gpu: improve concurrency on modal - coauthored with Gokul (#286)

This commit is contained in:
2023-10-13 21:15:57 +02:00
committed by GitHub
parent 1d92d43fe0
commit 6c1869b79a
4 changed files with 86 additions and 72 deletions

View File

@@ -5,6 +5,7 @@ Reflector GPU backend - LLM
"""
import json
import os
import threading
from typing import Optional
import modal
@@ -67,7 +68,7 @@ llm_image = (
gpu="A100",
timeout=60 * 5,
container_idle_timeout=60 * 5,
concurrency_limit=2,
allow_concurrent_inputs=15,
image=llm_image,
)
class LLM:
@@ -108,6 +109,8 @@ class LLM:
self.gen_cfg = gen_cfg
self.GenerationConfig = GenerationConfig
self.lock = threading.Lock()
def __exit__(self, *args):
print("Exit llm")
@@ -123,30 +126,31 @@ class LLM:
gen_cfg = self.gen_cfg
# If a gen_schema is given, conform to gen_schema
if gen_schema:
import jsonformer
with self.lock:
if gen_schema:
import jsonformer
print(f"Schema {gen_schema=}")
jsonformer_llm = jsonformer.Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=json.loads(gen_schema),
prompt=prompt,
max_string_token_length=gen_cfg.max_new_tokens
)
response = jsonformer_llm()
else:
# If no gen_schema, perform prompt only generation
print(f"Schema {gen_schema=}")
jsonformer_llm = jsonformer.Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=json.loads(gen_schema),
prompt=prompt,
max_string_token_length=gen_cfg.max_new_tokens
)
response = jsonformer_llm()
else:
# If no gen_schema, perform prompt only generation
# tokenize prompt
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=gen_cfg)
# tokenize prompt
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=gen_cfg)
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response[len(prompt):]
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response[len(prompt):]
print(f"Generated {response=}")
return {"text": response}
@@ -158,6 +162,7 @@ class LLM:
@stub.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=45,
secrets=[
Secret.from_name("reflector-gpu"),
],
@@ -187,7 +192,7 @@ def web():
gen_cfg: Optional[dict] = None
@app.post("/llm", dependencies=[Depends(apikey_auth)])
async def llm(
def llm(
req: LLMRequest,
):
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None

View File

@@ -5,6 +5,7 @@ Reflector GPU backend - LLM
"""
import json
import os
import threading
from typing import Optional
import modal
@@ -67,7 +68,7 @@ llm_image = (
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
concurrency_limit=2,
allow_concurrent_inputs=10,
image=llm_image,
)
class LLM:
@@ -111,6 +112,7 @@ class LLM:
self.tokenizer = tokenizer
self.gen_cfg = gen_cfg
self.GenerationConfig = GenerationConfig
self.lock = threading.Lock()
def __exit__(self, *args):
print("Exit llm")
@@ -129,33 +131,34 @@ class LLM:
gen_cfg = self.gen_cfg
# If a gen_schema is given, conform to gen_schema
if gen_schema:
import jsonformer
with self.lock:
if gen_schema:
import jsonformer
print(f"Schema {gen_schema=}")
jsonformer_llm = jsonformer.Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=json.loads(gen_schema),
prompt=prompt,
max_string_token_length=gen_cfg.max_new_tokens
)
response = jsonformer_llm()
else:
# If no gen_schema, perform prompt only generation
print(f"Schema {gen_schema=}")
jsonformer_llm = jsonformer.Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=json.loads(gen_schema),
prompt=prompt,
max_string_token_length=gen_cfg.max_new_tokens
)
response = jsonformer_llm()
else:
# If no gen_schema, perform prompt only generation
# tokenize prompt
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=gen_cfg)
# tokenize prompt
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=gen_cfg)
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response[len(prompt):]
response = {
"long_summary": response
}
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response[len(prompt):]
response = {
"long_summary": response
}
print(f"Generated {response=}")
return {"text": response}
@@ -167,6 +170,7 @@ class LLM:
@stub.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=30,
secrets=[
Secret.from_name("reflector-gpu"),
],
@@ -196,7 +200,7 @@ def web():
gen_cfg: Optional[dict] = None
@app.post("/llm", dependencies=[Depends(apikey_auth)])
async def llm(
def llm(
req: LLMRequest,
):
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None

View File

@@ -5,6 +5,7 @@ Reflector GPU backend - transcriber
import os
import tempfile
import threading
from modal import Image, Secret, Stub, asgi_app, method
from pydantic import BaseModel
@@ -78,6 +79,7 @@ transcriber_image = (
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
allow_concurrent_inputs=6,
image=transcriber_image,
)
class Transcriber:
@@ -85,6 +87,7 @@ class Transcriber:
import faster_whisper
import torch
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.model = faster_whisper.WhisperModel(
@@ -106,14 +109,15 @@ class Transcriber:
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
fp.write(audio_data)
segments, _ = self.model.transcribe(
fp.name,
language=source_language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
with self.lock:
segments, _ = self.model.transcribe(
fp.name,
language=source_language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
multilingual_transcript = {}
transcript_source_lang = ""
@@ -147,6 +151,7 @@ class Transcriber:
@stub.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,
secrets=[
Secret.from_name("reflector-gpu"),
],
@@ -176,12 +181,12 @@ def web():
result: dict
@app.post("/transcribe", dependencies=[Depends(apikey_auth)])
async def transcribe(
def transcribe(
file: UploadFile,
source_language: Annotated[str, Body(...)] = "en",
timestamp: Annotated[float, Body()] = 0.0
) -> TranscriptResponse:
audio_data = await file.read()
audio_data = file.file.read()
audio_suffix = file.filename.split(".")[-1]
assert audio_suffix in supported_audio_file_types

View File

@@ -4,7 +4,7 @@ Reflector GPU backend - transcriber
"""
import os
import tempfile
import threading
from modal import Image, Secret, Stub, asgi_app, method
from pydantic import BaseModel
@@ -129,6 +129,7 @@ transcriber_image = (
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
allow_concurrent_inputs=4,
image=transcriber_image,
)
class Translator:
@@ -136,6 +137,7 @@ class Translator:
import torch
from seamless_communication.models.inference.translator import Translator
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.translator = Translator(
@@ -168,13 +170,14 @@ class Translator:
source_language: str,
target_language: str
):
translated_text, _, _ = self.translator.predict(
text,
"t2tt",
src_lang=self.get_seamless_lang_code(source_language),
tgt_lang=self.get_seamless_lang_code(target_language),
ngram_filtering=True
)
with self.lock:
translated_text, _, _ = self.translator.predict(
text,
"t2tt",
src_lang=self.get_seamless_lang_code(source_language),
tgt_lang=self.get_seamless_lang_code(target_language),
ngram_filtering=True
)
return {
"text": {
source_language: text,
@@ -189,6 +192,7 @@ class Translator:
@stub.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,
secrets=[
Secret.from_name("reflector-gpu"),
],
@@ -217,7 +221,7 @@ def web():
result: dict
@app.post("/translate", dependencies=[Depends(apikey_auth)])
async def translate(
def translate(
text: str,
source_language: Annotated[str, Body(...)] = "en",
target_language: Annotated[str, Body(...)] = "fr",
@@ -230,8 +234,4 @@ def web():
result = func.get()
return result
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
async def warmup():
return translatorstub.warmup.spawn().get()
return app