mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
translation update
This commit is contained in:
@@ -3,19 +3,22 @@ Reflector GPU backend - transcriber
|
||||
===================================
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
import os
|
||||
from modal import Image, method, Stub, asgi_app, Secret
|
||||
import tempfile
|
||||
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Whisper
|
||||
WHISPER_MODEL: str = "large-v2"
|
||||
WHISPER_MODEL: str = "tiny"
|
||||
WHISPER_COMPUTE_TYPE: str = "float16"
|
||||
WHISPER_NUM_WORKERS: int = 1
|
||||
WHISPER_CACHE_DIR: str = "/cache/whisper"
|
||||
|
||||
stub = Stub(name="reflector-transcriber")
|
||||
# Translation Model
|
||||
TRANSLATION_MODEL = "facebook/m2m100_418M"
|
||||
|
||||
stub = Stub(name="reflector-translator")
|
||||
|
||||
|
||||
def download_whisper():
|
||||
@@ -31,6 +34,9 @@ whisper_image = (
|
||||
"faster-whisper",
|
||||
"requests",
|
||||
"torch",
|
||||
"transformers",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
)
|
||||
.run_function(download_whisper)
|
||||
.env(
|
||||
@@ -51,17 +57,21 @@ whisper_image = (
|
||||
)
|
||||
class Whisper:
|
||||
def __enter__(self):
|
||||
import torch
|
||||
import faster_whisper
|
||||
import torch
|
||||
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
device = "cuda" if self.use_gpu else "cpu"
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
WHISPER_MODEL,
|
||||
device=device,
|
||||
device=self.device,
|
||||
compute_type=WHISPER_COMPUTE_TYPE,
|
||||
num_workers=WHISPER_NUM_WORKERS,
|
||||
)
|
||||
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(TRANSLATION_MODEL).to(self.device)
|
||||
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(TRANSLATION_MODEL)
|
||||
|
||||
|
||||
@method()
|
||||
def warmup(self):
|
||||
@@ -73,27 +83,29 @@ class Whisper:
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
timestamp: float = 0,
|
||||
language: str = "en",
|
||||
source_language: str = "en",
|
||||
target_language: str = "fr"
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
language=source_language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
transcript = ""
|
||||
multilingual_transcript = {}
|
||||
transcript_en = ""
|
||||
words = []
|
||||
if segments:
|
||||
segments = list(segments)
|
||||
|
||||
for segment in segments:
|
||||
transcript += segment.text
|
||||
transcript_en += segment.text
|
||||
for word in segment.words:
|
||||
words.append(
|
||||
{
|
||||
@@ -102,9 +114,23 @@ class Whisper:
|
||||
"end": round(timestamp + word.end, 3),
|
||||
}
|
||||
)
|
||||
|
||||
multilingual_transcript["en"] = transcript_en
|
||||
|
||||
if target_language != "en":
|
||||
self.translation_tokenizer.src_lang = source_language
|
||||
forced_bos_token_id = self.translation_tokenizer.get_lang_id(target_language)
|
||||
encoded_transcript = self.translation_tokenizer(transcript_en, return_tensors="pt").to(self.device)
|
||||
generated_tokens = self.translation_model.generate(
|
||||
**encoded_transcript,
|
||||
forced_bos_token_id=forced_bos_token_id
|
||||
)
|
||||
result = self.translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
multilingual_transcript[target_language] = result[0].strip()
|
||||
|
||||
return {
|
||||
"text": transcript,
|
||||
"words": words,
|
||||
"text": multilingual_transcript,
|
||||
"words": words
|
||||
}
|
||||
|
||||
|
||||
@@ -122,7 +148,7 @@ class Whisper:
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
from fastapi import FastAPI, UploadFile, Form, Depends, HTTPException, status
|
||||
from fastapi import Depends, FastAPI, Form, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
@@ -131,6 +157,7 @@ def web():
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
supported_audio_file_types = ["wav", "mp3", "ogg", "flac"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
@@ -141,27 +168,28 @@ def web():
|
||||
)
|
||||
|
||||
class TranscriptionRequest(BaseModel):
|
||||
timestamp: float = 0
|
||||
language: str = "en"
|
||||
file: UploadFile
|
||||
timestamp: Annotated[float, Form()] = 0
|
||||
source_language: Annotated[str, Form()] = "en"
|
||||
target_language: Annotated[str, Form()] = "en"
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: str
|
||||
result: dict
|
||||
|
||||
@app.post("/transcribe", dependencies=[Depends(apikey_auth)])
|
||||
async def transcribe(
|
||||
file: UploadFile,
|
||||
timestamp: Annotated[float, Form()] = 0,
|
||||
language: Annotated[str, Form()] = "en",
|
||||
req
|
||||
):
|
||||
audio_data = await file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in ["wav", "mp3", "ogg", "flac"]
|
||||
print(req)
|
||||
audio_data = await req.file.read()
|
||||
audio_suffix = req.file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_audio_file_types
|
||||
|
||||
func = transcriberstub.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
timestamp=timestamp,
|
||||
source_language="en",
|
||||
timestamp=req.timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
Reference in New Issue
Block a user