mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2026-02-07 03:06:46 +00:00
feat: modal padding (#837)
* Add Modal backend for audio padding - Create reflector_padding.py Modal deployment (CPU-based) - Add PaddingWorkflow with conditional Modal/local backend - Update deploy-all.sh to include padding deployment --------- Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
@@ -37,5 +37,5 @@ LLM_RATE_LIMIT_PER_SECOND = 10
|
||||
TIMEOUT_SHORT = 60 # Quick operations: API calls, DB updates
|
||||
TIMEOUT_MEDIUM = 120 # Single LLM calls, waveform generation
|
||||
TIMEOUT_LONG = 180 # Action items (larger context LLM)
|
||||
TIMEOUT_AUDIO = 300 # Audio processing: padding, mixdown
|
||||
TIMEOUT_AUDIO = 720 # Audio processing: padding, mixdown
|
||||
TIMEOUT_HEAVY = 600 # Transcription, fan-out LLM tasks
|
||||
|
||||
165
server/reflector/hatchet/workflows/padding_workflow.py
Normal file
165
server/reflector/hatchet/workflows/padding_workflow.py
Normal file
@@ -0,0 +1,165 @@
|
||||
"""
|
||||
Hatchet child workflow: PaddingWorkflow
|
||||
Handles individual audio track padding via Modal.com backend.
|
||||
"""
|
||||
|
||||
from datetime import timedelta
|
||||
|
||||
import av
|
||||
from hatchet_sdk import Context
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.hatchet.constants import TIMEOUT_AUDIO
|
||||
from reflector.hatchet.workflows.models import PadTrackResult
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
|
||||
from reflector.utils.audio_padding import extract_stream_start_time_from_container
|
||||
|
||||
|
||||
class PaddingInput(BaseModel):
|
||||
"""Input for individual track padding."""
|
||||
|
||||
track_index: int
|
||||
s3_key: str
|
||||
bucket_name: str
|
||||
transcript_id: str
|
||||
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
padding_workflow = hatchet.workflow(
|
||||
name="PaddingWorkflow", input_validator=PaddingInput
|
||||
)
|
||||
|
||||
|
||||
@padding_workflow.task(execution_timeout=timedelta(seconds=TIMEOUT_AUDIO), retries=3)
|
||||
async def pad_track(input: PaddingInput, ctx: Context) -> PadTrackResult:
|
||||
"""Pad audio track with silence based on WebM container start_time."""
|
||||
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
|
||||
logger.info(
|
||||
"[Hatchet] pad_track",
|
||||
track_index=input.track_index,
|
||||
s3_key=input.s3_key,
|
||||
transcript_id=input.transcript_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Create fresh storage instance to avoid aioboto3 fork issues
|
||||
from reflector.settings import settings # noqa: PLC0415
|
||||
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
|
||||
|
||||
storage = AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
source_url = await storage.get_file_url(
|
||||
input.s3_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=input.bucket_name,
|
||||
)
|
||||
|
||||
# Extract start_time to determine if padding needed
|
||||
with av.open(source_url) as in_container:
|
||||
if in_container.duration:
|
||||
try:
|
||||
duration = timedelta(seconds=in_container.duration // 1_000_000)
|
||||
ctx.log(
|
||||
f"pad_track: track {input.track_index}, duration={duration}"
|
||||
)
|
||||
except (ValueError, TypeError, OverflowError) as e:
|
||||
ctx.log(
|
||||
f"pad_track: track {input.track_index}, duration error: {str(e)}"
|
||||
)
|
||||
|
||||
start_time_seconds = extract_stream_start_time_from_container(
|
||||
in_container, input.track_index, logger=logger
|
||||
)
|
||||
|
||||
if start_time_seconds <= 0:
|
||||
logger.info(
|
||||
f"Track {input.track_index} requires no padding",
|
||||
track_index=input.track_index,
|
||||
)
|
||||
return PadTrackResult(
|
||||
padded_key=input.s3_key,
|
||||
bucket_name=input.bucket_name,
|
||||
size=0,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
|
||||
|
||||
# Presign PUT URL for output (Modal will upload directly)
|
||||
output_url = await storage.get_file_url(
|
||||
storage_path,
|
||||
operation="put_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
)
|
||||
|
||||
import httpx # noqa: PLC0415
|
||||
|
||||
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415
|
||||
AudioPaddingModalProcessor,
|
||||
)
|
||||
|
||||
try:
|
||||
processor = AudioPaddingModalProcessor()
|
||||
result = await processor.pad_track(
|
||||
track_url=source_url,
|
||||
output_url=output_url,
|
||||
start_time_seconds=start_time_seconds,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
file_size = result.size
|
||||
|
||||
ctx.log(f"pad_track: Modal returned size={file_size}")
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_detail = e.response.text if hasattr(e.response, "text") else str(e)
|
||||
logger.error(
|
||||
"[Hatchet] Modal padding HTTP error",
|
||||
transcript_id=input.transcript_id,
|
||||
track_index=input.track_index,
|
||||
status_code=e.response.status_code if hasattr(e, "response") else None,
|
||||
error=error_detail,
|
||||
exc_info=True,
|
||||
)
|
||||
raise Exception(
|
||||
f"Modal padding failed: HTTP {e.response.status_code}"
|
||||
) from e
|
||||
except httpx.TimeoutException as e:
|
||||
logger.error(
|
||||
"[Hatchet] Modal padding timeout",
|
||||
transcript_id=input.transcript_id,
|
||||
track_index=input.track_index,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise Exception("Modal padding timeout") from e
|
||||
|
||||
logger.info(
|
||||
"[Hatchet] pad_track complete",
|
||||
track_index=input.track_index,
|
||||
padded_key=storage_path,
|
||||
)
|
||||
|
||||
return PadTrackResult(
|
||||
padded_key=storage_path,
|
||||
bucket_name=None, # None = use default transcript storage bucket
|
||||
size=file_size,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"[Hatchet] pad_track failed",
|
||||
transcript_id=input.transcript_id,
|
||||
track_index=input.track_index,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
@@ -14,9 +14,7 @@ Hatchet workers run in forked processes; fresh imports per task ensure
|
||||
storage/DB connections are not shared across forks.
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
from hatchet_sdk import Context
|
||||
@@ -27,10 +25,7 @@ from reflector.hatchet.constants import TIMEOUT_AUDIO, TIMEOUT_HEAVY
|
||||
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
|
||||
from reflector.utils.audio_padding import (
|
||||
apply_audio_padding_to_file,
|
||||
extract_stream_start_time_from_container,
|
||||
)
|
||||
from reflector.utils.audio_padding import extract_stream_start_time_from_container
|
||||
|
||||
|
||||
class TrackInput(BaseModel):
|
||||
@@ -83,63 +78,44 @@ async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
|
||||
)
|
||||
|
||||
with av.open(source_url) as in_container:
|
||||
if in_container.duration:
|
||||
try:
|
||||
duration = timedelta(seconds=in_container.duration // 1_000_000)
|
||||
ctx.log(
|
||||
f"pad_track: track {input.track_index}, duration={duration}"
|
||||
)
|
||||
except Exception:
|
||||
ctx.log(f"pad_track: track {input.track_index}, duration=ERROR")
|
||||
|
||||
start_time_seconds = extract_stream_start_time_from_container(
|
||||
in_container, input.track_index, logger=logger
|
||||
)
|
||||
|
||||
# If no padding needed, return original S3 key
|
||||
if start_time_seconds <= 0:
|
||||
logger.info(
|
||||
f"Track {input.track_index} requires no padding",
|
||||
track_index=input.track_index,
|
||||
)
|
||||
return PadTrackResult(
|
||||
padded_key=input.s3_key,
|
||||
bucket_name=input.bucket_name,
|
||||
size=0,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
# If no padding needed, return original S3 key
|
||||
if start_time_seconds <= 0:
|
||||
logger.info(
|
||||
f"Track {input.track_index} requires no padding",
|
||||
track_index=input.track_index,
|
||||
)
|
||||
return PadTrackResult(
|
||||
padded_key=input.s3_key,
|
||||
bucket_name=input.bucket_name,
|
||||
size=0,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
|
||||
|
||||
try:
|
||||
apply_audio_padding_to_file(
|
||||
in_container,
|
||||
temp_path,
|
||||
start_time_seconds,
|
||||
input.track_index,
|
||||
logger=logger,
|
||||
)
|
||||
# Presign PUT URL for output (Modal uploads directly)
|
||||
output_url = await storage.get_file_url(
|
||||
storage_path,
|
||||
operation="put_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
)
|
||||
|
||||
file_size = Path(temp_path).stat().st_size
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
|
||||
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415
|
||||
AudioPaddingModalProcessor,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"About to upload padded track",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
|
||||
with open(temp_path, "rb") as padded_file:
|
||||
await storage.put_file(storage_path, padded_file)
|
||||
|
||||
logger.info(
|
||||
f"Uploaded padded track to S3",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
finally:
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
processor = AudioPaddingModalProcessor()
|
||||
result = await processor.pad_track(
|
||||
track_url=source_url,
|
||||
output_url=output_url,
|
||||
start_time_seconds=start_time_seconds,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
file_size = result.size
|
||||
|
||||
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
|
||||
logger.info(
|
||||
|
||||
112
server/reflector/processors/audio_padding_modal.py
Normal file
112
server/reflector/processors/audio_padding_modal.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""
|
||||
Modal.com backend for audio padding.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.logger import logger
|
||||
|
||||
|
||||
class PaddingResponse(BaseModel):
|
||||
size: int
|
||||
cancelled: bool = False
|
||||
|
||||
|
||||
class AudioPaddingModalProcessor:
|
||||
"""Audio padding processor using Modal.com CPU backend via HTTP."""
|
||||
|
||||
def __init__(
|
||||
self, padding_url: str | None = None, modal_api_key: str | None = None
|
||||
):
|
||||
self.padding_url = padding_url or os.getenv("PADDING_URL")
|
||||
if not self.padding_url:
|
||||
raise ValueError(
|
||||
"PADDING_URL required to use AudioPaddingModalProcessor. "
|
||||
"Set PADDING_URL environment variable or pass padding_url parameter."
|
||||
)
|
||||
|
||||
self.modal_api_key = modal_api_key or os.getenv("MODAL_API_KEY")
|
||||
|
||||
async def pad_track(
|
||||
self,
|
||||
track_url: str,
|
||||
output_url: str,
|
||||
start_time_seconds: float,
|
||||
track_index: int,
|
||||
) -> PaddingResponse:
|
||||
"""Pad audio track with silence via Modal backend.
|
||||
|
||||
Args:
|
||||
track_url: Presigned GET URL for source audio track
|
||||
output_url: Presigned PUT URL for output WebM
|
||||
start_time_seconds: Amount of silence to prepend
|
||||
track_index: Track index for logging
|
||||
"""
|
||||
if not track_url:
|
||||
raise ValueError("track_url cannot be empty")
|
||||
if start_time_seconds <= 0:
|
||||
raise ValueError(
|
||||
f"start_time_seconds must be positive, got {start_time_seconds}"
|
||||
)
|
||||
|
||||
log = logger.bind(track_index=track_index, padding_seconds=start_time_seconds)
|
||||
log.info("Sending Modal padding HTTP request")
|
||||
|
||||
url = f"{self.padding_url}/pad"
|
||||
|
||||
headers = {}
|
||||
if self.modal_api_key:
|
||||
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
url,
|
||||
headers=headers,
|
||||
json={
|
||||
"track_url": track_url,
|
||||
"output_url": output_url,
|
||||
"start_time_seconds": start_time_seconds,
|
||||
"track_index": track_index,
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
error_body = response.text
|
||||
log.error(
|
||||
"Modal padding API error",
|
||||
status_code=response.status_code,
|
||||
error_body=error_body,
|
||||
)
|
||||
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
||||
# Check if work was cancelled
|
||||
if result.get("cancelled"):
|
||||
log.warning("Modal padding was cancelled by disconnect detection")
|
||||
raise asyncio.CancelledError(
|
||||
"Padding cancelled due to client disconnect"
|
||||
)
|
||||
|
||||
log.info("Modal padding complete", size=result["size"])
|
||||
return PaddingResponse(**result)
|
||||
except asyncio.CancelledError:
|
||||
log.warning(
|
||||
"Modal padding cancelled (Hatchet timeout, disconnect detected on Modal side)"
|
||||
)
|
||||
raise
|
||||
except httpx.TimeoutException as e:
|
||||
log.error("Modal padding timeout", error=str(e), exc_info=True)
|
||||
raise Exception(f"Modal padding timeout: {e}") from e
|
||||
except httpx.HTTPStatusError as e:
|
||||
log.error("Modal padding HTTP error", error=str(e), exc_info=True)
|
||||
raise Exception(f"Modal padding HTTP error: {e}") from e
|
||||
except Exception as e:
|
||||
log.error("Modal padding unexpected error", error=str(e), exc_info=True)
|
||||
raise
|
||||
@@ -98,6 +98,10 @@ class Settings(BaseSettings):
|
||||
# Diarization: local pyannote.audio
|
||||
DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None
|
||||
|
||||
# Audio Padding (Modal.com backend)
|
||||
PADDING_URL: str | None = None
|
||||
PADDING_MODAL_API_KEY: str | None = None
|
||||
|
||||
# Sentry
|
||||
SENTRY_DSN: str | None = None
|
||||
|
||||
|
||||
@@ -5,7 +5,9 @@ Used by both Hatchet workflows and Celery pipelines for consistent audio encodin
|
||||
"""
|
||||
|
||||
# Opus codec settings
|
||||
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
|
||||
OPUS_STANDARD_SAMPLE_RATE = 48000
|
||||
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
|
||||
OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality
|
||||
|
||||
# S3 presigned URL expiration
|
||||
|
||||
Reference in New Issue
Block a user