Merge pull request #377 from Monadical-SAS/setup-and-upgrade

Setup and upgrade
This commit is contained in:
2024-08-21 11:30:23 +02:00
committed by GitHub
10 changed files with 90 additions and 76 deletions

View File

@@ -6,7 +6,7 @@ The project architecture consists of three primary components:
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
It also uses https://github.com/fief-dev for authentication, and Vercel for deployment and configuration of the front-end.
@@ -40,15 +40,23 @@ It also uses https://github.com/fief-dev for authentication, and Vercel for depl
All new contributions should be made in a separate branch. Before any code is merged into `main`, it requires a code review.
### How to Install Blackhole (Mac Only)
### Usage instructions
To record both your voice and the meeting you're taking part in, you need :
- For an in-person meeting, make sure your microphone is in range of all participants.
- If using several miscrophones, make sure to merge the audio feeds into one with an external tool.
- If using several microphones, make sure to merge the audio feeds into one with an external tool.
- For an online meeting, if you do not use headphones, your microphone should be able to pick up both your voice and the audio feed of the meeting.
- If you want to use headphones, you need to merge the audio feeds with an external tool.
Permissions:
You may have to add permission for browser's microphone access to record audio in
`System Preferences -> Privacy & Security -> Microphone`
`System Preferences -> Privacy & Security -> Accessibility`. You will be prompted to provide these when you try to connect.
### How to Install Blackhole (Mac Only)
This is an external tool for merging the audio feeds as explained in the previous section of this document.
Note: We currently do not have instructions for Windows users.
@@ -58,12 +66,6 @@ Note: We currently do not have instructions for Windows users.
- Then goto `System Preferences -> Sound` and choose the devices created from the Output and Input tabs.
- The input from your local microphone, the browser run meeting should be aggregated into one virtual stream to listen to and the output should be fed back to your specified output devices if everything is configured properly.
Permissions:
You may have to add permission for browser's microphone access to record audio in
`System Preferences -> Privacy & Security -> Microphone`
`System Preferences -> Privacy & Security -> Accessibility`. You will be prompted to provide these when you try to connect.
## Front-End
Start with `cd www`.
@@ -208,4 +210,12 @@ poetry run python -m reflector.tools.process path/to/audio.wav
## AI Models
### Modal
To deploy llm changes to modal, you need.
- a modal account
- set up the required secret in your modal account (REFLECTOR_GPU_APIKEY)
- install the modal cli
- connect your modal cli to your account if not done previously
- `modal run path/to/required/llm`
_(Documentation for this section is pending.)_

View File

@@ -4,7 +4,7 @@ TRANSCRIPT_MODAL_API_KEY=***REMOVED***
LLM_BACKEND=modal
LLM_URL=https://monadical-sas--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=<ask in zulip>
LLM_MODAL_API_KEY=***REMOVED***
AUTH_BACKEND=fief
AUTH_FIEF_URL=https://auth.reflector.media/reflector-local

0
server/README.md Normal file
View File

View File

@@ -3,36 +3,15 @@
# All the settings are described here: reflector/settings.py
#
## =======================================================
## Database
## =======================================================
#DATABASE_URL=sqlite://./reflector.db
#DATABASE_URL=postgresql://reflector:reflector@localhost:5432/reflector
## =======================================================
## User authentication
## =======================================================
## No authentication
#AUTH_BACKEND=none
## Using fief (fief.dev)
#AUTH_BACKEND=fief
#AUTH_FIEF_URL=https://your-fief-instance....
#AUTH_FIEF_CLIENT_ID=xxx
#AUTH_FIEF_CLIENT_SECRET=xxx
## =======================================================
## Public mode
## =======================================================
## If set to true, anonymous transcripts will be
## accessible to anybody.
#PUBLIC_MODE=false
AUTH_BACKEND=fief
AUTH_FIEF_URL=https://auth.reflector.media/reflector-local
AUTH_FIEF_CLIENT_ID=***REMOVED***
AUTH_FIEF_CLIENT_SECRET=<ask in zulip>
## =======================================================
## Transcription backend
@@ -41,7 +20,7 @@
## full list of available transcription backend
## =======================================================
## Using local whisper (default)
## Using local whisper
#TRANSCRIPT_BACKEND=whisper
#WHISPER_MODEL_SIZE=tiny
@@ -51,21 +30,31 @@
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
#TRANSCRIPT_MODAL_API_KEY=xxxxx
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=***REMOVED***
## =======================================================
## Transcription backend
##
## Only available in modal atm
## =======================================================
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
## =======================================================
## LLM backend
##
## Responsible for titles and short summary
## Check reflector/llm/* for the full list of available
## llm backend implementation
## =======================================================
## Use oobabooga (default)
#LLM_BACKEND=oobabooga
#LLM_URL=http://xxx:7860/api/generate/v1
## Using serverless modal.com (require reflector-gpu-modal deployed)
#LLM_BACKEND=modal
#LLM_URL=https://xxxxxx--reflector-llm-web.modal.run
#LLM_MODAL_API_KEY=xxx
LLM_BACKEND=modal
LLM_URL=https://monadical-sas--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=***REMOVED***
ZEPHYR_LLM_URL=https://monadical-sas--reflector-llm-zephyr-web.modal.run
## Using OpenAI
#LLM_BACKEND=openai
@@ -78,11 +67,21 @@
#LLM_OPENAI_MODEL="GPT4All Falcon"
## Default LLM MODEL NAME
DEFAULT_LLM=lmsys/vicuna-13b-v1.5
#DEFAULT_LLM=lmsys/vicuna-13b-v1.5
## Cache directory to store models
CACHE_DIR=data
## =======================================================
## Diarization
##
## Only available on modal
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
## =======================================================
DIARIZATION_ENABLED=false
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
## =======================================================
## Sentry
## =======================================================

View File

@@ -6,12 +6,12 @@ Reflector GPU backend - diarizer
import os
import modal.gpu
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.0"
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
MODEL_DIR = "/root/diarization_models"
stub = Stub(name="reflector-diarizer")
app = App(name="reflector-diarizer")
def migrate_cache_llm():
@@ -33,7 +33,6 @@ def download_pyannote_audio():
Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.0",
cache_dir=MODEL_DIR,
use_auth_token=os.environ["HF_TOKEN"]
)
@@ -54,7 +53,7 @@ diarizer_image = (
"hf-transfer"
)
.run_function(migrate_cache_llm)
.run_function(download_pyannote_audio, secrets=[modal.Secret.from_name("my-huggingface-secret")])
.run_function(download_pyannote_audio)
.env(
{
"LD_LIBRARY_PATH": (
@@ -66,16 +65,16 @@ diarizer_image = (
)
@stub.cls(
@app.cls(
gpu=modal.gpu.A100(memory=40),
timeout=60 * 30,
container_idle_timeout=60,
allow_concurrent_inputs=1,
image=diarizer_image,
secrets=[modal.Secret.from_name("my-huggingface-secret")],
)
class Diarizer:
def __enter__(self):
@enter()
def enter(self):
import torch
from pyannote.audio import Pipeline
@@ -124,7 +123,7 @@ class Diarizer:
# -------------------------------------------------------------------
@stub.function(
@app.function(
timeout=60 * 10,
container_idle_timeout=60 * 3,
allow_concurrent_inputs=40,

View File

@@ -9,7 +9,7 @@ import threading
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter, exit
# LLM
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/root/llm_models"
stub = Stub(name="reflector-llm")
app = App(name="reflector-llm")
def download_llm():
@@ -64,7 +64,7 @@ llm_image = (
)
@stub.cls(
@app.cls(
gpu="A100",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -72,7 +72,8 @@ llm_image = (
image=llm_image,
)
class LLM:
def __enter__(self):
@enter()
def enter(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
@@ -113,7 +114,8 @@ class LLM:
self.lock = threading.Lock()
def __exit__(self, *args):
@exit()
def exit():
print("Exit llm")
@method()
@@ -161,7 +163,7 @@ class LLM:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=45,

View File

@@ -9,7 +9,7 @@ import threading
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter, exit
# LLM
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/root/llm_models/zephyr"
stub = Stub(name="reflector-llm-zephyr")
app = App(name="reflector-llm-zephyr")
def download_llm():
@@ -64,7 +64,7 @@ llm_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -72,7 +72,8 @@ llm_image = (
image=llm_image,
)
class LLM:
def __enter__(self):
@enter()
def enter(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
@@ -116,7 +117,8 @@ class LLM:
self.GenerationConfig = GenerationConfig
self.lock = threading.Lock()
def __exit__(self, *args):
@exit()
def exit():
print("Exit llm")
@method()
@@ -169,7 +171,7 @@ class LLM:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
allow_concurrent_inputs=30,

View File

@@ -7,7 +7,7 @@ import os
import tempfile
import threading
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
# Whisper
@@ -18,7 +18,7 @@ WHISPER_NUM_WORKERS: int = 1
WHISPER_MODEL_DIR = "/root/transcription_models"
stub = Stub(name="reflector-transcriber")
app = App(name="reflector-transcriber")
def download_whisper():
@@ -75,7 +75,7 @@ transcriber_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -83,7 +83,8 @@ transcriber_image = (
image=transcriber_image,
)
class Transcriber:
def __enter__(self):
@enter()
def enter(self):
import faster_whisper
import torch
@@ -149,7 +150,7 @@ class Transcriber:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,

View File

@@ -6,7 +6,7 @@ Reflector GPU backend - transcriber
import os
import threading
from modal import Image, Secret, Stub, asgi_app, method
from modal import Image, Secret, App, asgi_app, method, enter
from pydantic import BaseModel
# Seamless M4T
@@ -20,7 +20,7 @@ HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
SEAMLESS_MODEL_DIR: str = "m4t"
stub = Stub(name="reflector-translator")
app = App(name="reflector-translator")
def install_seamless_communication():
@@ -134,7 +134,7 @@ transcriber_image = (
)
@stub.cls(
@app.cls(
gpu="A10G",
timeout=60 * 5,
container_idle_timeout=60 * 5,
@@ -142,7 +142,8 @@ transcriber_image = (
image=transcriber_image,
)
class Translator:
def __enter__(self):
@enter()
def enter(self):
import torch
from seamless_communication.inference.translator import Translator
@@ -379,7 +380,7 @@ class Translator:
# -------------------------------------------------------------------
@stub.function(
@app.function(
container_idle_timeout=60,
timeout=60,
allow_concurrent_inputs=40,

View File

@@ -71,7 +71,7 @@ async def rtc_offer_base(
async def flush_pipeline_and_quit(close=True):
# may be called twice
# 1. either the client ask to sotp the meeting
# 1. either the client asked to stop the meeting
# - we flush and close
# - when we receive the close event, we do nothing.
# 2. or the client close the connection