feat: self-hosted gpu api (#636)

* Self-hosted gpu api

* Refactor self-hosted api

* Rename model api tests

* Use lifespan instead of startup event

* Fix self hosted imports

* Add newlines

* Add response models

* Move gpu dir to the root

* Add project description

* Refactor lifespan

* Update env var names for model api tests

* Preload diarizarion service

* Refactor uploaded file paths
This commit is contained in:
2025-09-17 18:52:03 +02:00
committed by GitHub
parent fa049e8d06
commit ab859d65a6
30 changed files with 4020 additions and 16 deletions

33
gpu/modal_deployments/.gitignore vendored Normal file
View File

@@ -0,0 +1,33 @@
# OS / Editor
.DS_Store
.vscode/
.idea/
# Python
__pycache__/
*.py[cod]
*$py.class
# Logs
*.log
# Env and secrets
.env
.env.*
*.env
*.secret
# Build / dist
build/
dist/
.eggs/
*.egg-info/
# Coverage / test
.pytest_cache/
.coverage*
htmlcov/
# Modal local state (if any)
modal_mounts/
.modal_cache/

View File

@@ -0,0 +1,2 @@
REFLECTOR_GPU_APIKEY=
HF_TOKEN=

38
gpu/self_hosted/.gitignore vendored Normal file
View File

@@ -0,0 +1,38 @@
cache/
# OS / Editor
.DS_Store
.vscode/
.idea/
# Python
__pycache__/
*.py[cod]
*$py.class
# Env and secrets
.env
*.env
*.secret
HF_TOKEN
REFLECTOR_GPU_APIKEY
# Virtual env / uv
.venv/
venv/
ENV/
uv/
# Build / dist
build/
dist/
.eggs/
*.egg-info/
# Coverage / test
.pytest_cache/
.coverage*
htmlcov/
# Logs
*.log

View File

@@ -0,0 +1,46 @@
FROM python:3.12-slim
ENV PYTHONUNBUFFERED=1 \
UV_LINK_MODE=copy \
UV_NO_CACHE=1
WORKDIR /tmp
RUN apt-get update \
&& apt-get install -y \
ffmpeg \
curl \
ca-certificates \
gnupg \
wget \
&& apt-get clean
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
RUN dpkg -i /cuda-keyring.deb \
&& rm /cuda-keyring.deb \
&& apt-get update \
&& apt-get install -y --no-install-recommends \
cuda-cudart-12-6 \
libcublas-12-6 \
libcudnn9-cuda-12 \
libcudnn9-dev-cuda-12 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
ADD https://astral.sh/uv/install.sh /uv-installer.sh
RUN sh /uv-installer.sh && rm /uv-installer.sh
ENV PATH="/root/.local/bin/:$PATH"
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
RUN mkdir -p /app
WORKDIR /app
COPY pyproject.toml uv.lock /app/
COPY ./app /app/app
COPY ./main.py /app/
COPY ./runserver.sh /app/
EXPOSE 8000
CMD ["sh", "/app/runserver.sh"]

73
gpu/self_hosted/README.md Normal file
View File

@@ -0,0 +1,73 @@
# Self-hosted Model API
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
Environment variables
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
Requirements
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
- Python 3.12+
- NVIDIA GPU optional. If available, it will be used automatically
Local run
Set env vars in self_hosted/.env file
uv sync
uv run uvicorn main:app --host 0.0.0.0 --port 8000
Authentication
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
Endpoints
- POST /v1/audio/transcriptions
- multipart/form-data
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
- response: single { text, words, filename } or { results: [ ... ] }
- POST /v1/audio/transcriptions-from-url
- application/json
- body: { audio_file_url, language, timestamp_offset }
- response: { text, words }
- POST /translate
- text: query parameter
- body (application/json): { source_language, target_language }
- response: { text: { <src>: original, <tgt>: translated } }
- POST /diarize
- query parameters: audio_file_url, timestamp (optional)
- requires HF_TOKEN to be set (for pyannote)
- response: { diarization: [ { start, end, speaker } ] }
OpenAPI docs
- Visit /docs when the server is running
Docker
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
Conformance tests
# From this directory
TRANSCRIPT_URL=http://localhost:8000 \
TRANSCRIPT_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
TRANSLATION_URL=http://localhost:8000 \
TRANSLATION_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
DIARIZATION_URL=http://localhost:8000 \
DIARIZATION_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py

View File

@@ -0,0 +1,19 @@
import os
from fastapi import Depends, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
if not required_key:
return
if apikey == required_key:
return
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)

View File

@@ -0,0 +1,12 @@
from pathlib import Path
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
SAMPLE_RATE = 16000
VAD_CONFIG = {
"batch_max_duration": 30.0,
"silence_padding": 0.5,
"window_size": 512,
}
# App-level paths
UPLOADS_PATH = Path("/tmp/whisper-uploads")

View File

@@ -0,0 +1,30 @@
from contextlib import asynccontextmanager
from fastapi import FastAPI
from .routers.diarization import router as diarization_router
from .routers.transcription import router as transcription_router
from .routers.translation import router as translation_router
from .services.transcriber import WhisperService
from .services.diarizer import PyannoteDiarizationService
from .utils import ensure_dirs
@asynccontextmanager
async def lifespan(app: FastAPI):
ensure_dirs()
whisper_service = WhisperService()
whisper_service.load()
app.state.whisper = whisper_service
diarization_service = PyannoteDiarizationService()
diarization_service.load()
app.state.diarizer = diarization_service
yield
def create_app() -> FastAPI:
app = FastAPI(lifespan=lifespan)
app.include_router(transcription_router)
app.include_router(translation_router)
app.include_router(diarization_router)
return app

View File

@@ -0,0 +1,30 @@
from typing import List
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from ..auth import apikey_auth
from ..services.diarizer import PyannoteDiarizationService
from ..utils import download_audio_file
router = APIRouter(tags=["diarization"])
class DiarizationSegment(BaseModel):
start: float
end: float
speaker: int
class DiarizationResponse(BaseModel):
diarization: List[DiarizationSegment]
@router.post(
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
)
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
with download_audio_file(audio_file_url) as (file_path, _ext):
file_path = str(file_path)
diarizer: PyannoteDiarizationService = request.app.state.diarizer
return diarizer.diarize_file(file_path, timestamp=timestamp)

View File

@@ -0,0 +1,109 @@
import uuid
from typing import Optional, Union
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
from pydantic import BaseModel
from pathlib import Path
from ..auth import apikey_auth
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
from ..services.transcriber import MODEL_NAME
from ..utils import cleanup_uploaded_files, download_audio_file
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
class WordTiming(BaseModel):
word: str
start: float
end: float
class TranscriptResult(BaseModel):
text: str
words: list[WordTiming]
filename: Optional[str] = None
class TranscriptBatchResponse(BaseModel):
results: list[TranscriptResult]
@router.post(
"/transcriptions",
dependencies=[Depends(apikey_auth)],
response_model=Union[TranscriptResult, TranscriptBatchResponse],
)
def transcribe(
request: Request,
file: UploadFile = None,
files: list[UploadFile] | None = None,
model: str = Form(MODEL_NAME),
language: str = Form("en"),
batch: bool = Form(False),
):
service = request.app.state.whisper
if not file and not files:
raise HTTPException(
status_code=400, detail="Either 'file' or 'files' parameter is required"
)
if batch and not files:
raise HTTPException(
status_code=400, detail="Batch transcription requires 'files'"
)
upload_files = [file] if file else files
uploaded_paths: list[Path] = []
with cleanup_uploaded_files(uploaded_paths):
for upload_file in upload_files:
audio_suffix = upload_file.filename.split(".")[-1].lower()
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path = UPLOADS_PATH / unique_filename
with open(file_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
uploaded_paths.append(file_path)
if batch and len(upload_files) > 1:
results = []
for path in uploaded_paths:
result = service.transcribe_file(str(path), language=language)
result["filename"] = path.name
results.append(result)
return {"results": results}
results = []
for path in uploaded_paths:
result = service.transcribe_file(str(path), language=language)
result["filename"] = path.name
results.append(result)
return {"results": results} if len(results) > 1 else results[0]
@router.post(
"/transcriptions-from-url",
dependencies=[Depends(apikey_auth)],
response_model=TranscriptResult,
)
def transcribe_from_url(
request: Request,
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
model: str = Body(MODEL_NAME),
language: str = Body("en"),
timestamp_offset: float = Body(0.0),
):
service = request.app.state.whisper
with download_audio_file(audio_file_url) as (file_path, _ext):
file_path = str(file_path)
result = service.transcribe_vad_url_segment(
file_path=file_path, timestamp_offset=timestamp_offset, language=language
)
return result

View File

@@ -0,0 +1,28 @@
from typing import Dict
from fastapi import APIRouter, Body, Depends
from pydantic import BaseModel
from ..auth import apikey_auth
from ..services.translator import TextTranslatorService
router = APIRouter(tags=["translation"])
translator = TextTranslatorService()
class TranslationResponse(BaseModel):
text: Dict[str, str]
@router.post(
"/translate",
dependencies=[Depends(apikey_auth)],
response_model=TranslationResponse,
)
def translate(
text: str,
source_language: str = Body("en"),
target_language: str = Body("fr"),
):
return translator.translate(text, source_language, target_language)

View File

@@ -0,0 +1,42 @@
import os
import threading
import torch
import torchaudio
from pyannote.audio import Pipeline
class PyannoteDiarizationService:
def __init__(self):
self._pipeline = None
self._device = "cpu"
self._lock = threading.Lock()
def load(self):
self._device = "cuda" if torch.cuda.is_available() else "cpu"
self._pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ.get("HF_TOKEN"),
)
self._pipeline.to(torch.device(self._device))
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
if self._pipeline is None:
self.load()
waveform, sample_rate = torchaudio.load(file_path)
with self._lock:
diarization = self._pipeline(
{"waveform": waveform, "sample_rate": sample_rate}
)
words = []
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
words.append(
{
"start": round(timestamp + diarization_segment.start, 3),
"end": round(timestamp + diarization_segment.end, 3),
"speaker": int(speaker[-2:])
if speaker and speaker[-2:].isdigit()
else 0,
}
)
return {"diarization": words}

View File

@@ -0,0 +1,208 @@
import os
import shutil
import subprocess
import threading
from typing import Generator
import faster_whisper
import librosa
import numpy as np
import torch
from fastapi import HTTPException
from silero_vad import VADIterator, load_silero_vad
from ..config import SAMPLE_RATE, VAD_CONFIG
# Whisper configuration (service-local defaults)
MODEL_NAME = "large-v2"
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
MODEL_COMPUTE_TYPE = None
MODEL_NUM_WORKERS = 1
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
from ..utils import NoStdStreams
class WhisperService:
def __init__(self):
self.model = None
self.device = "cpu"
self.lock = threading.Lock()
def load(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = MODEL_COMPUTE_TYPE or (
"float16" if self.device == "cuda" else "int8"
)
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=compute_type,
num_workers=MODEL_NUM_WORKERS,
download_root=CACHE_PATH,
)
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
audio_duration = len(audio_array) / sample_rate
if audio_duration < VAD_CONFIG["silence_padding"]:
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
silence = np.zeros(silence_samples, dtype=np.float32)
return np.concatenate([audio_array, silence])
return audio_array
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
if len(words) <= 1:
return words
enforced: list[dict] = []
for i, word in enumerate(words):
current = dict(word)
if i < len(words) - 1:
next_start = words[i + 1]["start"]
if current["end"] > next_start:
current["end"] = next_start
enforced.append(current)
return enforced
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
input_for_model: str | "object" = file_path
try:
audio_array, _sample_rate = librosa.load(
file_path, sr=SAMPLE_RATE, mono=True
)
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
except Exception:
pass
with self.lock:
with NoStdStreams():
segments, _ = self.model.transcribe(
input_for_model,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(segment.text for segment in segments).strip()
words = [
{
"word": word.word,
"start": round(float(word.start), 2),
"end": round(float(word.end), 2),
}
for segment in segments
for word in segment.words
]
words = self.enforce_word_timing_constraints(words)
return {"text": text, "words": words}
def transcribe_vad_url_segment(
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
) -> dict:
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
cmd = [
ffmpeg_bin,
"-nostdin",
"-threads",
"1",
"-i",
input_path,
"-f",
"f32le",
"-acodec",
"pcm_f32le",
"-ac",
"1",
"-ar",
str(sample_rate),
"pipe:1",
]
try:
proc = subprocess.run(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
)
except Exception as e:
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
audio = np.frombuffer(proc.stdout, dtype=np.float32)
return audio
def vad_segments(
audio_array,
sample_rate: int = SAMPLE_RATE,
window_size: int = VAD_CONFIG["window_size"],
) -> Generator[tuple[float, float], None, None]:
vad_model = load_silero_vad(onnx=False)
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
start = None
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(
chunk, (0, window_size - len(chunk)), mode="constant"
)
speech = iterator(chunk)
if not speech:
continue
if "start" in speech:
start = speech["start"]
continue
if "end" in speech and start is not None:
end = speech["end"]
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
start = None
iterator.reset_states()
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
merged_batches: list[tuple[float, float]] = []
batch_start = None
batch_end = None
max_duration = VAD_CONFIG["batch_max_duration"]
for seg_start, seg_end in vad_segments(audio_array):
if batch_start is None:
batch_start, batch_end = seg_start, seg_end
continue
if seg_end - batch_start <= max_duration:
batch_end = seg_end
else:
merged_batches.append((batch_start, batch_end))
batch_start, batch_end = seg_start, seg_end
if batch_start is not None and batch_end is not None:
merged_batches.append((batch_start, batch_end))
all_text = []
all_words = []
for start_time, end_time in merged_batches:
s_idx = int(start_time * SAMPLE_RATE)
e_idx = int(end_time * SAMPLE_RATE)
segment = audio_array[s_idx:e_idx]
segment = self.pad_audio(segment, SAMPLE_RATE)
with self.lock:
segments, _ = self.model.transcribe(
segment,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(seg.text for seg in segments).strip()
words = [
{
"word": w.word,
"start": round(float(w.start) + start_time + timestamp_offset, 2),
"end": round(float(w.end) + start_time + timestamp_offset, 2),
}
for seg in segments
for w in seg.words
]
if text:
all_text.append(text)
all_words.extend(words)
all_words = self.enforce_word_timing_constraints(all_words)
return {"text": " ".join(all_text), "words": all_words}

View File

@@ -0,0 +1,44 @@
import threading
from transformers import MarianMTModel, MarianTokenizer, pipeline
class TextTranslatorService:
"""Simple text-to-text translator using HuggingFace MarianMT models.
This mirrors the modal translator API shape but uses text translation only.
"""
def __init__(self):
self._pipeline = None
self._lock = threading.Lock()
def load(self, source_language: str = "en", target_language: str = "fr"):
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
model_name = self._resolve_model_name(source_language, target_language)
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
def _resolve_model_name(self, src: str, tgt: str) -> str:
# Minimal mapping; extend as needed
pair = (src.lower(), tgt.lower())
mapping = {
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
}
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
def translate(self, text: str, source_language: str, target_language: str) -> dict:
if self._pipeline is None:
self.load(source_language, target_language)
with self._lock:
results = self._pipeline(
text, src_lang=source_language, tgt_lang=target_language
)
translated = results[0]["translation_text"] if results else ""
return {"text": {source_language: text, target_language: translated}}

View File

@@ -0,0 +1,107 @@
import logging
import os
import sys
import uuid
from contextlib import contextmanager
from typing import Mapping
from urllib.parse import urlparse
from pathlib import Path
import requests
from fastapi import HTTPException
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
logger = logging.getLogger(__name__)
class NoStdStreams:
def __init__(self):
self.devnull = open(os.devnull, "w")
def __enter__(self):
self._stdout, self._stderr = sys.stdout, sys.stderr
self._stdout.flush()
self._stderr.flush()
sys.stdout, sys.stderr = self.devnull, self.devnull
def __exit__(self, exc_type, exc_value, traceback):
sys.stdout, sys.stderr = self._stdout, self._stderr
self.devnull.close()
def ensure_dirs():
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
url_path = urlparse(url).path
for ext in SUPPORTED_FILE_EXTENSIONS:
if url_path.lower().endswith(f".{ext}"):
return ext
content_type = headers.get("content-type", "").lower()
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
return "mp3"
if "audio/wav" in content_type:
return "wav"
if "audio/mp4" in content_type:
return "mp4"
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
response = requests.head(audio_file_url, allow_redirects=True)
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Audio file not found")
response = requests.get(audio_file_url, allow_redirects=True)
response.raise_for_status()
audio_suffix = detect_audio_format(audio_file_url, response.headers)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path: Path = UPLOADS_PATH / unique_filename
with open(file_path, "wb") as f:
f.write(response.content)
return file_path, audio_suffix
@contextmanager
def download_audio_file(audio_file_url: str):
"""Download an audio file to UPLOADS_PATH and remove it after use.
Yields (file_path: Path, audio_suffix: str).
"""
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
try:
yield file_path, audio_suffix
finally:
try:
file_path.unlink(missing_ok=True)
except Exception as e:
logger.error("Error deleting temporary file %s: %s", file_path, e)
@contextmanager
def cleanup_uploaded_files(file_paths: list[Path]):
"""Ensure provided file paths are removed after use.
The provided list can be populated inside the context; all present entries
at exit will be deleted.
"""
try:
yield file_paths
finally:
for path in list(file_paths):
try:
path.unlink(missing_ok=True)
except Exception as e:
logger.error("Error deleting temporary file %s: %s", path, e)

View File

@@ -0,0 +1,10 @@
services:
reflector_gpu:
build:
context: .
ports:
- "8000:8000"
env_file:
- .env
volumes:
- ./cache:/root/.cache

3
gpu/self_hosted/main.py Normal file
View File

@@ -0,0 +1,3 @@
from app.factory import create_app
app = create_app()

View File

@@ -0,0 +1,19 @@
[project]
name = "reflector-gpu"
version = "0.1.0"
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"fastapi[standard]>=0.116.1",
"uvicorn[standard]>=0.30.0",
"torch>=2.3.0",
"faster-whisper>=1.1.0",
"librosa==0.10.1",
"numpy<2",
"silero-vad==5.1.0",
"transformers>=4.35.0",
"sentencepiece",
"pyannote.audio==3.1.0",
"torchaudio>=2.3.0",
]

View File

@@ -0,0 +1,17 @@
#!/bin/sh
set -e
export PATH="/root/.local/bin:$PATH"
cd /app
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
echo "[startup] Installing Python dependencies with uv..."
uv sync --compile-bytecode --locked
else
echo "[startup] Using existing virtual environment at /app/.venv"
fi
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000

3013
gpu/self_hosted/uv.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -190,5 +190,5 @@ Use the pytest-based conformance tests to validate any new implementation (inclu
```
TRANSCRIPT_URL=https://<your-deployment-base> \
TRANSCRIPT_MODAL_API_KEY=your-api-key \
uv run -m pytest -m gpu_modal --no-cov server/tests/test_gpu_modal_transcript.py
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
```

View File

@@ -118,7 +118,7 @@ addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
testpaths = ["tests"]
asyncio_mode = "auto"
markers = [
"gpu_modal: mark test to run only with GPU Modal endpoints (deselect with '-m \"not gpu_modal\"')",
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
]
[tool.ruff.lint]
@@ -130,7 +130,7 @@ select = [
[tool.ruff.lint.per-file-ignores]
"reflector/processors/summary/summary_builder.py" = ["E501"]
"gpu/**.py" = ["PLC0415"]
"gpu/modal_deployments/**.py" = ["PLC0415"]
"reflector/tools/**.py" = ["PLC0415"]
"migrations/versions/**.py" = ["PLC0415"]
"tests/**.py" = ["PLC0415"]

View File

@@ -0,0 +1,63 @@
"""
Tests for diarization Model API endpoint (self-hosted service compatible shape).
Marked with the "model_api" marker and skipped unless DIARIZATION_URL is provided.
Run with for local self-hosted server:
DIARIZATION_API_KEY=dev-key \
DIARIZATION_URL=http://localhost:8000 \
uv run -m pytest -m model_api --no-cov tests/test_model_api_diarization.py
"""
import os
import httpx
import pytest
# Public test audio file hosted on S3 specifically for reflector pytests
TEST_AUDIO_URL = (
"https://reflector-github-pytest.s3.us-east-1.amazonaws.com/test_mathieu_hello.mp3"
)
def get_modal_diarization_url():
url = os.environ.get("DIARIZATION_URL")
if not url:
pytest.skip(
"DIARIZATION_URL environment variable is required for Model API tests"
)
return url
def get_auth_headers():
api_key = os.environ.get("DIARIZATION_API_KEY") or os.environ.get(
"REFLECTOR_GPU_APIKEY"
)
return {"Authorization": f"Bearer {api_key}"} if api_key else {}
@pytest.mark.model_api
class TestModelAPIDiarization:
def test_diarize_from_url(self):
url = get_modal_diarization_url()
headers = get_auth_headers()
with httpx.Client(timeout=60.0) as client:
response = client.post(
f"{url}/diarize",
params={"audio_file_url": TEST_AUDIO_URL, "timestamp": 0.0},
headers=headers,
)
assert response.status_code == 200, f"Request failed: {response.text}"
result = response.json()
assert "diarization" in result
assert isinstance(result["diarization"], list)
assert len(result["diarization"]) > 0
for seg in result["diarization"]:
assert "start" in seg and "end" in seg and "speaker" in seg
assert isinstance(seg["start"], (int, float))
assert isinstance(seg["end"], (int, float))
assert seg["start"] <= seg["end"]

View File

@@ -1,21 +1,21 @@
"""
Tests for GPU Modal transcription endpoints.
Tests for transcription Model API endpoints.
These tests are marked with the "gpu-modal" group and will not run by default.
Run them with: pytest -m gpu-modal tests/test_gpu_modal_transcript_parakeet.py
These tests are marked with the "model_api" group and will not run by default.
Run them with: pytest -m model_api tests/test_model_api_transcript.py
Required environment variables:
- TRANSCRIPT_URL: URL to the Modal.com endpoint (required)
- TRANSCRIPT_MODAL_API_KEY: API key for authentication (optional)
- TRANSCRIPT_URL: URL to the Model API endpoint (required)
- TRANSCRIPT_API_KEY: API key for authentication (optional)
- TRANSCRIPT_MODEL: Model name to use (optional, defaults to nvidia/parakeet-tdt-0.6b-v2)
Example with pytest (override default addopts to run ONLY gpu_modal tests):
Example with pytest (override default addopts to run ONLY model_api tests):
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web-dev.modal.run \
TRANSCRIPT_MODAL_API_KEY=your-api-key \
uv run -m pytest -m gpu_modal --no-cov tests/test_gpu_modal_transcript.py
TRANSCRIPT_API_KEY=your-api-key \
uv run -m pytest -m model_api --no-cov tests/test_model_api_transcript.py
# Or with completely clean options:
uv run -m pytest -m gpu_modal -o addopts="" tests/
uv run -m pytest -m model_api -o addopts="" tests/
Running Modal locally for testing:
modal serve gpu/modal_deployments/reflector_transcriber_parakeet.py
@@ -40,14 +40,16 @@ def get_modal_transcript_url():
url = os.environ.get("TRANSCRIPT_URL")
if not url:
pytest.skip(
"TRANSCRIPT_URL environment variable is required for GPU Modal tests"
"TRANSCRIPT_URL environment variable is required for Model API tests"
)
return url
def get_auth_headers():
"""Get authentication headers if API key is available."""
api_key = os.environ.get("TRANSCRIPT_MODAL_API_KEY")
api_key = os.environ.get("TRANSCRIPT_API_KEY") or os.environ.get(
"REFLECTOR_GPU_APIKEY"
)
if api_key:
return {"Authorization": f"Bearer {api_key}"}
return {}
@@ -58,8 +60,8 @@ def get_model_name():
return os.environ.get("TRANSCRIPT_MODEL", "nvidia/parakeet-tdt-0.6b-v2")
@pytest.mark.gpu_modal
class TestGPUModalTranscript:
@pytest.mark.model_api
class TestModelAPITranscript:
"""Test suite for GPU Modal transcription endpoints."""
def test_transcriptions_from_url(self):

View File

@@ -0,0 +1,56 @@
"""
Tests for translation Model API endpoint (self-hosted service compatible shape).
Marked with the "model_api" marker and skipped unless TRANSLATION_URL is provided
or we fallback to TRANSCRIPT_URL base (same host for self-hosted).
Run locally against self-hosted server:
TRANSLATION_API_KEY=dev-key \
TRANSLATION_URL=http://localhost:8000 \
uv run -m pytest -m model_api --no-cov tests/test_model_api_translation.py
"""
import os
import httpx
import pytest
def get_translation_url():
url = os.environ.get("TRANSLATION_URL") or os.environ.get("TRANSCRIPT_URL")
if not url:
pytest.skip(
"TRANSLATION_URL or TRANSCRIPT_URL environment variable is required for Model API tests"
)
return url
def get_auth_headers():
api_key = os.environ.get("TRANSLATION_API_KEY") or os.environ.get(
"REFLECTOR_GPU_APIKEY"
)
return {"Authorization": f"Bearer {api_key}"} if api_key else {}
@pytest.mark.model_api
class TestModelAPITranslation:
def test_translate_text(self):
url = get_translation_url()
headers = get_auth_headers()
with httpx.Client(timeout=60.0) as client:
response = client.post(
f"{url}/translate",
params={"text": "The meeting will start in five minutes."},
json={"source_language": "en", "target_language": "fr"},
headers=headers,
)
assert response.status_code == 200, f"Request failed: {response.text}"
data = response.json()
assert "text" in data and isinstance(data["text"], dict)
assert data["text"].get("en") == "The meeting will start in five minutes."
assert isinstance(data["text"].get("fr", ""), str)
assert len(data["text"]["fr"]) > 0
assert data["text"]["fr"] == "La réunion commencera dans cinq minutes."