Translation enhancements (#247)

This commit is contained in:
projects-g
2023-09-26 19:49:54 +05:30
committed by GitHub
parent 4dbec9b154
commit 6a43297309
11 changed files with 303 additions and 126 deletions

View File

@@ -14,40 +14,52 @@ WHISPER_MODEL: str = "large-v2"
WHISPER_COMPUTE_TYPE: str = "float16"
WHISPER_NUM_WORKERS: int = 1
# Translation Model
TRANSLATION_MODEL = "facebook/m2m100_1.2B"
# Seamless M4T
SEAMLESSM4T_MODEL_SIZE: str = "medium"
SEAMLESSM4T_MODEL_CARD_NAME: str = f"seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}"
SEAMLESSM4T_VOCODER_CARD_NAME: str = "vocoder_36langs"
IMAGE_MODEL_DIR = f"/root/transcription_models/{TRANSLATION_MODEL}"
HF_SEAMLESS_M4TEPO: str = f"facebook/seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}"
HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
SEAMLESS_MODEL_DIR: str = "m4t"
WHISPER_MODEL_DIR = "/root/transcription_models"
stub = Stub(name="reflector-transcriber")
def download_whisper(cache_dir: str | None = None):
def install_seamless_communication():
import os
import subprocess
initial_dir = os.getcwd()
subprocess.run(["ssh-keyscan", "-t", "rsa", "github.com", ">>", "~/.ssh/known_hosts"])
subprocess.run(["rm", "-rf", "seamless_communication"])
subprocess.run(["git", "clone", SEAMLESS_GITEPO, "." + "/seamless_communication"])
os.chdir("seamless_communication")
subprocess.run(["pip", "install", "-e", "."])
os.chdir(initial_dir)
def download_whisper():
from faster_whisper.utils import download_model
print("Downloading Whisper model")
download_model(WHISPER_MODEL, cache_dir=cache_dir)
download_model(WHISPER_MODEL, cache_dir=WHISPER_MODEL_DIR)
print("Whisper model downloaded")
def download_translation_model(cache_dir: str | None = None):
def download_seamlessm4t_model():
from huggingface_hub import snapshot_download
print("Downloading Translation model")
ignore_patterns = ["*.ot"]
snapshot_download(
TRANSLATION_MODEL,
cache_dir=cache_dir,
ignore_patterns=ignore_patterns
)
print("Translation model downloaded")
print("Downloading Transcriber model & tokenizer")
snapshot_download(HF_SEAMLESS_M4TEPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Transcriber model & tokenizer downloaded")
def download_models():
print(f"Downloading models to {IMAGE_MODEL_DIR=}")
download_whisper(cache_dir=IMAGE_MODEL_DIR)
download_translation_model(cache_dir=IMAGE_MODEL_DIR)
print(f"Model downloads complete.")
print("Downloading vocoder weights")
snapshot_download(HF_SEAMLESS_M4T_VOCODEREPO, cache_dir=SEAMLESS_MODEL_DIR)
print("Vocoder weights downloaded")
def migrate_cache_llm():
@@ -60,13 +72,61 @@ def migrate_cache_llm():
from transformers.utils.hub import move_cache
print("Moving LLM cache")
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
move_cache(cache_dir=WHISPER_MODEL_DIR, new_cache_dir=WHISPER_MODEL_DIR)
print("LLM cache moved")
whisper_image = (
def configure_seamless_m4t():
import os
import yaml
ASSETS_DIR: str = "./seamless_communication/src/seamless_communication/assets/cards"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'r') as file:
model_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'r') as file:
vocoder_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'r') as file:
unity_100_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'r') as file:
unity_200_yaml_data = yaml.load(file, Loader=yaml.FullLoader)
model_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-{SEAMLESSM4T_MODEL_SIZE}/snapshots"
available_model_versions = os.listdir(model_dir)
latest_model_version = sorted(available_model_versions)[-1]
model_name = f"multitask_unity_{SEAMLESSM4T_MODEL_SIZE}.pt"
model_path = os.path.join(os.getcwd(), model_dir, latest_model_version, model_name)
vocoder_dir = f"{SEAMLESS_MODEL_DIR}/models--facebook--seamless-m4t-vocoder/snapshots"
available_vocoder_versions = os.listdir(vocoder_dir)
latest_vocoder_version = sorted(available_vocoder_versions)[-1]
vocoder_name = "vocoder_36langs.pt"
vocoder_path = os.path.join(os.getcwd(), vocoder_dir, latest_vocoder_version, vocoder_name)
tokenizer_name = "tokenizer.model"
tokenizer_path = os.path.join(os.getcwd(), model_dir, latest_model_version, tokenizer_name)
model_yaml_data['checkpoint'] = f"file:/{model_path}"
vocoder_yaml_data['checkpoint'] = f"file:/{vocoder_path}"
unity_100_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
unity_200_yaml_data['tokenizer'] = f"file:/{tokenizer_path}"
with open(f'{ASSETS_DIR}/seamlessM4T_{SEAMLESSM4T_MODEL_SIZE}.yaml', 'w') as file:
yaml.dump(model_yaml_data, file)
with open(f'{ASSETS_DIR}/vocoder_36langs.yaml', 'w') as file:
yaml.dump(vocoder_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-100.yaml', 'w') as file:
yaml.dump(unity_100_yaml_data, file)
with open(f'{ASSETS_DIR}/unity_nllb-200.yaml', 'w') as file:
yaml.dump(unity_200_yaml_data, file)
transcriber_image = (
Image.debian_slim(python_version="3.10.8")
.apt_install("git")
.apt_install("wget")
.apt_install("libsndfile-dev")
.pip_install(
"faster-whisper",
"requests",
@@ -75,8 +135,16 @@ whisper_image = (
"sentencepiece",
"protobuf",
"huggingface_hub==0.16.4",
"gitpython",
"torchaudio",
"fairseq2",
"pyyaml",
"hf-transfer~=0.1"
)
.run_function(download_models)
.run_function(install_seamless_communication)
.run_function(download_seamlessm4t_model)
.run_function(configure_seamless_m4t)
.run_function(download_whisper)
.run_function(migrate_cache_llm)
.env(
{
@@ -90,15 +158,17 @@ whisper_image = (
@stub.cls(
gpu="A10G",
container_idle_timeout=60,
image=whisper_image,
gpu="A100",
timeout=60 * 5,
container_idle_timeout=60 * 5,
concurrency_limit=3,
image=transcriber_image,
)
class Whisper:
class Transcriber:
def __enter__(self):
import faster_whisper
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from seamless_communication.models.inference.translator import Translator
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
@@ -107,15 +177,13 @@ class Whisper:
device=self.device,
compute_type=WHISPER_COMPUTE_TYPE,
num_workers=WHISPER_NUM_WORKERS,
download_root=IMAGE_MODEL_DIR
download_root=WHISPER_MODEL_DIR
)
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(
TRANSLATION_MODEL,
cache_dir=IMAGE_MODEL_DIR
).to(self.device)
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(
TRANSLATION_MODEL,
cache_dir=IMAGE_MODEL_DIR
self.translator = Translator(
SEAMLESSM4T_MODEL_CARD_NAME,
SEAMLESSM4T_VOCODER_CARD_NAME,
torch.device(self.device),
dtype=torch.float32
)
@method()
@@ -128,7 +196,6 @@ class Whisper:
audio_data: str,
audio_suffix: str,
source_language: str,
target_language: str,
timestamp: float = 0
):
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
@@ -162,25 +229,43 @@ class Whisper:
multilingual_transcript[source_language] = transcript_source_lang
if target_language != source_language:
self.translation_tokenizer.src_lang = source_language
forced_bos_token_id = self.translation_tokenizer.get_lang_id(target_language)
encoded_transcript = self.translation_tokenizer(transcript_source_lang, return_tensors="pt").to(self.device)
generated_tokens = self.translation_model.generate(
**encoded_transcript,
forced_bos_token_id=forced_bos_token_id
)
result = self.translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
translation = result[0].strip()
multilingual_transcript[target_language] = translation
return {
"text": multilingual_transcript,
"words": words
}
def get_seamless_lang_code(self, lang_code: str):
"""
The codes for SeamlessM4T is different from regular standards.
For ex, French is "fra" and not "fr".
"""
# TODO: Enhance with complete list of lang codes
seamless_lang_code = {
"en": "eng",
"fr": "fra"
}
return seamless_lang_code.get(lang_code, "eng")
@method()
def translate_text(
self,
text: str,
source_language: str,
target_language: str
):
translated_text, _, _ = self.translator.predict(
text,
"t2tt",
src_lang=self.get_seamless_lang_code(source_language),
tgt_lang=self.get_seamless_lang_code(target_language),
ngram_filtering=True
)
return {
"text": {
source_language: text,
target_language: str(translated_text)
}
}
# -------------------------------------------------------------------
# Web API
# -------------------------------------------------------------------
@@ -199,7 +284,7 @@ def web():
from fastapi.security import OAuth2PasswordBearer
from typing_extensions import Annotated
transcriberstub = Whisper()
transcriberstub = Transcriber()
app = FastAPI()
@@ -221,7 +306,6 @@ def web():
async def transcribe(
file: UploadFile,
source_language: Annotated[str, Body(...)] = "en",
target_language: Annotated[str, Body(...)] = "en",
timestamp: Annotated[float, Body()] = 0.0
) -> TranscriptResponse:
audio_data = await file.read()
@@ -232,12 +316,25 @@ def web():
audio_data=audio_data,
audio_suffix=audio_suffix,
source_language=source_language,
target_language=target_language,
timestamp=timestamp
)
result = func.get()
return result
@app.post("/translate", dependencies=[Depends(apikey_auth)])
async def translate(
text: str,
source_language: Annotated[str, Body(...)] = "en",
target_language: Annotated[str, Body(...)] = "fr",
) -> TranscriptResponse:
func = transcriberstub.translate_text.spawn(
text=text,
source_language=source_language,
target_language=target_language,
)
result = func.get()
return result
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
async def warmup():
return transcriberstub.warmup.spawn().get()