Merge pull request #377 from Monadical-SAS/setup-and-upgrade

Setup and upgrade
This commit is contained in:
2024-08-21 11:30:23 +02:00
committed by GitHub
10 changed files with 90 additions and 76 deletions

View File

@@ -4,7 +4,7 @@ TRANSCRIPT_MODAL_API_KEY=***REMOVED***
LLM_BACKEND=modal
LLM_URL=https://monadical-sas--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=<ask in zulip>
LLM_MODAL_API_KEY=***REMOVED***
AUTH_BACKEND=fief
AUTH_FIEF_URL=https://auth.reflector.media/reflector-local

0
server/README.md Normal file
View File

View File

@@ -3,36 +3,15 @@
# All the settings are described here: reflector/settings.py
#
## =======================================================
## Database
## =======================================================
#DATABASE_URL=sqlite://./reflector.db
#DATABASE_URL=postgresql://reflector:reflector@localhost:5432/reflector
## =======================================================
## User authentication
## =======================================================
## No authentication
#AUTH_BACKEND=none
## Using fief (fief.dev)
#AUTH_BACKEND=fief
#AUTH_FIEF_URL=https://your-fief-instance....
#AUTH_FIEF_CLIENT_ID=xxx
#AUTH_FIEF_CLIENT_SECRET=xxx
## =======================================================
## Public mode
## =======================================================
## If set to true, anonymous transcripts will be
## accessible to anybody.
#PUBLIC_MODE=false
AUTH_BACKEND=fief
AUTH_FIEF_URL=https://auth.reflector.media/reflector-local
AUTH_FIEF_CLIENT_ID=***REMOVED***
AUTH_FIEF_CLIENT_SECRET=<ask in zulip>
## =======================================================
## Transcription backend
@@ -41,7 +20,7 @@
## full list of available transcription backend
## =======================================================
## Using local whisper (default)
## Using local whisper
#TRANSCRIPT_BACKEND=whisper
#WHISPER_MODEL_SIZE=tiny
@@ -51,21 +30,31 @@
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
#TRANSCRIPT_MODAL_API_KEY=xxxxx
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=***REMOVED***
## =======================================================
## Transcription backend
##
## Only available in modal atm
## =======================================================
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
## =======================================================
## LLM backend
##
## Responsible for titles and short summary
## Check reflector/llm/* for the full list of available
## llm backend implementation
## =======================================================
## Use oobabooga (default)
#LLM_BACKEND=oobabooga
#LLM_URL=http://xxx:7860/api/generate/v1
## Using serverless modal.com (require reflector-gpu-modal deployed)
#LLM_BACKEND=modal
#LLM_URL=https://xxxxxx--reflector-llm-web.modal.run
#LLM_MODAL_API_KEY=xxx
LLM_BACKEND=modal
LLM_URL=https://monadical-sas--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=***REMOVED***
ZEPHYR_LLM_URL=https://monadical-sas--reflector-llm-zephyr-web.modal.run
## Using OpenAI
#LLM_BACKEND=openai
@@ -78,11 +67,21 @@
#LLM_OPENAI_MODEL="GPT4All Falcon"
## Default LLM MODEL NAME
DEFAULT_LLM=lmsys/vicuna-13b-v1.5
#DEFAULT_LLM=lmsys/vicuna-13b-v1.5
## Cache directory to store models
CACHE_DIR=data
## =======================================================
## Diarization
##
## Only available on modal
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
## =======================================================
DIARIZATION_ENABLED=false
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
## =======================================================
## Sentry
## =======================================================

View File

@@ -6,12 +6,12 @@ Reflector GPU backend - diarizer
import os
import modal.gpu
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.0"
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
MODEL_DIR = "/root/diarization_models"
stub = Stub(name="reflector-diarizer")
app = App(name="reflector-diarizer")
def migrate_cache_llm():
@@ -33,7 +33,6 @@ def download_pyannote_audio():
Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.0",
cache_dir=MODEL_DIR,
use_auth_token=os.environ["HF_TOKEN"]
)
@@ -54,7 +53,7 @@ diarizer_image = (
"hf-transfer"
)
.run_function(migrate_cache_llm)
.run_function(download_pyannote_audio, secrets=[modal.Secret.from_name("my-huggingface-secret")])
.run_function(download_pyannote_audio)
.env(
{
"LD_LIBRARY_PATH": (
@@ -66,16 +65,16 @@ diarizer_image = (
)
@stub.cls(
@app.cls(
gpu=modal.gpu.A100(memory=40),
timeout=60 * 30,
container_idle_timeout=60,
allow_concurrent_inputs=1,
image=diarizer_image,
secrets=[modal.Secret.from_name("my-huggingface-secret")],
)
class Diarizer:
def __enter__(self):
@enter()
def enter(self):
import torch
from pyannote.audio import Pipeline
@@ -124,7 +123,7 @@ class Diarizer:
# -------------------------------------------------------------------
@stub.function(
@app.function(
timeout=60 * 10,
container_idle_timeout=60 * 3,
allow_concurrent_inputs=40,

View File

@@ -9,7 +9,7 @@ import threading
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter, exit
# LLM
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/root/llm_models"
stub = Stub(name="reflector-llm")
app = App(name="reflector-llm")
def download_llm():
@@ -64,7 +64,7 @@ llm_image = (
)
@stub.cls(
@app.cls(
gpu="A100",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -72,7 +72,8 @@ llm_image = (
image=llm_image,
)
class LLM:
def __enter__(self):
@enter()
def enter(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
@@ -113,7 +114,8 @@ class LLM:
self.lock = threading.Lock()
def __exit__(self, *args):
@exit()
def exit():
print("Exit llm")
@method()
@@ -161,7 +163,7 @@ class LLM:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=45,

View File

@@ -9,7 +9,7 @@ import threading
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter, exit
# LLM
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/root/llm_models/zephyr"
stub = Stub(name="reflector-llm-zephyr")
app = App(name="reflector-llm-zephyr")
def download_llm():
@@ -64,7 +64,7 @@ llm_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -72,7 +72,8 @@ llm_image = (
image=llm_image,
)
class LLM:
def __enter__(self):
@enter()
def enter(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
@@ -116,7 +117,8 @@ class LLM:
self.GenerationConfig = GenerationConfig
self.lock = threading.Lock()
def __exit__(self, *args):
@exit()
def exit():
print("Exit llm")
@method()
@@ -169,7 +171,7 @@ class LLM:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=30,

View File

@@ -7,7 +7,7 @@ import os
import tempfile
import threading
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
# Whisper
@@ -18,7 +18,7 @@ WHISPER_NUM_WORKERS: int = 1
WHISPER_MODEL_DIR = "/root/transcription_models"
stub = Stub(name="reflector-transcriber")
app = App(name="reflector-transcriber")
def download_whisper():
@@ -75,7 +75,7 @@ transcriber_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -83,7 +83,8 @@ transcriber_image = (
image=transcriber_image,
)
class Transcriber:
def __enter__(self):
@enter()
def enter(self):
import faster_whisper
import torch
@@ -149,7 +150,7 @@ class Transcriber:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,

View File

@@ -6,7 +6,7 @@ Reflector GPU backend - transcriber
import os
import threading
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
# Seamless M4T
@@ -20,7 +20,7 @@ HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
SEAMLESS_MODEL_DIR: str = "m4t"
stub = Stub(name="reflector-translator")
app = App(name="reflector-translator")
def install_seamless_communication():
@@ -134,7 +134,7 @@ transcriber_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -142,7 +142,8 @@ transcriber_image = (
image=transcriber_image,
)
class Translator:
def __enter__(self):
@enter()
def enter(self):
import torch
from seamless_communication.inference.translator import Translator
@@ -379,7 +380,7 @@ class Translator:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,

View File

@@ -71,7 +71,7 @@ async def rtc_offer_base(
async def flush_pipeline_and_quit(close=True):
# may be called twice
# 1. either the client ask to sotp the meeting
# 1. either the client asked to stop the meeting
# - we flush and close
# - when we receive the close event, we do nothing.
# 2. or the client close the connection