fix: remove unused settings and utils files (#522)

* fix: remove unused settings and utils files

* fix: remove migration done

* fix: remove outdated scripts

* fix: removing deployment of hermes, not used anymore

* fix: partially remove secret, still have to understand frontend.
This commit is contained in:
2025-07-31 17:45:48 -06:00
committed by GitHub
parent 4ee19ed015
commit ad56165b54
17 changed files with 8 additions and 1046 deletions

View File

@@ -1,59 +0,0 @@
"""
Utility file for file handling related functions, including file downloads and
uploads to cloud storage
"""
import sys
from typing import List, NoReturn
import boto3
import botocore
from .log_utils import LOGGER
from .run_utils import SECRETS
BUCKET_NAME = SECRETS["AWS-S3"]["BUCKET_NAME"]
s3 = boto3.client(
"s3",
aws_access_key_id=SECRETS["AWS-S3"]["AWS_ACCESS_KEY"],
aws_secret_access_key=SECRETS["AWS-S3"]["AWS_SECRET_KEY"],
)
def upload_files(files_to_upload: List[str]) -> NoReturn:
"""
Upload a list of files to the configured S3 bucket
:param files_to_upload: List of files to upload
:return: None
"""
for key in files_to_upload:
LOGGER.info("Uploading file " + key)
try:
s3.upload_file(key, BUCKET_NAME, key)
except botocore.exceptions.ClientError as exception:
print(exception.response)
def download_files(files_to_download: List[str]) -> NoReturn:
"""
Download a list of files from the configured S3 bucket
:param files_to_download: List of files to download
:return: None
"""
for key in files_to_download:
LOGGER.info("Downloading file " + key)
try:
s3.download_file(BUCKET_NAME, key, key)
except botocore.exceptions.ClientError as exception:
if exception.response["Error"]["Code"] == "404":
print("The object does not exist.")
else:
raise
if __name__ == "__main__":
if sys.argv[1] == "download":
download_files([sys.argv[2]])
elif sys.argv[1] == "upload":
upload_files([sys.argv[2]])

View File

@@ -1,38 +0,0 @@
"""
Utility function to format the artefacts created during Reflector run
"""
import json
with open("../artefacts/meeting_titles_and_summaries.txt", "r", encoding="utf-8") as f:
outputs = f.read()
outputs = json.loads(outputs)
transcript_file = open("../artefacts/meeting_transcript.txt", "a", encoding="utf-8")
title_desc_file = open(
"../artefacts/meeting_title_description.txt", "a", encoding="utf-8"
)
summary_file = open("../artefacts/meeting_summary.txt", "a", encoding="utf-8")
for item in outputs["topics"]:
transcript_file.write(item["transcript"])
summary_file.write(item["description"])
title_desc_file.write("TITLE: \n")
title_desc_file.write(item["title"])
title_desc_file.write("\n")
title_desc_file.write("DESCRIPTION: \n")
title_desc_file.write(item["description"])
title_desc_file.write("\n")
title_desc_file.write("TRANSCRIPT: \n")
title_desc_file.write(item["transcript"])
title_desc_file.write("\n")
title_desc_file.write("---------------------------------------- \n\n")
transcript_file.close()
title_desc_file.close()
summary_file.close()

View File

@@ -1,55 +0,0 @@
"""
Utility file for server side asynchronous task running and config objects
"""
import asyncio
import contextlib
from functools import partial
from threading import Lock
from typing import ContextManager, Generic, TypeVar
def run_in_executor(func, *args, executor=None, **kwargs):
"""
Run the function in an executor, unblocking the main loop
:param func: Function to be run in executor
:param args: function parameters
:param executor: executor instance [Thread | Process]
:param kwargs: Additional parameters
:return: Future of function result upon completion
"""
callback = partial(func, *args, **kwargs)
loop = asyncio.get_event_loop()
return loop.run_in_executor(executor, callback)
# Genetic type template
T = TypeVar("T")
class Mutex(Generic[T]):
"""
Mutex class to implement lock/release of a shared
protected variable
"""
def __init__(self, value: T):
"""
Create an instance of Mutex wrapper for the given resource
:param value: Shared resources to be thread protected
"""
self.__value = value
self.__lock = Lock()
@contextlib.contextmanager
def lock(self) -> ContextManager[T]:
"""
Lock the resource with a mutex to be used within a context block
The lock is automatically released on context exit
:return: Shared resource
"""
self.__lock.acquire()
try:
yield self.__value
finally:
self.__lock.release()

View File

@@ -1,262 +0,0 @@
"""
Utility file for all text processing related functionalities
"""
import datetime
from typing import List
import nltk
import torch
from log_utils import LOGGER
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from run_utils import CONFIG
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BartForConditionalGeneration, BartTokenizer
nltk.download("punkt", quiet=True)
def preprocess_sentence(sentence: str) -> str:
"""
Filter out undesirable tokens from thr sentence
:param sentence:
:return:
"""
stop_words = set(stopwords.words("english"))
tokens = word_tokenize(sentence.lower())
tokens = [token for token in tokens if token.isalnum() and token not in stop_words]
return " ".join(tokens)
def compute_similarity(sent1: str, sent2: str) -> float:
"""
Compute the similarity
"""
tfidf_vectorizer = TfidfVectorizer()
if sent1 is not None and sent2 is not None:
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
return 0.0
def remove_almost_alike_sentences(sentences: List[str], threshold=0.7) -> List[str]:
"""
Filter sentences that are similar beyond a set threshold
:param sentences:
:param threshold:
:return:
"""
num_sentences = len(sentences)
removed_indices = set()
for i in range(num_sentences):
if i not in removed_indices:
for j in range(i + 1, num_sentences):
if j not in removed_indices:
l_i = len(sentences[i])
l_j = len(sentences[j])
if l_i == 0 or l_j == 0:
if l_i == 0:
removed_indices.add(i)
if l_j == 0:
removed_indices.add(j)
else:
sentence1 = preprocess_sentence(sentences[i])
sentence2 = preprocess_sentence(sentences[j])
if len(sentence1) != 0 and len(sentence2) != 0:
similarity = compute_similarity(sentence1, sentence2)
if similarity >= threshold:
removed_indices.add(max(i, j))
filtered_sentences = [
sentences[i] for i in range(num_sentences) if i not in removed_indices
]
return filtered_sentences
def remove_outright_duplicate_sentences_from_chunk(chunk: str) -> List[str]:
"""
Remove repetitive sentences
:param chunk:
:return:
"""
chunk_text = chunk["text"]
sentences = nltk.sent_tokenize(chunk_text)
nonduplicate_sentences = list(dict.fromkeys(sentences))
return nonduplicate_sentences
def remove_whisper_repetitive_hallucination(
nonduplicate_sentences: List[str],
) -> List[str]:
"""
Remove sentences that are repeated as a result of Whisper
hallucinations
:param nonduplicate_sentences:
:return:
"""
chunk_sentences = []
for sent in nonduplicate_sentences:
temp_result = ""
seen = {}
words = nltk.word_tokenize(sent)
n_gram_filter = 3
for i in range(len(words)):
if (
str(words[i : i + n_gram_filter]) in seen
and seen[str(words[i : i + n_gram_filter])]
== words[i + 1 : i + n_gram_filter + 2]
):
pass
else:
seen[str(words[i : i + n_gram_filter])] = words[
i + 1 : i + n_gram_filter + 2
]
temp_result += words[i]
temp_result += " "
chunk_sentences.append(temp_result)
return chunk_sentences
def post_process_transcription(whisper_result: dict) -> dict:
"""
Parent function to perform post-processing on the transcription result
:param whisper_result:
:return:
"""
transcript_text = ""
for chunk in whisper_result["chunks"]:
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
chunk_sentences = remove_whisper_repetitive_hallucination(
nonduplicate_sentences
)
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
chunk["text"] = " ".join(similarity_matched_sentences)
transcript_text += chunk["text"]
whisper_result["text"] = transcript_text
return whisper_result
def summarize_chunks(chunks: List[str], tokenizer, model) -> List[str]:
"""
Summarize each chunk using a summarizer model
:param chunks:
:param tokenizer:
:param model:
:return:
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summaries = []
for c in chunks:
input_ids = tokenizer.encode(c, return_tensors="pt")
input_ids = input_ids.to(device)
with torch.no_grad():
summary_ids = model.generate(
input_ids,
num_beams=int(CONFIG["SUMMARIZER"]["BEAM_SIZE"]),
length_penalty=2.0,
max_length=int(CONFIG["SUMMARIZER"]["MAX_LENGTH"]),
early_stopping=True,
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summaries.append(summary)
return summaries
def chunk_text(
text: str, max_chunk_length: int = int(CONFIG["SUMMARIZER"]["MAX_CHUNK_LENGTH"])
) -> List[str]:
"""
Split text into smaller chunks.
:param text: Text to be chunked
:param max_chunk_length: length of chunk
:return: chunked texts
"""
sentences = nltk.sent_tokenize(text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_chunk_length:
current_chunk += f" {sentence.strip()}"
else:
chunks.append(current_chunk.strip())
current_chunk = f"{sentence.strip()}"
chunks.append(current_chunk.strip())
return chunks
def summarize(
transcript_text: str,
timestamp: datetime.datetime.timestamp,
real_time: bool = False,
chunk_summarize: str = CONFIG["SUMMARIZER"]["SUMMARIZE_USING_CHUNKS"],
):
"""
Summarize the given text either as a whole or as chunks as needed
:param transcript_text:
:param timestamp:
:param real_time:
:param chunk_summarize:
:return:
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = CONFIG["SUMMARIZER"]["SUMMARY_MODEL"]
if not summary_model:
summary_model = "facebook/bart-large-cnn"
# Summarize the generated transcript using the BART model
LOGGER.info(f"Loading BART model: {summary_model}")
tokenizer = BartTokenizer.from_pretrained(summary_model)
model = BartForConditionalGeneration.from_pretrained(summary_model)
model = model.to(device)
output_file = "summary_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
if real_time:
output_file = "real_time_" + output_file
if chunk_summarize != "YES":
max_length = int(CONFIG["SUMMARIZER"]["INPUT_ENCODING_MAX_LENGTH"])
inputs = tokenizer.batch_encode_plus(
[transcript_text],
truncation=True,
padding="longest",
max_length=max_length,
return_tensors="pt",
)
inputs = inputs.to(device)
with torch.no_grad():
num_beans = int(CONFIG["SUMMARIZER"]["BEAM_SIZE"])
max_length = int(CONFIG["SUMMARIZER"]["MAX_LENGTH"])
summaries = model.generate(
inputs["input_ids"],
num_beams=num_beans,
length_penalty=2.0,
max_length=max_length,
early_stopping=True,
)
decoded_summaries = [
tokenizer.decode(
summary, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for summary in summaries
]
summary = " ".join(decoded_summaries)
with open("./artefacts/" + output_file, "w", encoding="utf-8") as file:
file.write(summary.strip() + "\n")
else:
LOGGER.info("Breaking transcript into smaller chunks")
chunks = chunk_text(transcript_text)
LOGGER.info(f"Transcript broken into {len(chunks)} chunks of at most 500 words")
LOGGER.info(f"Writing summary text to: {output_file}")
with open(output_file, "w") as f:
summaries = summarize_chunks(chunks, tokenizer, model)
for summary in summaries:
f.write(summary.strip() + " ")

View File

@@ -1,283 +0,0 @@
"""
Utility file for all visualization related functions
"""
import ast
import collections
import datetime
import os
import pickle
from typing import NoReturn
import matplotlib.pyplot as plt
import pandas as pd
import scattertext as st
import spacy
from nltk.corpus import stopwords
from wordcloud import STOPWORDS, WordCloud
en = spacy.load("en_core_web_md")
spacy_stopwords = en.Defaults.stop_words
STOPWORDS = (
set(STOPWORDS).union(set(stopwords.words("english"))).union(set(spacy_stopwords))
)
def create_wordcloud(
timestamp: datetime.datetime.timestamp, real_time: bool = False
) -> NoReturn:
"""
Create a basic word cloud visualization of transcribed text
:return: None. The wordcloud image is saved locally
"""
filename = "transcript"
if real_time:
filename = (
"real_time_"
+ filename
+ "_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".txt"
)
else:
filename += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
with open("./artefacts/" + filename, "r") as f:
transcription_text = f.read()
# python_mask = np.array(PIL.Image.open("download1.png"))
wordcloud = WordCloud(
height=800,
width=800,
background_color="white",
stopwords=STOPWORDS,
min_font_size=8,
).generate(transcription_text)
# Plot wordcloud and save image
plt.figure(facecolor=None)
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.tight_layout(pad=0)
wordcloud = "wordcloud"
if real_time:
wordcloud = (
"real_time_"
+ wordcloud
+ "_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".png"
)
else:
wordcloud += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
plt.savefig("./artefacts/" + wordcloud)
def create_talk_diff_scatter_viz(
timestamp: datetime.datetime.timestamp, real_time: bool = False
) -> NoReturn:
"""
Perform agenda vs transcription diff to see covered topics.
Create a scatter plot of words in topics.
:return: None. Saved locally.
"""
spacy_model = "en_core_web_md"
nlp = spacy.load(spacy_model)
nlp.add_pipe("sentencizer")
agenda_topics = []
agenda = []
# Load the agenda
with open(os.path.join(os.getcwd(), "agenda-headers.txt"), "r") as f:
for line in f.readlines():
if line.strip():
agenda.append(line.strip())
agenda_topics.append(line.split(":")[0])
# Load the transcription with timestamp
if real_time:
filename = (
"./artefacts/real_time_transcript_with_timestamp_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".txt"
)
else:
filename = (
"./artefacts/transcript_with_timestamp_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".txt"
)
with open(filename) as file:
transcription_timestamp_text = file.read()
res = ast.literal_eval(transcription_timestamp_text)
chunks = res["chunks"]
# create df for processing
df = pd.DataFrame.from_dict(res["chunks"])
covered_items = {}
# ts: timestamp
# Map each timestamped chunk with top1 and top2 matched agenda
ts_to_topic_mapping_top_1 = {}
ts_to_topic_mapping_top_2 = {}
# Also create a mapping of the different timestamps
# in which each topic was covered
topic_to_ts_mapping_top_1 = collections.defaultdict(list)
topic_to_ts_mapping_top_2 = collections.defaultdict(list)
similarity_threshold = 0.7
for c in chunks:
doc_transcription = nlp(c["text"])
topic_similarities = []
for item in range(len(agenda)):
item_doc = nlp(agenda[item])
# if not doc_transcription or not all
# (token.has_vector for token in doc_transcription):
if not doc_transcription:
continue
similarity = doc_transcription.similarity(item_doc)
topic_similarities.append((item, similarity))
topic_similarities.sort(key=lambda x: x[1], reverse=True)
for i in range(2):
if topic_similarities[i][1] >= similarity_threshold:
covered_items[agenda[topic_similarities[i][0]]] = True
# top1 match
if i == 0:
ts_to_topic_mapping_top_1[c["timestamp"]] = agenda_topics[
topic_similarities[i][0]
]
topic_to_ts_mapping_top_1[
agenda_topics[topic_similarities[i][0]]
].append(c["timestamp"])
# top2 match
else:
ts_to_topic_mapping_top_2[c["timestamp"]] = agenda_topics[
topic_similarities[i][0]
]
topic_to_ts_mapping_top_2[
agenda_topics[topic_similarities[i][0]]
].append(c["timestamp"])
def create_new_columns(record: dict) -> dict:
"""
Accumulate the mapping information into the df
:param record:
:return:
"""
record["ts_to_topic_mapping_top_1"] = ts_to_topic_mapping_top_1[
record["timestamp"]
]
record["ts_to_topic_mapping_top_2"] = ts_to_topic_mapping_top_2[
record["timestamp"]
]
return record
df = df.apply(create_new_columns, axis=1)
# Count the number of items covered and calculate the percentage
num_covered_items = sum(covered_items.values())
percentage_covered = num_covered_items / len(agenda) * 100
# Print the results
print("💬 Agenda items covered in the transcription:")
for item in agenda:
if item in covered_items and covered_items[item]:
print("", item)
else:
print("", item)
print("📊 Coverage: {:.2f}%".format(percentage_covered))
# Save df, mappings for further experimentation
df_name = "df"
if real_time:
df_name = (
"real_time_"
+ df_name
+ "_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".pkl"
)
else:
df_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
df.to_pickle("./artefacts/" + df_name)
my_mappings = [
ts_to_topic_mapping_top_1,
ts_to_topic_mapping_top_2,
topic_to_ts_mapping_top_1,
topic_to_ts_mapping_top_2,
]
mappings_name = "mappings"
if real_time:
mappings_name = (
"real_time_"
+ mappings_name
+ "_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".pkl"
)
else:
mappings_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
pickle.dump(my_mappings, open("./artefacts/" + mappings_name, "wb"))
# to load, my_mappings = pickle.load( open ("mappings.pkl", "rb") )
# pick the 2 most matched topic to be used for plotting
topic_times = collections.defaultdict(int)
for key in ts_to_topic_mapping_top_1.keys():
if key[0] is None or key[1] is None:
continue
duration = key[1] - key[0]
topic_times[ts_to_topic_mapping_top_1[key]] += duration
topic_times = sorted(topic_times.items(), key=lambda x: x[1], reverse=True)
if len(topic_times) > 1:
cat_1 = topic_times[0][0]
cat_1_name = topic_times[0][0]
cat_2_name = topic_times[1][0]
# Scatter plot of topics
df = df.assign(parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences))
corpus = (
st.CorpusFromParsedDocuments(
df, category_col="ts_to_topic_mapping_top_1", parsed_col="parse"
)
.build()
.get_unigram_corpus()
.compact(st.AssociationCompactor(2000))
)
html = st.produce_scattertext_explorer(
corpus,
category=cat_1,
category_name=cat_1_name,
not_category_name=cat_2_name,
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
transform=st.Scalers.dense_rank,
)
if real_time:
with open(
"./artefacts/real_time_scatter_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".html",
"w",
) as file:
file.write(html)
else:
with open(
"./artefacts/scatter_"
+ timestamp.strftime("%m-%d-%Y_%H:%M:%S")
+ ".html",
"w",
) as file:
file.write(html)