create a scatter plot of words in topics.
|
||||
@@ -124,14 +128,16 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
covered_items[agenda[topic_similarities[i][0]]] = True
|
||||
# top1 match
|
||||
if i == 0:
|
||||
ts_to_topic_mapping_top_1[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
ts_to_topic_mapping_top_1[c["timestamp"]] = \
|
||||
agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_1[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
# top2 match
|
||||
else:
|
||||
ts_to_topic_mapping_top_2[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
ts_to_topic_mapping_top_2[c["timestamp"]] = \
|
||||
agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_2[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
|
||||
def create_new_columns(record):
|
||||
def create_new_columns(record: dict) -> dict:
|
||||
"""
|
||||
Accumulate the mapping information into the df
|
||||
:param record:
|
||||
@@ -210,8 +216,10 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
transform=st.Scalers.dense_rank
|
||||
)
|
||||
if real_time:
|
||||
open('./artefacts/real_time_scatter_' +
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
|
||||
with open('./artefacts/real_time_scatter_' +
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w') as file:
|
||||
file.write(html)
|
||||
else:
|
||||
open('./artefacts/scatter_' +
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
|
||||
with open('./artefacts/scatter_' +
|
||||
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w') as file:
|
||||
file.write(html)
|
||||
|
||||
Reference in New Issue
Block a user