mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
PR review comments
This commit is contained in:
@@ -29,3 +29,10 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
files: ^server/(reflector|tests)/
|
files: ^server/(reflector|tests)/
|
||||||
|
|
||||||
|
- repo: https://github.com/pycqa/isort
|
||||||
|
rev: 5.12.0
|
||||||
|
hooks:
|
||||||
|
- id: isort
|
||||||
|
name: isort (python)
|
||||||
|
files: ^server/(gpu|evaluate|reflector)/
|
||||||
|
|||||||
@@ -45,8 +45,8 @@
|
|||||||
## llm backend implementation
|
## llm backend implementation
|
||||||
## =======================================================
|
## =======================================================
|
||||||
|
|
||||||
## Use oobagooda (default)
|
## Use oobabooga (default)
|
||||||
#LLM_BACKEND=oobagooda
|
#LLM_BACKEND=oobabooga
|
||||||
#LLM_URL=http://xxx:7860/api/generate/v1
|
#LLM_URL=http://xxx:7860/api/generate/v1
|
||||||
|
|
||||||
## Using serverless modal.com (require reflector-gpu-modal deployed)
|
## Using serverless modal.com (require reflector-gpu-modal deployed)
|
||||||
|
|||||||
@@ -2,7 +2,6 @@ import importlib
|
|||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
from time import monotonic
|
from time import monotonic
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
from reflector.logger import logger as reflector_logger
|
from reflector.logger import logger as reflector_logger
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
@@ -47,7 +46,7 @@ class LLM:
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
async def generate(
|
async def generate(
|
||||||
self, prompt: str, logger: reflector_logger, schema: str = None, **kwargs
|
self, prompt: str, logger: reflector_logger, schema: str | None = None, **kwargs
|
||||||
) -> dict:
|
) -> dict:
|
||||||
logger.info("LLM generate", prompt=repr(prompt))
|
logger.info("LLM generate", prompt=repr(prompt))
|
||||||
try:
|
try:
|
||||||
@@ -63,7 +62,7 @@ class LLM:
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs) -> str:
|
async def _generate(self, prompt: str, schema: str | None, **kwargs) -> str:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def _parse_json(self, result: str) -> dict:
|
def _parse_json(self, result: str) -> dict:
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
import json
|
import json
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
@@ -16,7 +15,7 @@ class BananaLLM(LLM):
|
|||||||
"X-Banana-Model-Key": settings.LLM_BANANA_MODEL_KEY,
|
"X-Banana-Model-Key": settings.LLM_BANANA_MODEL_KEY,
|
||||||
}
|
}
|
||||||
|
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
async def _generate(self, prompt: str, schema: str | None, **kwargs):
|
||||||
json_payload = {"prompt": prompt}
|
json_payload = {"prompt": prompt}
|
||||||
if schema:
|
if schema:
|
||||||
json_payload["schema"] = json.dumps(schema)
|
json_payload["schema"] = json.dumps(schema)
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
import json
|
import json
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
@@ -26,7 +25,7 @@ class ModalLLM(LLM):
|
|||||||
)
|
)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
|
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
async def _generate(self, prompt: str, schema: str | None, **kwargs):
|
||||||
json_payload = {"prompt": prompt}
|
json_payload = {"prompt": prompt}
|
||||||
if schema:
|
if schema:
|
||||||
json_payload["schema"] = json.dumps(schema)
|
json_payload["schema"] = json.dumps(schema)
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
import json
|
import json
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
@@ -7,7 +6,7 @@ from reflector.settings import settings
|
|||||||
|
|
||||||
|
|
||||||
class OobaboogaLLM(LLM):
|
class OobaboogaLLM(LLM):
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
async def _generate(self, prompt: str, schema: str | None, **kwargs):
|
||||||
json_payload = {"prompt": prompt}
|
json_payload = {"prompt": prompt}
|
||||||
if schema:
|
if schema:
|
||||||
json_payload["schema"] = json.dumps(schema)
|
json_payload["schema"] = json.dumps(schema)
|
||||||
@@ -1,5 +1,3 @@
|
|||||||
from typing import Union
|
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
@@ -17,7 +15,7 @@ class OpenAILLM(LLM):
|
|||||||
self.max_tokens = settings.LLM_MAX_TOKENS
|
self.max_tokens = settings.LLM_MAX_TOKENS
|
||||||
logger.info(f"LLM use openai backend at {self.openai_url}")
|
logger.info(f"LLM use openai backend at {self.openai_url}")
|
||||||
|
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs) -> str:
|
async def _generate(self, prompt: str, schema: str | None, **kwargs) -> str:
|
||||||
headers = {
|
headers = {
|
||||||
"Content-Type": "application/json",
|
"Content-Type": "application/json",
|
||||||
"Authorization": f"Bearer {self.openai_key}",
|
"Authorization": f"Bearer {self.openai_key}",
|
||||||
|
|||||||
@@ -9,16 +9,13 @@ async def test_basic_process(event_loop):
|
|||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
# use an LLM test backend
|
# use an LLM test backend
|
||||||
settings.LLM_BACKEND = "test"
|
settings.LLM_BACKEND = "test"
|
||||||
settings.TRANSCRIPT_BACKEND = "whisper"
|
settings.TRANSCRIPT_BACKEND = "whisper"
|
||||||
|
|
||||||
class LLMTest(LLM):
|
class LLMTest(LLM):
|
||||||
async def _generate(
|
async def _generate(self, prompt: str, schema: str | None, **kwargs) -> str:
|
||||||
self, prompt: str, schema: Union[str | None], **kwargs
|
|
||||||
) -> str:
|
|
||||||
return {
|
return {
|
||||||
"title": "TITLE",
|
"title": "TITLE",
|
||||||
"summary": "SUMMARY",
|
"summary": "SUMMARY",
|
||||||
|
|||||||
@@ -7,7 +7,6 @@ import asyncio
|
|||||||
import json
|
import json
|
||||||
import threading
|
import threading
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union
|
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
@@ -62,7 +61,7 @@ async def dummy_llm():
|
|||||||
from reflector.llm.base import LLM
|
from reflector.llm.base import LLM
|
||||||
|
|
||||||
class TestLLM(LLM):
|
class TestLLM(LLM):
|
||||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
async def _generate(self, prompt: str, schema: str | None, **kwargs):
|
||||||
return json.dumps({"title": "LLM TITLE", "summary": "LLM SUMMARY"})
|
return json.dumps({"title": "LLM TITLE", "summary": "LLM SUMMARY"})
|
||||||
|
|
||||||
with patch("reflector.llm.base.LLM.get_instance") as mock_llm:
|
with patch("reflector.llm.base.LLM.get_instance") as mock_llm:
|
||||||
|
|||||||
Reference in New Issue
Block a user