Merge pull request #42 from Monadical-SAS/feat/gokul

Code clean up and refactoring
This commit is contained in:
projects-g
2023-07-26 12:11:41 +05:30
committed by GitHub
15 changed files with 436 additions and 206 deletions

View File

@@ -5,11 +5,16 @@ import signal
from aiortc.contrib.signaling import (add_signaling_arguments,
create_signaling)
from utils.log_utils import logger
from utils.log_utils import LOGGER
from stream_client import StreamClient
from typing import NoReturn
async def main():
async def main() -> NoReturn:
"""
Reflector's entry point to the python client for WebRTC streaming if not
using the browser based UI-application
:return:
"""
parser = argparse.ArgumentParser(description="Data channels ping/pong")
parser.add_argument(
@@ -37,17 +42,17 @@ async def main():
async def shutdown(signal, loop):
"""Cleanup tasks tied to the service's shutdown."""
logger.info(f"Received exit signal {signal.name}...")
logger.info("Closing database connections")
logger.info("Nacking outstanding messages")
LOGGER.info(f"Received exit signal {signal.name}...")
LOGGER.info("Closing database connections")
LOGGER.info("Nacking outstanding messages")
tasks = [t for t in asyncio.all_tasks() if t is not
asyncio.current_task()]
[task.cancel() for task in tasks]
logger.info(f"Cancelling {len(tasks)} outstanding tasks")
LOGGER.info(f"Cancelling {len(tasks)} outstanding tasks")
await asyncio.gather(*tasks, return_exceptions=True)
logger.info(f'{"Flushing metrics"}')
LOGGER.info(f'{"Flushing metrics"}')
loop.stop()
signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)

164
reflector_dataclasses.py Normal file
View File

@@ -0,0 +1,164 @@
"""
Collection of data classes for streamlining and rigidly structuring
the input and output parameters of functions
"""
import datetime
from dataclasses import dataclass
from typing import List
import av
@dataclass
class TitleSummaryInput:
"""
Data class for the input to generate title and summaries.
The outcome will be used to send query to the LLM for processing.
"""
input_text = str
transcribed_time = float
prompt = str
data = dict
def __init__(self, transcribed_time, input_text=""):
self.input_text = input_text
self.transcribed_time = transcribed_time
self.prompt = \
f"""
### Human:
Create a JSON object as response.The JSON object must have 2 fields:
i) title and ii) summary.For the title field,generate a short title
for the given text. For the summary field, summarize the given text
in three sentences.
{self.input_text}
### Assistant:
"""
self.data = {"data": self.prompt}
self.headers = {"Content-Type": "application/json"}
@dataclass
class IncrementalResult:
"""
Data class for the result of generating one title and summaries.
Defines how a single "topic" looks like.
"""
title = str
description = str
transcript = str
def __init__(self, title, desc, transcript):
self.title = title
self.description = desc
self.transcript = transcript
@dataclass
class TitleSummaryOutput:
"""
Data class for the result of all generated titles and summaries.
The result will be sent back to the client
"""
cmd = str
topics = List[IncrementalResult]
def __init__(self, inc_responses):
self.topics = inc_responses
def get_result(self):
return {
"cmd": self.cmd,
"topics": self.topics
}
@dataclass
class ParseLLMResult:
"""
Data class to parse the result returned by the LLM while generating title
and summaries. The result will be sent back to the client.
"""
description = str
transcript = str
timestamp = str
def __init__(self, param: TitleSummaryInput, output: dict):
self.transcript = param.input_text
self.description = output.pop("summary")
self.timestamp = \
str(datetime.timedelta(seconds=round(param.transcribed_time)))
def get_result(self):
return {
"description": self.description,
"transcript": self.transcript,
"timestamp": self.timestamp
}
@dataclass
class TranscriptionInput:
"""
Data class to define the input to the transcription function
AudioFrames -> input
"""
frames = List[av.audio.frame.AudioFrame]
def __init__(self, frames):
self.frames = frames
@dataclass
class TranscriptionOutput:
"""
Dataclass to define the result of the transcription function.
The result will be sent back to the client
"""
cmd = str
result_text = str
def __init__(self, result_text):
self.cmd = "SHOW_TRANSCRIPTION"
self.result_text = result_text
def get_result(self):
return {
"cmd": self.cmd,
"text": self.result_text
}
@dataclass
class FinalSummaryResult:
"""
Dataclass to define the result of the final summary function.
The result will be sent back to the client.
"""
cmd = str
final_summary = str
duration = str
def __init__(self, final_summary, time):
self.duration = str(datetime.timedelta(seconds=round(time)))
self.final_summary = final_summary
self.cmd = ""
def get_result(self):
return {
"cmd": self.cmd,
"duration": self.duration,
"summary": self.final_summary
}
class BlackListedMessages:
"""
Class to hold the blacklisted messages. These messages should be filtered
out and not sent back to the client as part of the transcription.
"""
messages = [" Thank you.", " See you next time!",
" Thank you for watching!", " Bye!",
" And that's what I'm talking about."]

203
server.py
View File

@@ -6,18 +6,22 @@ import os
import uuid
import wave
from concurrent.futures import ThreadPoolExecutor
from typing import Union, NoReturn
import aiohttp_cors
import av
import requests
from aiohttp import web
from aiortc import MediaStreamTrack, RTCPeerConnection, RTCSessionDescription
from aiortc.contrib.media import MediaRelay
from av import AudioFifo
from faster_whisper import WhisperModel
from loguru import logger
from sortedcontainers import SortedDict
from utils.run_utils import run_in_executor, config
from reflector_dataclasses import FinalSummaryResult, ParseLLMResult,\
TitleSummaryInput, TitleSummaryOutput, TranscriptionInput,\
TranscriptionOutput, BlackListedMessages
from utils.run_utils import CONFIG, run_in_executor
from utils.log_utils import LOGGER
pcs = set()
relay = MediaRelay()
@@ -28,89 +32,68 @@ model = WhisperModel("tiny", device="cpu",
CHANNELS = 2
RATE = 48000
audio_buffer = AudioFifo()
audio_buffer = av.AudioFifo()
executor = ThreadPoolExecutor()
transcription_text = ""
last_transcribed_time = 0.0
LLM_MACHINE_IP = config["DEFAULT"]["LLM_MACHINE_IP"]
LLM_MACHINE_PORT = config["DEFAULT"]["LLM_MACHINE_PORT"]
LLM_MACHINE_IP = CONFIG["LLM"]["LLM_MACHINE_IP"]
LLM_MACHINE_PORT = CONFIG["LLM"]["LLM_MACHINE_PORT"]
LLM_URL = f"http://{LLM_MACHINE_IP}:{LLM_MACHINE_PORT}/api/v1/generate"
incremental_responses = []
sorted_transcripts = SortedDict()
blacklisted_messages = [" Thank you.", " See you next time!",
" Thank you for watching!", " Bye!",
" And that's what I'm talking about."]
def parse_llm_output(param: TitleSummaryInput, response: requests.Response) -> Union[None, ParseLLMResult]:
try:
output = json.loads(response.json()["results"][0]["text"])
return ParseLLMResult(param, output)
except Exception as e:
LOGGER.info("Exception" + str(e))
return None
def get_title_and_summary(llm_input_text, last_timestamp):
logger.info("Generating title and summary")
# output = llm.generate(prompt)
# Use monadical-ml to fire this query to an LLM and get result
headers = {
"Content-Type": "application/json"
}
prompt = f"""
### Human:
Create a JSON object as response. The JSON object must have 2 fields:
i) title and ii) summary. For the title field,generate a short title
for the given text. For the summary field, summarize the given text
in three sentences.
{llm_input_text}
### Assistant:
"""
data = {
"prompt": prompt
}
def get_title_and_summary(param: TitleSummaryInput) -> Union[None, TitleSummaryOutput]:
LOGGER.info("Generating title and summary")
# TODO : Handle unexpected output formats from the model
try:
response = requests.post(LLM_URL, headers=headers, json=data)
output = json.loads(response.json()["results"][0]["text"])
output["description"] = output.pop("summary")
output["transcript"] = llm_input_text
output["timestamp"] = \
str(datetime.timedelta(seconds=round(last_timestamp)))
incremental_responses.append(output)
result = {
"cmd": "UPDATE_TOPICS",
"topics": incremental_responses,
}
response = requests.post(LLM_URL,
headers=param.headers,
json=param.data)
output = parse_llm_output(param, response)
if output:
result = output.get_result()
incremental_responses.append(result)
return TitleSummaryOutput(incremental_responses)
except Exception as e:
logger.info("Exception" + str(e))
result = None
return result
LOGGER.info("Exception" + str(e))
return None
def channel_log(channel, t, message):
logger.info("channel(%s) %s %s" % (channel.label, t, message))
def channel_log(channel, t: str, message: str) -> NoReturn:
LOGGER.info("channel(%s) %s %s" % (channel.label, t, message))
def channel_send(channel, message):
def channel_send(channel, message: str) -> NoReturn:
if channel:
channel.send(message)
def channel_send_increment(channel, message):
if channel and message:
def channel_send_increment(channel, param: Union[FinalSummaryResult, TitleSummaryOutput]) -> NoReturn:
if channel and param:
message = param.get_result()
channel.send(json.dumps(message))
def channel_send_transcript(channel):
def channel_send_transcript(channel) -> NoReturn:
# channel_log(channel, ">", message)
if channel:
try:
least_time = sorted_transcripts.keys()[0]
message = sorted_transcripts[least_time]
least_time = next(iter(sorted_transcripts))
message = sorted_transcripts[least_time].get_result()
if message:
del sorted_transcripts[least_time]
if message["text"] not in blacklisted_messages:
if message["text"] not in BlackListedMessages.messages:
channel.send(json.dumps(message))
# Due to exceptions if one of the earlier batches can't return
# a transcript, we don't want to be stuck waiting for the result
@@ -118,27 +101,26 @@ def channel_send_transcript(channel):
else:
if len(sorted_transcripts) >= 3:
del sorted_transcripts[least_time]
except Exception as e:
logger.info("Exception", str(e))
pass
except Exception as exception:
LOGGER.info("Exception", str(exception))
def get_transcription(frames):
logger.info("Transcribing..")
sorted_transcripts[frames[0].time] = None
def get_transcription(input_frames: TranscriptionInput) -> Union[None, TranscriptionOutput]:
LOGGER.info("Transcribing..")
sorted_transcripts[input_frames.frames[0].time] = None
# TODO:
# TODO: Find cleaner way, watch "no transcription" issue below
# Passing IO objects instead of temporary files throws an error
# Passing ndarrays (typecasted with float) does not give any
# Passing ndarray (type casted with float) does not give any
# transcription. Refer issue,
# https://github.com/guillaumekln/faster-whisper/issues/369
audiofilename = "test" + str(datetime.datetime.now())
wf = wave.open(audiofilename, "wb")
audio_file = "test" + str(datetime.datetime.now())
wf = wave.open(audio_file, "wb")
wf.setnchannels(CHANNELS)
wf.setframerate(RATE)
wf.setsampwidth(2)
for frame in frames:
for frame in input_frames.frames:
wf.writeframes(b"".join(frame.to_ndarray()))
wf.close()
@@ -146,12 +128,12 @@ def get_transcription(frames):
try:
segments, _ = \
model.transcribe(audiofilename,
model.transcribe(audio_file,
language="en",
beam_size=5,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500))
os.remove(audiofilename)
vad_parameters={"min_silence_duration_ms": 500})
os.remove(audio_file)
segments = list(segments)
result_text = ""
duration = 0.0
@@ -169,34 +151,32 @@ def get_transcription(frames):
last_transcribed_time += duration
transcription_text += result_text
except Exception as e:
logger.info("Exception" + str(e))
pass
except Exception as exception:
LOGGER.info("Exception" + str(exception))
result = {
"cmd": "SHOW_TRANSCRIPTION",
"text": result_text
}
sorted_transcripts[frames[0].time] = result
result = TranscriptionOutput(result_text)
sorted_transcripts[input_frames.frames[0].time] = result
return result
def get_final_summary_response():
def get_final_summary_response() -> FinalSummaryResult:
"""
Collate the incremental summaries generated so far and return as the final
summary
:return:
"""
final_summary = ""
# Collate inc summaries
for topic in incremental_responses:
final_summary += topic["description"]
response = {
"cmd": "DISPLAY_FINAL_SUMMARY",
"duration": str(datetime.timedelta(
seconds=round(last_transcribed_time))),
"summary": final_summary
}
response = FinalSummaryResult(final_summary, last_transcribed_time)
with open("./artefacts/meeting_titles_and_summaries.txt", "a",
encoding="utf-8") as file:
file.write(json.dumps(incremental_responses))
with open("./artefacts/meeting_titles_and_summaries.txt", "a") as f:
f.write(json.dumps(incremental_responses))
return response
@@ -211,14 +191,16 @@ class AudioStreamTrack(MediaStreamTrack):
super().__init__()
self.track = track
async def recv(self):
async def recv(self) -> av.audio.frame.AudioFrame:
global transcription_text
frame = await self.track.recv()
audio_buffer.write(frame)
if local_frames := audio_buffer.read_many(256 * 960, partial=False):
whisper_result = run_in_executor(
get_transcription, local_frames, executor=executor
get_transcription,
TranscriptionInput(local_frames),
executor=executor
)
whisper_result.add_done_callback(
lambda f: channel_send_transcript(data_channel)
@@ -226,12 +208,13 @@ class AudioStreamTrack(MediaStreamTrack):
else None
)
if len(transcription_text) > 750:
if len(transcription_text) > 25:
llm_input_text = transcription_text
transcription_text = ""
param = TitleSummaryInput(input_text=llm_input_text,
transcribed_time=last_transcribed_time)
llm_result = run_in_executor(get_title_and_summary,
llm_input_text,
last_transcribed_time,
param,
executor=executor)
llm_result.add_done_callback(
lambda f: channel_send_increment(data_channel,
@@ -242,7 +225,12 @@ class AudioStreamTrack(MediaStreamTrack):
return frame
async def offer(request):
async def offer(request: requests.Request) -> web.Response:
"""
Establish the WebRTC connection with the client
:param request:
:return:
"""
params = await request.json()
offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"])
@@ -250,40 +238,39 @@ async def offer(request):
pc_id = "PeerConnection(%s)" % uuid.uuid4()
pcs.add(pc)
def log_info(msg, *args):
logger.info(pc_id + " " + msg, *args)
def log_info(msg, *args) -> NoReturn:
LOGGER.info(pc_id + " " + msg, *args)
log_info("Created for " + request.remote)
@pc.on("datachannel")
def on_datachannel(channel):
def on_datachannel(channel) -> NoReturn:
global data_channel
data_channel = channel
channel_log(channel, "-", "created by remote party")
@channel.on("message")
def on_message(message):
def on_message(message: str) -> NoReturn:
channel_log(channel, "<", message)
if json.loads(message)["cmd"] == "STOP":
# Place holder final summary
# Placeholder final summary
response = get_final_summary_response()
channel_send_increment(data_channel, response)
# To-do Add code to stop connection from server side here
# But have to handshake with client once
# pc.close()
if isinstance(message, str) and message.startswith("ping"):
channel_send(channel, "pong" + message[4:])
@pc.on("connectionstatechange")
async def on_connectionstatechange():
async def on_connectionstatechange() -> NoReturn:
log_info("Connection state is " + pc.connectionState)
if pc.connectionState == "failed":
await pc.close()
pcs.discard(pc)
@pc.on("track")
def on_track(track):
def on_track(track) -> NoReturn:
log_info("Track " + track.kind + " received")
pc.addTrack(AudioStreamTrack(relay.subscribe(track)))
@@ -294,15 +281,17 @@ async def offer(request):
return web.Response(
content_type="application/json",
text=json.dumps(
{"sdp": pc.localDescription.sdp,
"type": pc.localDescription.type}
{
"sdp": pc.localDescription.sdp,
"type": pc.localDescription.type
}
),
)
async def on_shutdown(app):
coros = [pc.close() for pc in pcs]
await asyncio.gather(*coros)
async def on_shutdown(application: web.Application) -> NoReturn:
coroutines = [pc.close() for pc in pcs]
await asyncio.gather(*coroutines)
pcs.clear()

View File

@@ -9,8 +9,8 @@ import stamina
from aiortc import (RTCPeerConnection, RTCSessionDescription)
from aiortc.contrib.media import (MediaPlayer, MediaRelay)
from utils.log_utils import logger
from utils.run_utils import config
from utils.log_utils import LOGGER
from utils.run_utils import CONFIG
class StreamClient:
@@ -35,7 +35,7 @@ class StreamClient:
self.time_start = None
self.queue = asyncio.Queue()
self.player = MediaPlayer(
':' + str(config['DEFAULT']["AV_FOUNDATION_DEVICE_ID"]),
':' + str(CONFIG['AUDIO']["AV_FOUNDATION_DEVICE_ID"]),
format='avfoundation',
options={'channels': '2'})
@@ -74,7 +74,7 @@ class StreamClient:
self.pcs.add(pc)
def log_info(msg, *args):
logger.info(pc_id + " " + msg, *args)
LOGGER.info(pc_id + " " + msg, *args)
@pc.on("connectionstatechange")
async def on_connectionstatechange():

View File

@@ -93,6 +93,6 @@ def generate_finetuning_dataset(video_ids):
video_ids = ["yTnSEZIwnkU"]
dataset = generate_finetuning_dataset(video_ids)
with open("finetuning_dataset.jsonl", "w") as f:
with open("finetuning_dataset.jsonl", "w", encoding="utf-8") as file:
for example in dataset:
f.write(json.dumps(example) + "\n")
file.write(json.dumps(example) + "\n")

View File

@@ -16,10 +16,10 @@ from av import AudioFifo
from sortedcontainers import SortedDict
from whisper_jax import FlaxWhisperPipline
from reflector.utils.log_utils import logger
from reflector.utils.run_utils import config, Mutex
from reflector.utils.log_utils import LOGGER
from reflector.utils.run_utils import CONFIG, Mutex
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_REAL_TIME_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_REAL_TIME_MODEL_SIZE"]
pcs = set()
relay = MediaRelay()
data_channel = None
@@ -127,7 +127,7 @@ async def offer(request: requests.Request):
pcs.add(pc)
def log_info(msg: str, *args):
logger.info(pc_id + " " + msg, *args)
LOGGER.info(pc_id + " " + msg, *args)
log_info("Created for " + request.remote)

View File

@@ -3,14 +3,14 @@ import sys
# Observe the incremental summaries by performing summaries in chunks
with open("transcript.txt") as f:
transcription = f.read()
with open("transcript.txt", "r", encoding="utf-8") as file:
transcription = file.read()
def split_text_file(filename, token_count):
nlp = spacy.load('en_core_web_md')
with open(filename, 'r') as file:
with open(filename, 'r', encoding="utf-8") as file:
text = file.read()
doc = nlp(text)
@@ -36,9 +36,9 @@ chunks = split_text_file("transcript.txt", MAX_CHUNK_LENGTH)
print("Number of chunks", len(chunks))
# Write chunks to file to refer to input vs output, separated by blank lines
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a") as f:
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a", encoding="utf-8") as file:
for c in chunks:
f.write(c + "\n\n")
file.write(c + "\n\n")
# If we want to run only a certain model, type the option while running
# ex. python incsum.py 1 => will run approach 1
@@ -78,9 +78,9 @@ if index == "1" or index is None:
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summaries.append(summary)
with open("bart-summaries.txt", "a") as f:
with open("bart-summaries.txt", "a", encoding="utf-8") as file:
for summary in summaries:
f.write(summary + "\n\n")
file.write(summary + "\n\n")
# Approach 2
if index == "2" or index is None:
@@ -114,8 +114,8 @@ if index == "2" or index is None:
summary_ids = output[0, input_length:]
summary = tokenizer.decode(summary_ids, skip_special_tokens=True)
summaries.append(summary)
with open("gptneo1.3B-summaries.txt", "a") as f:
f.write(summary + "\n\n")
with open("gptneo1.3B-summaries.txt", "a", encoding="utf-8") as file:
file.write(summary + "\n\n")
# Approach 3
if index == "3" or index is None:
@@ -152,6 +152,6 @@ if index == "3" or index is None:
skip_special_tokens=True)
summaries.append(summary)
with open("mpt-7b-summaries.txt", "a") as f:
with open("mpt-7b-summaries.txt", "a", encoding="utf-8") as file:
for summary in summaries:
f.write(summary + "\n\n")
file.write(summary + "\n\n")

View File

@@ -19,15 +19,15 @@ import yt_dlp as youtube_dl
from whisper_jax import FlaxWhisperPipline
from ...utils.file_utils import download_files, upload_files
from ...utils.log_utils import logger
from ...utils.run_utils import config
from ...utils.log_utils import LOGGER
from ...utils.run_utils import CONFIG
from ...utils.text_utils import post_process_transcription, summarize
from ...utils.viz_utils import create_talk_diff_scatter_viz, create_wordcloud
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_MODEL_SIZE"]
NOW = datetime.now()
if not os.path.exists('../../artefacts'):
@@ -75,7 +75,7 @@ def main():
# Download the lowest resolution YouTube video
# (since we're just interested in the audio).
# It will be saved to the current directory.
logger.info("Downloading YouTube video at url: " + args.location)
LOGGER.info("Downloading YouTube video at url: " + args.location)
# Create options for the download
ydl_opts = {
@@ -93,12 +93,12 @@ def main():
ydl.download([args.location])
media_file = "../artefacts/audio.mp3"
logger.info("Saved downloaded YouTube video to: " + media_file)
LOGGER.info("Saved downloaded YouTube video to: " + media_file)
else:
# XXX - Download file using urllib, check if file is
# audio/video using python-magic
logger.info(f"Downloading file at url: {args.location}")
logger.info(" XXX - This method hasn't been implemented yet.")
LOGGER.info(f"Downloading file at url: {args.location}")
LOGGER.info(" XXX - This method hasn't been implemented yet.")
elif url.scheme == '':
media_file = url.path
# If file is not present locally, take it from S3 bucket
@@ -119,7 +119,7 @@ def main():
audio_filename = tempfile.NamedTemporaryFile(suffix=".mp3",
delete=False).name
video.audio.write_audiofile(audio_filename, logger=None)
logger.info(f"Extracting audio to: {audio_filename}")
LOGGER.info(f"Extracting audio to: {audio_filename}")
# Handle audio only file
except Exception:
audio = moviepy.editor.AudioFileClip(media_file)
@@ -129,14 +129,14 @@ def main():
else:
audio_filename = media_file
logger.info("Finished extracting audio")
logger.info("Transcribing")
LOGGER.info("Finished extracting audio")
LOGGER.info("Transcribing")
# Convert the audio to text using the OpenAI Whisper model
pipeline = FlaxWhisperPipline("openai/whisper-" + WHISPER_MODEL_SIZE,
dtype=jnp.float16,
batch_size=16)
whisper_result = pipeline(audio_filename, return_timestamps=True)
logger.info("Finished transcribing file")
LOGGER.info("Finished transcribing file")
whisper_result = post_process_transcription(whisper_result)
@@ -153,10 +153,10 @@ def main():
"w") as transcript_file_timestamps:
transcript_file_timestamps.write(str(whisper_result))
logger.info("Creating word cloud")
LOGGER.info("Creating word cloud")
create_wordcloud(NOW)
logger.info("Performing talk-diff and talk-diff visualization")
LOGGER.info("Performing talk-diff and talk-diff visualization")
create_talk_diff_scatter_viz(NOW)
# S3 : Push artefacts to S3 bucket
@@ -172,7 +172,7 @@ def main():
summarize(transcript_text, NOW, False, False)
logger.info("Summarization completed")
LOGGER.info("Summarization completed")
# Summarization takes a lot of time, so do this separately at the end
files_to_upload = [prefix + "summary_" + suffix + ".txt"]

View File

@@ -11,12 +11,12 @@ from termcolor import colored
from whisper_jax import FlaxWhisperPipline
from ...utils.file_utils import upload_files
from ...utils.log_utils import logger
from ...utils.run_utils import config
from ...utils.log_utils import LOGGER
from ...utils.run_utils import CONFIG
from ...utils.text_utils import post_process_transcription, summarize
from ...utils.viz_utils import create_talk_diff_scatter_viz, create_wordcloud
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_MODEL_SIZE"]
FRAMES_PER_BUFFER = 8000
FORMAT = pyaudio.paInt16
@@ -31,7 +31,7 @@ def main():
AUDIO_DEVICE_ID = -1
for i in range(p.get_device_count()):
if p.get_device_info_by_index(i)["name"] == \
config["DEFAULT"]["BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME"]:
CONFIG["AUDIO"]["BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME"]:
AUDIO_DEVICE_ID = i
audio_devices = p.get_device_info_by_index(AUDIO_DEVICE_ID)
stream = p.open(
@@ -44,7 +44,7 @@ def main():
)
pipeline = FlaxWhisperPipline("openai/whisper-" +
config["DEFAULT"]["WHISPER_REAL_TIME_MODEL_SIZE"],
CONFIG["WHISPER"]["WHISPER_REAL_TIME_MODEL_SIZE"],
dtype=jnp.float16,
batch_size=16)
@@ -106,23 +106,26 @@ def main():
" | Transcribed duration: " +
str(duration), "yellow"))
except Exception as e:
print(e)
except Exception as exception:
print(str(exception))
finally:
with open("real_time_transcript_" +
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
f.write(transcription)
with open("real_time_transcript_" + NOW.strftime("%m-%d-%Y_%H:%M:%S")
+ ".txt", "w", encoding="utf-8") as file:
file.write(transcription)
with open("real_time_transcript_with_timestamp_" +
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w",
encoding="utf-8") as file:
transcript_with_timestamp["text"] = transcription
f.write(str(transcript_with_timestamp))
file.write(str(transcript_with_timestamp))
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
transcript_with_timestamp = \
post_process_transcription(transcript_with_timestamp)
logger.info("Creating word cloud")
LOGGER.info("Creating word cloud")
create_wordcloud(NOW, True)
logger.info("Performing talk-diff and talk-diff visualization")
LOGGER.info("Performing talk-diff and talk-diff visualization")
create_talk_diff_scatter_viz(NOW, True)
# S3 : Push artefacts to S3 bucket
@@ -137,7 +140,7 @@ def main():
summarize(transcript_with_timestamp["text"], NOW, True, True)
logger.info("Summarization completed")
LOGGER.info("Summarization completed")
# Summarization takes a lot of time, so do this separately at the end
files_to_upload = ["real_time_summary_" + suffix + ".txt"]

View File

@@ -1,16 +1,21 @@
"""
Utility file for file handling related functions, including file downloads and
uploads to cloud storage
"""
import sys
import boto3
import botocore
from .log_utils import logger
from .run_utils import config
from .log_utils import LOGGER
from .run_utils import CONFIG
BUCKET_NAME = config["DEFAULT"]["BUCKET_NAME"]
BUCKET_NAME = CONFIG["AWS"]["BUCKET_NAME"]
s3 = boto3.client('s3',
aws_access_key_id=config["DEFAULT"]["AWS_ACCESS_KEY"],
aws_secret_access_key=config["DEFAULT"]["AWS_SECRET_KEY"])
aws_access_key_id=CONFIG["AWS"]["AWS_ACCESS_KEY"],
aws_secret_access_key=CONFIG["AWS"]["AWS_SECRET_KEY"])
def upload_files(files_to_upload):
@@ -19,12 +24,12 @@ def upload_files(files_to_upload):
:param files_to_upload: List of files to upload
:return: None
"""
for KEY in files_to_upload:
logger.info("Uploading file " + KEY)
for key in files_to_upload:
LOGGER.info("Uploading file " + key)
try:
s3.upload_file(KEY, BUCKET_NAME, KEY)
except botocore.exceptions.ClientError as e:
print(e.response)
s3.upload_file(key, BUCKET_NAME, key)
except botocore.exceptions.ClientError as exception:
print(exception.response)
def download_files(files_to_download):
@@ -33,12 +38,12 @@ def download_files(files_to_download):
:param files_to_download: List of files to download
:return: None
"""
for KEY in files_to_download:
logger.info("Downloading file " + KEY)
for key in files_to_download:
LOGGER.info("Downloading file " + key)
try:
s3.download_file(BUCKET_NAME, KEY, KEY)
except botocore.exceptions.ClientError as e:
if e.response['Error']['Code'] == "404":
s3.download_file(BUCKET_NAME, key, key)
except botocore.exceptions.ClientError as exception:
if exception.response['Error']['Code'] == "404":
print("The object does not exist.")
else:
raise

View File

@@ -1,13 +1,24 @@
"""
Utility function to format the artefacts created during Reflector run
"""
import json
with open("../artefacts/meeting_titles_and_summaries.txt", "r") as f:
with open("../artefacts/meeting_titles_and_summaries.txt", "r",
encoding='utf-8') as f:
outputs = f.read()
outputs = json.loads(outputs)
transcript_file = open("../artefacts/meeting_transcript.txt", "a")
title_desc_file = open("../artefacts/meeting_title_description.txt", "a")
summary_file = open("../artefacts/meeting_summary.txt", "a")
transcript_file = open("../artefacts/meeting_transcript.txt",
"a",
encoding='utf-8')
title_desc_file = open("../artefacts/meeting_title_description.txt",
"a",
encoding='utf-8')
summary_file = open("../artefacts/meeting_summary.txt",
"a",
encoding='utf-8')
for item in outputs["topics"]:
transcript_file.write(item["transcript"])

View File

@@ -1,7 +1,15 @@
"""
Utility file for logging
"""
import loguru
class SingletonLogger:
"""
Use Singleton design pattern to create a logger object and share it
across the entire project
"""
__instance = None
@staticmethod
@@ -15,4 +23,4 @@ class SingletonLogger:
return SingletonLogger.__instance
logger = SingletonLogger.get_logger()
LOGGER = SingletonLogger.get_logger()

View File

@@ -1,3 +1,7 @@
"""
Utility file for server side asynchronous task running and config objects
"""
import asyncio
import configparser
import contextlib
@@ -7,6 +11,9 @@ from typing import ContextManager, Generic, TypeVar
class ReflectorConfig:
"""
Create a single config object to share across the project
"""
__config = None
@staticmethod
@@ -17,7 +24,7 @@ class ReflectorConfig:
return ReflectorConfig.__config
config = ReflectorConfig.get_config()
CONFIG = ReflectorConfig.get_config()
def run_in_executor(func, *args, executor=None, **kwargs):

View File

@@ -1,3 +1,7 @@
"""
Utility file for all text processing related functionalities
"""
import nltk
import torch
from nltk.corpus import stopwords
@@ -6,8 +10,8 @@ from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BartForConditionalGeneration, BartTokenizer
from log_utils import logger
from run_utils import config
from log_utils import LOGGER
from run_utils import CONFIG
nltk.download('punkt', quiet=True)
@@ -32,6 +36,12 @@ def compute_similarity(sent1, sent2):
def remove_almost_alike_sentences(sentences, threshold=0.7):
"""
Filter sentences that are similar beyond a set threshold
:param sentences:
:param threshold:
:return:
"""
num_sentences = len(sentences)
removed_indices = set()
@@ -62,6 +72,11 @@ def remove_almost_alike_sentences(sentences, threshold=0.7):
def remove_outright_duplicate_sentences_from_chunk(chunk):
"""
Remove repetitive sentences
:param chunk:
:return:
"""
chunk_text = chunk["text"]
sentences = nltk.sent_tokenize(chunk_text)
nonduplicate_sentences = list(dict.fromkeys(sentences))
@@ -69,6 +84,12 @@ def remove_outright_duplicate_sentences_from_chunk(chunk):
def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
"""
Remove sentences that are repeated as a result of Whisper
hallucinations
:param nonduplicate_sentences:
:return:
"""
chunk_sentences = []
for sent in nonduplicate_sentences:
@@ -91,6 +112,11 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
def post_process_transcription(whisper_result):
"""
Parent function to perform post-processing on the transcription result
:param whisper_result:
:return:
"""
transcript_text = ""
for chunk in whisper_result["chunks"]:
nonduplicate_sentences = \
@@ -121,9 +147,9 @@ def summarize_chunks(chunks, tokenizer, model):
with torch.no_grad():
summary_ids = \
model.generate(input_ids,
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]),
num_beams=int(CONFIG["SUMMARIZER"]["BEAM_SIZE"]),
length_penalty=2.0,
max_length=int(config["DEFAULT"]["MAX_LENGTH"]),
max_length=int(CONFIG["SUMMARIZER"]["MAX_LENGTH"]),
early_stopping=True)
summary = tokenizer.decode(summary_ids[0],
skip_special_tokens=True)
@@ -132,7 +158,7 @@ def summarize_chunks(chunks, tokenizer, model):
def chunk_text(text,
max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])):
max_chunk_length=int(CONFIG["SUMMARIZER"]["MAX_CHUNK_LENGTH"])):
"""
Split text into smaller chunks.
:param text: Text to be chunked
@@ -154,14 +180,22 @@ def chunk_text(text,
def summarize(transcript_text, timestamp,
real_time=False,
chunk_summarize=config["DEFAULT"]["SUMMARIZE_USING_CHUNKS"]):
chunk_summarize=CONFIG["SUMMARIZER"]["SUMMARIZE_USING_CHUNKS"]):
"""
Summarize the given text either as a whole or as chunks as needed
:param transcript_text:
:param timestamp:
:param real_time:
:param chunk_summarize:
:return:
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = config["DEFAULT"]["SUMMARY_MODEL"]
summary_model = CONFIG["SUMMARIZER"]["SUMMARY_MODEL"]
if not summary_model:
summary_model = "facebook/bart-large-cnn"
# Summarize the generated transcript using the BART model
logger.info(f"Loading BART model: {summary_model}")
LOGGER.info(f"Loading BART model: {summary_model}")
tokenizer = BartTokenizer.from_pretrained(summary_model)
model = BartForConditionalGeneration.from_pretrained(summary_model)
model = model.to(device)
@@ -171,7 +205,7 @@ def summarize(transcript_text, timestamp,
output_file = "real_time_" + output_file
if chunk_summarize != "YES":
max_length = int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"])
max_length = int(CONFIG["SUMMARIZER"]["INPUT_ENCODING_MAX_LENGTH"])
inputs = tokenizer. \
batch_encode_plus([transcript_text], truncation=True,
padding='longest',
@@ -180,8 +214,8 @@ def summarize(transcript_text, timestamp,
inputs = inputs.to(device)
with torch.no_grad():
num_beans = int(config["DEFAULT"]["BEAM_SIZE"])
max_length = int(config["DEFAULT"]["MAX_LENGTH"])
num_beans = int(CONFIG["SUMMARIZER"]["BEAM_SIZE"])
max_length = int(CONFIG["SUMMARIZER"]["MAX_LENGTH"])
summaries = model.generate(inputs['input_ids'],
num_beams=num_beans,
length_penalty=2.0,
@@ -194,16 +228,16 @@ def summarize(transcript_text, timestamp,
clean_up_tokenization_spaces=False)
for summary in summaries]
summary = " ".join(decoded_summaries)
with open("./artefacts/" + output_file, 'w') as f:
f.write(summary.strip() + "\n")
with open("./artefacts/" + output_file, 'w', encoding="utf-8") as file:
file.write(summary.strip() + "\n")
else:
logger.info("Breaking transcript into smaller chunks")
LOGGER.info("Breaking transcript into smaller chunks")
chunks = chunk_text(transcript_text)
logger.info(f"Transcript broken into {len(chunks)} "
LOGGER.info(f"Transcript broken into {len(chunks)} "
f"chunks of at most 500 words")
logger.info(f"Writing summary text to: {output_file}")
LOGGER.info(f"Writing summary text to: {output_file}")
with open(output_file, 'w') as f:
summaries = summarize_chunks(chunks, tokenizer, model)
for summary in summaries:

View File

@@ -1,3 +1,7 @@
"""
Utility file for all visualization related functions
"""
import ast
import collections
import os
@@ -81,8 +85,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
else:
filename = "./artefacts/transcript_with_timestamp_" + \
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
with open(filename) as f:
transcription_timestamp_text = f.read()
with open(filename) as file:
transcription_timestamp_text = file.read()
res = ast.literal_eval(transcription_timestamp_text)
chunks = res["chunks"]