mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 12:19:06 +00:00
feat: llm retries (#739)
* llm retries no-mistakes * self-review (no-mistakes) * self-review (no-mistakes) * bigger retry intervals by default * tests and dry * restore to main state * parse retries * json retries (no-mistakes) * json retries (no-mistakes) * json retries (no-mistakes) * json retries (no-mistakes) self-review * additional network retry test * more lindt --------- Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
@@ -126,6 +126,7 @@ markers = [
|
||||
select = [
|
||||
"I", # isort - import sorting
|
||||
"F401", # unused imports
|
||||
"E402", # module level import not at top of file
|
||||
"PLC0415", # import-outside-top-level - detect inline imports
|
||||
]
|
||||
|
||||
|
||||
@@ -1,13 +1,19 @@
|
||||
import asyncio
|
||||
import functools
|
||||
from uuid import uuid4
|
||||
|
||||
from celery import current_task
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.llm import llm_session_id
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
task_id = current_task.request.id if current_task else None
|
||||
llm_session_id.set(task_id or f"random-{uuid4().hex}")
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
|
||||
@@ -1,14 +1,29 @@
|
||||
import logging
|
||||
from typing import Type, TypeVar
|
||||
from contextvars import ContextVar
|
||||
from typing import Generic, Type, TypeVar
|
||||
from uuid import uuid4
|
||||
|
||||
from llama_index.core import Settings
|
||||
from llama_index.core.output_parsers import PydanticOutputParser
|
||||
from llama_index.core.program import LLMTextCompletionProgram
|
||||
from llama_index.core.response_synthesizers import TreeSummarize
|
||||
from llama_index.core.workflow import (
|
||||
Context,
|
||||
Event,
|
||||
StartEvent,
|
||||
StopEvent,
|
||||
Workflow,
|
||||
step,
|
||||
)
|
||||
from llama_index.llms.openai_like import OpenAILike
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
OutputT = TypeVar("OutputT", bound=BaseModel)
|
||||
|
||||
# Session ID for LiteLLM request grouping - set per processing run
|
||||
llm_session_id: ContextVar[str | None] = ContextVar("llm_session_id", default=None)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = """
|
||||
Based on the following analysis, provide the information in the requested JSON format:
|
||||
@@ -20,6 +35,158 @@ Analysis:
|
||||
"""
|
||||
|
||||
|
||||
class LLMParseError(Exception):
|
||||
"""Raised when LLM output cannot be parsed after retries."""
|
||||
|
||||
def __init__(self, output_cls: Type[BaseModel], error_msg: str, attempts: int):
|
||||
self.output_cls = output_cls
|
||||
self.error_msg = error_msg
|
||||
self.attempts = attempts
|
||||
super().__init__(
|
||||
f"Failed to parse {output_cls.__name__} after {attempts} attempts: {error_msg}"
|
||||
)
|
||||
|
||||
|
||||
class ExtractionDone(Event):
|
||||
"""Event emitted when LLM JSON formatting completes."""
|
||||
|
||||
output: str
|
||||
|
||||
|
||||
class ValidationErrorEvent(Event):
|
||||
"""Event emitted when validation fails."""
|
||||
|
||||
error: str
|
||||
wrong_output: str
|
||||
|
||||
|
||||
class StructuredOutputWorkflow(Workflow, Generic[OutputT]):
|
||||
"""Workflow for structured output extraction with validation retry.
|
||||
|
||||
This workflow handles parse/validation retries only. Network error retries
|
||||
are handled internally by Settings.llm (OpenAILike max_retries=3).
|
||||
The caller should NOT wrap this workflow in additional retry logic.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
output_cls: Type[OutputT],
|
||||
max_retries: int = 3,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.output_cls: Type[OutputT] = output_cls
|
||||
self.max_retries = max_retries
|
||||
self.output_parser = PydanticOutputParser(output_cls)
|
||||
|
||||
@step
|
||||
async def extract(
|
||||
self, ctx: Context, ev: StartEvent | ValidationErrorEvent
|
||||
) -> StopEvent | ExtractionDone:
|
||||
"""Extract structured data from text using two-step LLM process.
|
||||
|
||||
Step 1 (first call only): TreeSummarize generates text analysis
|
||||
Step 2 (every call): Settings.llm.acomplete formats analysis as JSON
|
||||
"""
|
||||
current_retries = await ctx.store.get("retries", default=0)
|
||||
await ctx.store.set("retries", current_retries + 1)
|
||||
|
||||
if current_retries >= self.max_retries:
|
||||
last_error = await ctx.store.get("last_error", default=None)
|
||||
logger.error(
|
||||
f"Max retries ({self.max_retries}) reached for {self.output_cls.__name__}"
|
||||
)
|
||||
return StopEvent(result={"error": last_error, "attempts": current_retries})
|
||||
|
||||
if isinstance(ev, StartEvent):
|
||||
# First call: run TreeSummarize to get analysis, store in context
|
||||
prompt = ev.get("prompt")
|
||||
texts = ev.get("texts")
|
||||
tone_name = ev.get("tone_name")
|
||||
if not prompt or not isinstance(texts, list):
|
||||
raise ValueError(
|
||||
"StartEvent must contain 'prompt' (str) and 'texts' (list)"
|
||||
)
|
||||
|
||||
summarizer = TreeSummarize(verbose=False)
|
||||
analysis = await summarizer.aget_response(
|
||||
prompt, texts, tone_name=tone_name
|
||||
)
|
||||
await ctx.store.set("analysis", str(analysis))
|
||||
reflection = ""
|
||||
else:
|
||||
# Retry: reuse analysis from context
|
||||
analysis = await ctx.store.get("analysis")
|
||||
if not analysis:
|
||||
raise RuntimeError("Internal error: analysis not found in context")
|
||||
|
||||
wrong_output = ev.wrong_output
|
||||
if len(wrong_output) > 2000:
|
||||
wrong_output = wrong_output[:2000] + "... [truncated]"
|
||||
reflection = (
|
||||
f"\n\nYour previous response could not be parsed:\n{wrong_output}\n\n"
|
||||
f"Error:\n{ev.error}\n\n"
|
||||
"Please try again. Return ONLY valid JSON matching the schema above, "
|
||||
"with no markdown formatting or extra text."
|
||||
)
|
||||
|
||||
# Step 2: Format analysis as JSON using LLM completion
|
||||
format_instructions = self.output_parser.format(
|
||||
"Please structure the above information in the following JSON format:"
|
||||
)
|
||||
|
||||
json_prompt = STRUCTURED_RESPONSE_PROMPT_TEMPLATE.format(
|
||||
analysis=analysis,
|
||||
format_instructions=format_instructions + reflection,
|
||||
)
|
||||
|
||||
# Network retries handled by OpenAILike (max_retries=3)
|
||||
response = await Settings.llm.acomplete(json_prompt)
|
||||
return ExtractionDone(output=response.text)
|
||||
|
||||
@step
|
||||
async def validate(
|
||||
self, ctx: Context, ev: ExtractionDone
|
||||
) -> StopEvent | ValidationErrorEvent:
|
||||
"""Validate extracted output against Pydantic schema."""
|
||||
raw_output = ev.output
|
||||
retries = await ctx.store.get("retries", default=0)
|
||||
|
||||
try:
|
||||
parsed = self.output_parser.parse(raw_output)
|
||||
if retries > 1:
|
||||
logger.info(
|
||||
f"LLM parse succeeded on attempt {retries}/{self.max_retries} "
|
||||
f"for {self.output_cls.__name__}"
|
||||
)
|
||||
return StopEvent(result={"success": parsed})
|
||||
|
||||
except (ValidationError, ValueError) as e:
|
||||
error_msg = self._format_error(e, raw_output)
|
||||
await ctx.store.set("last_error", error_msg)
|
||||
|
||||
logger.error(
|
||||
f"LLM parse error (attempt {retries}/{self.max_retries}): "
|
||||
f"{type(e).__name__}: {e}\nRaw response: {raw_output[:500]}"
|
||||
)
|
||||
|
||||
return ValidationErrorEvent(
|
||||
error=error_msg,
|
||||
wrong_output=raw_output,
|
||||
)
|
||||
|
||||
def _format_error(self, error: Exception, raw_output: str) -> str:
|
||||
"""Format error for LLM feedback."""
|
||||
if isinstance(error, ValidationError):
|
||||
error_messages = []
|
||||
for err in error.errors():
|
||||
field = ".".join(str(loc) for loc in err["loc"])
|
||||
error_messages.append(f"- {err['msg']} in field '{field}'")
|
||||
return "Schema validation errors:\n" + "\n".join(error_messages)
|
||||
else:
|
||||
return f"Parse error: {str(error)}"
|
||||
|
||||
|
||||
class LLM:
|
||||
def __init__(self, settings, temperature: float = 0.4, max_tokens: int = 2048):
|
||||
self.settings_obj = settings
|
||||
@@ -30,11 +197,12 @@ class LLM:
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
# Configure llamaindex Settings
|
||||
self._configure_llamaindex()
|
||||
|
||||
def _configure_llamaindex(self):
|
||||
"""Configure llamaindex Settings with OpenAILike LLM"""
|
||||
session_id = llm_session_id.get() or f"fallback-{uuid4().hex}"
|
||||
|
||||
Settings.llm = OpenAILike(
|
||||
model=self.model_name,
|
||||
api_base=self.url,
|
||||
@@ -44,6 +212,7 @@ class LLM:
|
||||
is_function_calling_model=False,
|
||||
temperature=self.temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
additional_kwargs={"extra_body": {"litellm_session_id": session_id}},
|
||||
)
|
||||
|
||||
async def get_response(
|
||||
@@ -61,43 +230,25 @@ class LLM:
|
||||
output_cls: Type[T],
|
||||
tone_name: str | None = None,
|
||||
) -> T:
|
||||
"""Get structured output from LLM for non-function-calling models"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
summarizer = TreeSummarize(verbose=True)
|
||||
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
|
||||
|
||||
output_parser = PydanticOutputParser(output_cls)
|
||||
|
||||
program = LLMTextCompletionProgram.from_defaults(
|
||||
output_parser=output_parser,
|
||||
prompt_template_str=STRUCTURED_RESPONSE_PROMPT_TEMPLATE,
|
||||
verbose=False,
|
||||
"""Get structured output from LLM with validation retry via Workflow."""
|
||||
workflow = StructuredOutputWorkflow(
|
||||
output_cls=output_cls,
|
||||
max_retries=self.settings_obj.LLM_PARSE_MAX_RETRIES + 1,
|
||||
timeout=120,
|
||||
)
|
||||
|
||||
format_instructions = output_parser.format(
|
||||
"Please structure the above information in the following JSON format:"
|
||||
result = await workflow.run(
|
||||
prompt=prompt,
|
||||
texts=texts,
|
||||
tone_name=tone_name,
|
||||
)
|
||||
|
||||
try:
|
||||
output = await program.acall(
|
||||
analysis=str(response), format_instructions=format_instructions
|
||||
if "error" in result:
|
||||
error_msg = result["error"] or "Max retries exceeded"
|
||||
raise LLMParseError(
|
||||
output_cls=output_cls,
|
||||
error_msg=error_msg,
|
||||
attempts=result.get("attempts", 0),
|
||||
)
|
||||
except ValidationError as e:
|
||||
# Extract the raw JSON from the error details
|
||||
errors = e.errors()
|
||||
if errors and "input" in errors[0]:
|
||||
raw_json = errors[0]["input"]
|
||||
logger.error(
|
||||
f"JSON validation failed for {output_cls.__name__}. "
|
||||
f"Full raw JSON output:\n{raw_json}\n"
|
||||
f"Validation errors: {errors}"
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"JSON validation failed for {output_cls.__name__}. "
|
||||
f"Validation errors: {errors}"
|
||||
)
|
||||
raise
|
||||
|
||||
return output
|
||||
return result["success"]
|
||||
|
||||
@@ -340,7 +340,6 @@ async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||
@asynctask
|
||||
async def task_pipeline_file_process(*, transcript_id: str):
|
||||
"""Celery task for file pipeline processing"""
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
@@ -74,6 +74,10 @@ class Settings(BaseSettings):
|
||||
LLM_API_KEY: str | None = None
|
||||
LLM_CONTEXT_WINDOW: int = 16000
|
||||
|
||||
LLM_PARSE_MAX_RETRIES: int = (
|
||||
3 # Max retries for JSON/validation errors (total attempts = retries + 1)
|
||||
)
|
||||
|
||||
# Diarization
|
||||
DIARIZATION_ENABLED: bool = True
|
||||
DIARIZATION_BACKEND: str = "modal"
|
||||
|
||||
@@ -318,6 +318,14 @@ async def dummy_storage():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_settings():
|
||||
"""Provide isolated settings for tests to avoid modifying global settings"""
|
||||
from reflector.settings import Settings
|
||||
|
||||
return Settings()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def celery_enable_logging():
|
||||
return True
|
||||
|
||||
357
server/tests/test_llm_retry.py
Normal file
357
server/tests/test_llm_retry.py
Normal file
@@ -0,0 +1,357 @@
|
||||
"""Tests for LLM parse error recovery using llama-index Workflow"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
from workflows.errors import WorkflowRuntimeError
|
||||
|
||||
from reflector.llm import LLM, LLMParseError, StructuredOutputWorkflow
|
||||
|
||||
|
||||
class TestResponse(BaseModel):
|
||||
"""Test response model for structured output"""
|
||||
|
||||
title: str = Field(description="A title")
|
||||
summary: str = Field(description="A summary")
|
||||
confidence: float = Field(description="Confidence score", ge=0, le=1)
|
||||
|
||||
|
||||
def make_completion_response(text: str):
|
||||
"""Create a mock CompletionResponse with .text attribute"""
|
||||
response = MagicMock()
|
||||
response.text = text
|
||||
return response
|
||||
|
||||
|
||||
class TestLLMParseErrorRecovery:
|
||||
"""Test parse error recovery with Workflow feedback loop"""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_parse_error_recovery_with_feedback(self, test_settings):
|
||||
"""Test that parse errors trigger retry with error feedback"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
# TreeSummarize returns plain text analysis (step 1)
|
||||
mock_summarizer.aget_response = AsyncMock(
|
||||
return_value="The analysis shows a test with summary and high confidence."
|
||||
)
|
||||
|
||||
call_count = {"count": 0}
|
||||
|
||||
async def acomplete_handler(prompt, *args, **kwargs):
|
||||
call_count["count"] += 1
|
||||
if call_count["count"] == 1:
|
||||
# First JSON formatting call returns invalid JSON
|
||||
return make_completion_response('{"title": "Test"}')
|
||||
else:
|
||||
# Second call should have error feedback in prompt
|
||||
assert "Your previous response could not be parsed:" in prompt
|
||||
assert '{"title": "Test"}' in prompt
|
||||
assert "Error:" in prompt
|
||||
assert "Please try again" in prompt
|
||||
return make_completion_response(
|
||||
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
|
||||
)
|
||||
|
||||
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
|
||||
|
||||
result = await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
assert result.title == "Test"
|
||||
assert result.summary == "Summary"
|
||||
assert result.confidence == 0.95
|
||||
# TreeSummarize called once, Settings.llm.acomplete called twice
|
||||
assert mock_summarizer.aget_response.call_count == 1
|
||||
assert call_count["count"] == 2
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_max_parse_retry_attempts(self, test_settings):
|
||||
"""Test that parse error retry stops after max attempts"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
# Always return invalid JSON from acomplete
|
||||
mock_settings.llm.acomplete = AsyncMock(
|
||||
return_value=make_completion_response(
|
||||
'{"invalid": "missing required fields"}'
|
||||
)
|
||||
)
|
||||
|
||||
with pytest.raises(LLMParseError, match="Failed to parse"):
|
||||
await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
expected_attempts = test_settings.LLM_PARSE_MAX_RETRIES + 1
|
||||
# TreeSummarize called once, acomplete called max_retries times
|
||||
assert mock_summarizer.aget_response.call_count == 1
|
||||
assert mock_settings.llm.acomplete.call_count == expected_attempts
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_raw_response_logging_on_parse_error(self, test_settings, caplog):
|
||||
"""Test that raw response is logged when parse error occurs"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
caplog.at_level("ERROR"),
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
call_count = {"count": 0}
|
||||
|
||||
async def acomplete_handler(*args, **kwargs):
|
||||
call_count["count"] += 1
|
||||
if call_count["count"] == 1:
|
||||
return make_completion_response('{"title": "Test"}') # Invalid
|
||||
return make_completion_response(
|
||||
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
|
||||
)
|
||||
|
||||
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
|
||||
|
||||
result = await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
assert result.title == "Test"
|
||||
|
||||
error_logs = [r for r in caplog.records if r.levelname == "ERROR"]
|
||||
raw_response_logged = any("Raw response:" in r.message for r in error_logs)
|
||||
assert raw_response_logged, "Raw response should be logged on parse error"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_multiple_validation_errors_in_feedback(self, test_settings):
|
||||
"""Test that validation errors are included in feedback"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
call_count = {"count": 0}
|
||||
|
||||
async def acomplete_handler(prompt, *args, **kwargs):
|
||||
call_count["count"] += 1
|
||||
if call_count["count"] == 1:
|
||||
# Missing title and summary
|
||||
return make_completion_response('{"confidence": 0.5}')
|
||||
else:
|
||||
# Should have schema validation errors in prompt
|
||||
assert (
|
||||
"Schema validation errors" in prompt
|
||||
or "error" in prompt.lower()
|
||||
)
|
||||
return make_completion_response(
|
||||
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
|
||||
)
|
||||
|
||||
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
|
||||
|
||||
result = await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
assert result.title == "Test"
|
||||
assert call_count["count"] == 2
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_success_on_first_attempt(self, test_settings):
|
||||
"""Test that no retry happens when first attempt succeeds"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
mock_settings.llm.acomplete = AsyncMock(
|
||||
return_value=make_completion_response(
|
||||
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
|
||||
)
|
||||
)
|
||||
|
||||
result = await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
assert result.title == "Test"
|
||||
assert result.summary == "Summary"
|
||||
assert result.confidence == 0.95
|
||||
assert mock_summarizer.aget_response.call_count == 1
|
||||
assert mock_settings.llm.acomplete.call_count == 1
|
||||
|
||||
|
||||
class TestStructuredOutputWorkflow:
|
||||
"""Direct tests for the StructuredOutputWorkflow"""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_workflow_retries_on_validation_error(self):
|
||||
"""Test workflow retries when validation fails"""
|
||||
workflow = StructuredOutputWorkflow(
|
||||
output_cls=TestResponse,
|
||||
max_retries=3,
|
||||
timeout=30,
|
||||
)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
call_count = {"count": 0}
|
||||
|
||||
async def acomplete_handler(*args, **kwargs):
|
||||
call_count["count"] += 1
|
||||
if call_count["count"] < 2:
|
||||
return make_completion_response('{"title": "Only title"}')
|
||||
return make_completion_response(
|
||||
'{"title": "Test", "summary": "Summary", "confidence": 0.9}'
|
||||
)
|
||||
|
||||
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
|
||||
|
||||
result = await workflow.run(
|
||||
prompt="Extract data",
|
||||
texts=["Some text"],
|
||||
tone_name=None,
|
||||
)
|
||||
|
||||
assert "success" in result
|
||||
assert result["success"].title == "Test"
|
||||
assert call_count["count"] == 2
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_workflow_returns_error_after_max_retries(self):
|
||||
"""Test workflow returns error after exhausting retries"""
|
||||
workflow = StructuredOutputWorkflow(
|
||||
output_cls=TestResponse,
|
||||
max_retries=2,
|
||||
timeout=30,
|
||||
)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
# Always return invalid JSON
|
||||
mock_settings.llm.acomplete = AsyncMock(
|
||||
return_value=make_completion_response('{"invalid": true}')
|
||||
)
|
||||
|
||||
result = await workflow.run(
|
||||
prompt="Extract data",
|
||||
texts=["Some text"],
|
||||
tone_name=None,
|
||||
)
|
||||
|
||||
assert "error" in result
|
||||
# TreeSummarize called once, acomplete called max_retries times
|
||||
assert mock_summarizer.aget_response.call_count == 1
|
||||
assert mock_settings.llm.acomplete.call_count == 2
|
||||
|
||||
|
||||
class TestNetworkErrorRetries:
|
||||
"""Test that network error retries are handled by OpenAILike, not Workflow"""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_network_error_propagates_after_openai_retries(self, test_settings):
|
||||
"""Test that network errors are retried by OpenAILike and then propagate.
|
||||
|
||||
Network retries are handled by OpenAILike (max_retries=3), not by our
|
||||
StructuredOutputWorkflow. This test verifies that network errors propagate
|
||||
up after OpenAILike exhausts its retries.
|
||||
"""
|
||||
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
# Simulate network error from acomplete (after OpenAILike retries exhausted)
|
||||
network_error = ConnectionError("Connection refused")
|
||||
mock_settings.llm.acomplete = AsyncMock(side_effect=network_error)
|
||||
|
||||
# Network error wrapped in WorkflowRuntimeError
|
||||
with pytest.raises(WorkflowRuntimeError, match="Connection refused"):
|
||||
await llm.get_structured_response(
|
||||
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
|
||||
)
|
||||
|
||||
# acomplete called only once - network error propagates, not retried by Workflow
|
||||
assert mock_settings.llm.acomplete.call_count == 1
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_network_error_not_retried_by_workflow(self, test_settings):
|
||||
"""Test that Workflow does NOT retry network errors (OpenAILike handles those).
|
||||
|
||||
This verifies the separation of concerns:
|
||||
- StructuredOutputWorkflow: retries parse/validation errors
|
||||
- OpenAILike: retries network errors (internally, max_retries=3)
|
||||
"""
|
||||
workflow = StructuredOutputWorkflow(
|
||||
output_cls=TestResponse,
|
||||
max_retries=3,
|
||||
timeout=30,
|
||||
)
|
||||
|
||||
with (
|
||||
patch("reflector.llm.TreeSummarize") as mock_summarize,
|
||||
patch("reflector.llm.Settings") as mock_settings,
|
||||
):
|
||||
mock_summarizer = MagicMock()
|
||||
mock_summarize.return_value = mock_summarizer
|
||||
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
|
||||
|
||||
# Network error should propagate immediately, not trigger Workflow retry
|
||||
mock_settings.llm.acomplete = AsyncMock(
|
||||
side_effect=TimeoutError("Request timed out")
|
||||
)
|
||||
|
||||
# Network error wrapped in WorkflowRuntimeError
|
||||
with pytest.raises(WorkflowRuntimeError, match="Request timed out"):
|
||||
await workflow.run(
|
||||
prompt="Extract data",
|
||||
texts=["Some text"],
|
||||
tone_name=None,
|
||||
)
|
||||
|
||||
# Only called once - Workflow doesn't retry network errors
|
||||
assert mock_settings.llm.acomplete.call_count == 1
|
||||
Reference in New Issue
Block a user