server: first attempts to split post pipeline as single celery tasks

This commit is contained in:
2023-11-15 21:24:21 +01:00
committed by Mathieu Virbel
parent 55a3a59d52
commit aecc3a0c3b
4 changed files with 241 additions and 48 deletions

View File

@@ -12,6 +12,7 @@ It is directly linked to our data model.
"""
import asyncio
import functools
from contextlib import asynccontextmanager
from datetime import timedelta
from pathlib import Path
@@ -55,6 +56,22 @@ from reflector.processors.types import (
from reflector.processors.types import Transcript as TranscriptProcessorType
from reflector.settings import settings
from reflector.ws_manager import WebsocketManager, get_ws_manager
from structlog import Logger
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
coro = f(*args, **kwargs)
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = None
if loop and loop.is_running():
return loop.run_until_complete(coro)
return asyncio.run(coro)
return wrapper
def broadcast_to_sockets(func):
@@ -75,6 +92,22 @@ def broadcast_to_sockets(func):
return wrapper
def get_transcript(func):
"""
Decorator to fetch the transcript from the database from the first argument
"""
async def wrapper(self, **kwargs):
transcript_id = kwargs.pop("transcript_id")
transcript = await transcripts_controller.get_by_id(transcript_id=transcript_id)
if not transcript:
raise Exception("Transcript {transcript_id} not found")
tlogger = logger.bind(transcript_id=transcript.id)
return await func(self, transcript=transcript, logger=tlogger, **kwargs)
return wrapper
class StrValue(BaseModel):
value: str
@@ -99,6 +132,19 @@ class PipelineMainBase(PipelineRunner):
raise Exception("Transcript not found")
return result
def get_transcript_topics(self, transcript: Transcript) -> list[TranscriptTopic]:
return [
TitleSummaryWithIdProcessorType(
id=topic.id,
title=topic.title,
summary=topic.summary,
timestamp=topic.timestamp,
duration=topic.duration,
transcript=TranscriptProcessorType(words=topic.words),
)
for topic in transcript.topics
]
@asynccontextmanager
async def transaction(self):
async with self._lock:
@@ -299,10 +345,7 @@ class PipelineMainLive(PipelineMainBase):
pipeline.set_pref("audio:source_language", transcript.source_language)
pipeline.set_pref("audio:target_language", transcript.target_language)
pipeline.logger.bind(transcript_id=transcript.id)
pipeline.logger.info(
"Pipeline main live created",
transcript_id=self.transcript_id,
)
pipeline.logger.info("Pipeline main live created")
return pipeline
@@ -310,55 +353,28 @@ class PipelineMainLive(PipelineMainBase):
# when the pipeline ends, connect to the post pipeline
logger.info("Pipeline main live ended", transcript_id=self.transcript_id)
logger.info("Scheduling pipeline main post", transcript_id=self.transcript_id)
task_pipeline_main_post.delay(transcript_id=self.transcript_id)
pipeline_post(transcript_id=self.transcript_id)
class PipelineMainDiarization(PipelineMainBase):
"""
Diarization is a long time process, so we do it in a separate pipeline
When done, adjust the short and final summary
Diarize the audio and update topics
"""
async def create(self) -> Pipeline:
# create a context for the whole rtc transaction
# add a customised logger to the context
self.prepare()
processors = []
if settings.DIARIZATION_ENABLED:
processors += [
AudioDiarizationAutoProcessor(callback=self.on_topic),
]
processors += [
BroadcastProcessor(
processors=[
TranscriptFinalLongSummaryProcessor.as_threaded(
callback=self.on_long_summary
),
TranscriptFinalShortSummaryProcessor.as_threaded(
callback=self.on_short_summary
),
]
),
]
pipeline = Pipeline(*processors)
pipeline = Pipeline(
AudioDiarizationAutoProcessor(callback=self.on_topic),
)
pipeline.options = self
# now let's start the pipeline by pushing information to the
# first processor diarization processor
# XXX translation is lost when converting our data model to the processor model
transcript = await self.get_transcript()
topics = [
TitleSummaryWithIdProcessorType(
id=topic.id,
title=topic.title,
summary=topic.summary,
timestamp=topic.timestamp,
duration=topic.duration,
transcript=TranscriptProcessorType(words=topic.words),
)
for topic in transcript.topics
]
topics = self.get_transcript_topics(transcript)
# we need to create an url to be used for diarization
# we can't use the audio_mp3_filename because it's not accessible
@@ -386,15 +402,49 @@ class PipelineMainDiarization(PipelineMainBase):
# as tempting to use pipeline.push, prefer to use the runner
# to let the start just do one job.
pipeline.logger.bind(transcript_id=transcript.id)
pipeline.logger.info(
"Pipeline main post created", transcript_id=self.transcript_id
)
pipeline.logger.info("Diarization pipeline created")
self.push(audio_diarization_input)
self.flush()
return pipeline
class PipelineMainSummaries(PipelineMainBase):
"""
Generate summaries from the topics
"""
async def create(self) -> Pipeline:
self.prepare()
pipeline = Pipeline(
BroadcastProcessor(
processors=[
TranscriptFinalLongSummaryProcessor.as_threaded(
callback=self.on_long_summary
),
TranscriptFinalShortSummaryProcessor.as_threaded(
callback=self.on_short_summary
),
]
),
)
pipeline.options = self
# get transcript
transcript = await self.get_transcript()
pipeline.logger.bind(transcript_id=transcript.id)
pipeline.logger.info("Summaries pipeline created")
# push topics
topics = await self.get_transcript_topics(transcript)
for topic in topics:
self.push(topic)
self.flush()
return pipeline
@shared_task
def task_pipeline_main_post(transcript_id: str):
logger.info(
@@ -403,3 +453,112 @@ def task_pipeline_main_post(transcript_id: str):
)
runner = PipelineMainDiarization(transcript_id=transcript_id)
runner.start_sync()
@get_transcript
async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
logger.info("Starting convert to mp3")
# If the audio wav is not available, just skip
wav_filename = transcript.audio_wav_filename
if not wav_filename.exists():
logger.warning("Wav file not found, may be already converted")
return
# Convert to mp3
mp3_filename = transcript.audio_mp3_filename
import av
input_container = av.open(wav_filename)
output_container = av.open(mp3_filename, "w")
input_audio_stream = input_container.streams.audio[0]
output_audio_stream = output_container.add_stream("mp3")
output_audio_stream.codec_context.set_parameters(
input_audio_stream.codec_context.parameters
)
for packet in input_container.demux(input_audio_stream):
for frame in packet.decode():
output_container.mux(frame)
input_container.close()
output_container.close()
logger.info("Convert to mp3 done")
@get_transcript
async def pipeline_upload_mp3(transcript: Transcript, logger: Logger):
logger.info("Starting upload mp3")
# If the audio mp3 is not available, just skip
mp3_filename = transcript.audio_mp3_filename
if not mp3_filename.exists():
logger.warning("Mp3 file not found, may be already uploaded")
return
# Upload to external storage and delete the file
await transcripts_controller.move_to_storage(transcript)
await transcripts_controller.unlink_mp3(transcript)
logger.info("Upload mp3 done")
@get_transcript
@asynctask
async def pipeline_diarization(transcript: Transcript, logger: Logger):
logger.info("Starting diarization")
runner = PipelineMainDiarization(transcript_id=transcript.id)
await runner.start()
logger.info("Diarization done")
@get_transcript
@asynctask
async def pipeline_summaries(transcript: Transcript, logger: Logger):
logger.info("Starting summaries")
runner = PipelineMainSummaries(transcript_id=transcript.id)
await runner.start()
logger.info("Summaries done")
# ===================================================================
# Celery tasks that can be called from the API
# ===================================================================
@shared_task
@asynctask
async def task_pipeline_convert_to_mp3(transcript_id: str):
await pipeline_convert_to_mp3(transcript_id)
@shared_task
@asynctask
async def task_pipeline_upload_mp3(transcript_id: str):
await pipeline_upload_mp3(transcript_id)
@shared_task
@asynctask
async def task_pipeline_diarization(transcript_id: str):
await pipeline_diarization(transcript_id)
@shared_task
@asynctask
async def task_pipeline_summaries(transcript_id: str):
await pipeline_summaries(transcript_id)
def pipeline_post(transcript_id: str):
"""
Run the post pipeline
"""
chain_mp3_and_diarize = (
task_pipeline_convert_to_mp3.si(transcript_id=transcript_id)
| task_pipeline_upload_mp3.si(transcript_id=transcript_id)
| task_pipeline_diarization.si(transcript_id=transcript_id)
)
chain_summary = task_pipeline_summaries.si(transcript_id=transcript_id)
chain = chain_mp3_and_diarize | chain_summary
chain.delay()