Merge branch 'main' into jose/ui

This commit is contained in:
Jose B
2023-08-03 12:41:52 -05:00
12 changed files with 200 additions and 85 deletions

31
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,31 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: local
hooks:
- id: yarn-format
name: run yarn format
language: system
entry: bash -c 'cd www && yarn format'
pass_filenames: false
files: ^www/
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: debug-statements
- id: trailing-whitespace
- id: check-added-large-files
- id: detect-private-key
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: isort
args: ["--profile", "black"]
- repo: https://github.com/psf/black
rev: 23.1.0
hooks:
- id: black
args: ["--line-length", "120"]

View File

@@ -0,0 +1,79 @@
"""
This is an example code containing the bare essentials to load a chat
LLM and infer from it using a predefined prompt. The purpose of this file
is to show an example of inferring from a chat LLM which is required for
banana.dev due to its design and platform limitations
"""
# The following logic was tested on the monadical-ml machine
import json
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer
)
from transformers.generation import GenerationConfig
# This can be passed via the environment variable or the params supplied
# when starting the program via banana.dev platform
MODEL_NAME = "lmsys/vicuna-13b-v1.5"
# Load the model in half precision, and less memory usage
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16
)
# Generation config
model.config.max_new_tokens = 300
gen_cfg = GenerationConfig.from_model_config(model.config)
gen_cfg.max_new_tokens = 300
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Move model to GPU
model = model.cuda()
print(f"Loading {MODEL_NAME} successful")
# Inputs
sample_chunks = [
"You all just came off of your incredible Google Cloud next conference where you released a wide variety of functionality and features and new products across artisan television and also across the entire sort of cloud ecosystem . You want to just first by walking through , first start by walking through all the innovations that you sort of released and what you 're excited about when you come to Google Cloud ? Now our vision is super simple . If you look at what smartphones did for a consumer , you know they took a computer and internet browser , a communication device , and a camera , and made it so that it 's in everybody 's pocket , so it really brought computation to every person . We feel that , you know , our , what we 're trying to do is take all the technological innovation that Google 's doing , but make it super simple so that everyone can consume it . And so that includes our global data center footprint , all the new types of hardware and large-scale systems we work on , the software that we 're making available for people to do high-scale computation , tools for data processing , tools for cybersecurity , processing , tools for cyber security , tools for machine learning , but make it so simple that everyone can use it . And every step that we do to simplify things for people , we think adoption can grow . And so that 's a lot of what we 've done these last three , four years , and we made a number of announcements that next in machine learning and AI in particular , you know , we look at our work as four elements , how we take our large-scale compute systems that were building for AI and how we make that available to everybody . Second , what we 're doing with the software stacks and top of it , things like jacks and other things and how we 're making those available to everybody . Third is advances because different people have different levels of expertise . Some people say I need the hardware to build my own large language model or algorithm . Other people say , look , I really need to use a building block . You guys give me . So , 30s we 've done a lot with AutoML and we announce new capability for image , video , and translation to make it available to everybody . And then lastly , we 're also building completely packaged solutions for some areas and we announce some new stuff . ",
" We 're joined next by Thomas Curian , CEO of Google Cloud , and Alexander Wang , CEO and founder of Scale AI . Thomas joined Google in November 2018 as the CEO of Google Cloud . Prior to Google , Thomas spent 22 years at Oracle , where most recently he was president of product development . Before that , Thomas worked at McKinsey as a business analyst and engagement manager . His nearly 30 years of experience have given him a deep knowledge of engineering enterprise relationships and leadership of large organizations . Thomas 's degrees include an MBA in administration and management from Stanford University , as an RJ Miller scholar and a BSEE in electrical engineering and computer science from Princeton University , where he graduated suma cum laude . Thomas serves as a member of the Stanford graduate School of Business Advisory Council and Princeton University School of Engineering Advisory Council . Please welcome to the stage , Thomas Curian and Alexander Wang . This is a super exciting conversation . Thanks for being here , Thomas ."]
# Model Prompt template for current model
prompt = f"""
### Human:
Create a JSON object as response.The JSON object must have 2 fields:
i) title and ii) summary.For the title field,generate a short title
for the given text. For the summary field, summarize the given text
in three sentences.
{sample_chunks[0]}
### Assistant:
"""
# Inference : Chat generation
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
output = model.generate(input_ids, generation_config=gen_cfg)
# Process output
response = tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
response = response.split("### Assistant:\n")
print("TitleSummaryJsonResponse :", json.loads(response[1]))
print("Inference successful")
# Sample response for sample_chunks[0]
# TitleSummaryJsonResponse :
# {
# 'title': 'Google Cloud Next Conference: Simplifying AI and Machine Learning for Everyone',
# 'summary': 'Google Cloud announced a wide range of innovations and new products in the AI
# and machine learning space at the recent Google Cloud Next conference. The goal
# is to make these technologies accessible to everyone by simplifying the process
# and providing tools for data processing, cybersecurity, and machine learning.
# Google is also working on advances in AutoML and packaged solutions for certain areas.'
# }

View File

@@ -1,12 +0,0 @@
# Project Timeline
Here's a structured timeline for our project completion:
| Day | Objective |
| --------- | ------------------------------------------------------ |
| Tuesday | Front-end and Back-end integration |
| Wednesday | Project will be polished and tested by Adam |
| Thursday | Project completion. Additional tests will be performed |
| Friday | Big demo presentation |
Let's stay focused and get our tasks done on time for a successful demo on Friday. Let's have a successful week!

View File

@@ -18,81 +18,81 @@ class CustomRecordPlugin extends RecordPlugin {
return new CustomRecordPlugin(options || {});
}
render(stream) {
if (!this.wavesurfer) return () => undefined
if (!this.wavesurfer) return () => undefined;
const container = this.wavesurfer.getWrapper()
const canvas = document.createElement('canvas')
canvas.width = container.clientWidth
canvas.height = container.clientHeight
canvas.style.zIndex = '10'
container.appendChild(canvas)
const container = this.wavesurfer.getWrapper();
const canvas = document.createElement("canvas");
canvas.width = container.clientWidth;
canvas.height = container.clientHeight;
canvas.style.zIndex = "10";
container.appendChild(canvas);
const canvasCtx = canvas.getContext('2d')
const audioContext = new AudioContext()
const source = audioContext.createMediaStreamSource(stream)
const analyser = audioContext.createAnalyser()
analyser.fftSize = 2 ** 5
source.connect(analyser)
const bufferLength = analyser.frequencyBinCount
const dataArray = new Uint8Array(bufferLength)
const canvasCtx = canvas.getContext("2d");
const audioContext = new AudioContext();
const source = audioContext.createMediaStreamSource(stream);
const analyser = audioContext.createAnalyser();
analyser.fftSize = 2 ** 5;
source.connect(analyser);
const bufferLength = analyser.frequencyBinCount;
const dataArray = new Uint8Array(bufferLength);
let animationId, previousTimeStamp;
const BUFFER_SIZE = 2 ** 8
const dataBuffer = new Array(BUFFER_SIZE).fill(canvas.height)
const BUFFER_SIZE = 2 ** 8;
const dataBuffer = new Array(BUFFER_SIZE).fill(canvas.height);
const drawWaveform = (timeStamp) => {
if (!canvasCtx) return
if (!canvasCtx) return;
analyser.getByteTimeDomainData(dataArray)
canvasCtx.clearRect(0, 0, canvas.width, canvas.height)
canvasCtx.fillStyle = '#cc3347'
analyser.getByteTimeDomainData(dataArray);
canvasCtx.clearRect(0, 0, canvas.width, canvas.height);
canvasCtx.fillStyle = "#cc3347";
if (previousTimeStamp === undefined) {
previousTimeStamp = timeStamp
dataBuffer.push(Math.min(...dataArray))
dataBuffer.splice(0, 1)
previousTimeStamp = timeStamp;
dataBuffer.push(Math.min(...dataArray));
dataBuffer.splice(0, 1);
}
const elapsed = timeStamp - previousTimeStamp;
if (elapsed > 10) {
previousTimeStamp = timeStamp
dataBuffer.push(Math.min(...dataArray))
dataBuffer.splice(0, 1)
previousTimeStamp = timeStamp;
dataBuffer.push(Math.min(...dataArray));
dataBuffer.splice(0, 1);
}
// Drawing
const sliceWidth = canvas.width / dataBuffer.length
let x = 0
const sliceWidth = canvas.width / dataBuffer.length;
let x = 0;
for (let i = 0; i < dataBuffer.length; i++) {
const valueNormalized = dataBuffer[i] / canvas.height
const y = valueNormalized * canvas.height / 2
const sliceHeight = canvas.height + 1 - y * 2
const valueNormalized = dataBuffer[i] / canvas.height;
const y = (valueNormalized * canvas.height) / 2;
const sliceHeight = canvas.height + 1 - y * 2;
canvasCtx.fillRect(x, y, sliceWidth * 2 / 3, sliceHeight)
x += sliceWidth
canvasCtx.fillRect(x, y, (sliceWidth * 2) / 3, sliceHeight);
x += sliceWidth;
}
animationId = requestAnimationFrame(drawWaveform)
}
animationId = requestAnimationFrame(drawWaveform);
};
drawWaveform()
drawWaveform();
return () => {
if (animationId) {
cancelAnimationFrame(animationId)
cancelAnimationFrame(animationId);
}
if (source) {
source.disconnect()
source.mediaStream.getTracks().forEach((track) => track.stop())
source.disconnect();
source.mediaStream.getTracks().forEach((track) => track.stop());
}
if (audioContext) {
audioContext.close()
audioContext.close();
}
canvas?.remove()
}
canvas?.remove();
};
}
startRecording(stream) {
this.preventInteraction();

View File

@@ -1,7 +1,10 @@
import { Mulberry32 } from "../utils.js";
import React, { useState, useEffect } from "react";
import { FontAwesomeIcon } from '@fortawesome/react-fontawesome'
import { faChevronRight, faChevronDown } from '@fortawesome/free-solid-svg-icons'
import { FontAwesomeIcon } from "@fortawesome/react-fontawesome";
import {
faChevronRight,
faChevronDown,
} from "@fortawesome/free-solid-svg-icons";
export function Dashboard({
isRecording,
@@ -24,7 +27,8 @@ export function Dashboard({
};
const handleScroll = (e) => {
const bottom = e.target.scrollHeight - e.target.scrollTop === e.target.clientHeight;
const bottom =
e.target.scrollHeight - e.target.scrollTop === e.target.clientHeight;
if (!bottom && autoscrollEnabled) {
setAutoscrollEnabled(false);
} else if (bottom && !autoscrollEnabled) {
@@ -44,10 +48,18 @@ export function Dashboard({
</div>
<div
className={`absolute top-7 right-5 w-10 h-10 ${autoscrollEnabled ? 'hidden' : 'flex'} justify-center items-center text-2xl cursor-pointer opacity-70 hover:opacity-100 transition-opacity duration-200 animate-bounce rounded-xl border-slate-400 bg-[#3c82f638] text-[#3c82f6ed]`}
className={`absolute top-7 right-5 w-10 h-10 ${
autoscrollEnabled ? "hidden" : "flex"
} justify-center items-center text-2xl cursor-pointer opacity-70 hover:opacity-100 transition-opacity duration-200 animate-bounce rounded-xl border-slate-400 bg-[#3c82f638] text-[#3c82f6ed]`}
onClick={scrollToBottom}
>&#11015;</div>
<div id="topics-div" className="py-2 overflow-y-auto" onScroll={handleScroll}>
>
&#11015;
</div>
<div
id="topics-div"
className="py-2 overflow-y-auto"
onScroll={handleScroll}
>
{topics.map((item, index) => (
<div key={index} className="border-b-2 py-2 hover:bg-[#8ec5fc30]">
<div
@@ -64,7 +76,9 @@ export function Dashboard({
</div>
</div>
{openIndex === index && (
<div className="p-2 mt-2 -mb-2 bg-slate-50 rounded">{item.transcript}</div>
<div className="p-2 mt-2 -mb-2 bg-slate-50 rounded">
{item.transcript}
</div>
)}
</div>
))}

View File

@@ -7,27 +7,28 @@ import "react-dropdown/style.css";
import CustomRecordPlugin from "./CustomRecordPlugin";
const AudioInputsDropdown = (props) => {
const [ddOptions, setDdOptions] = useState([]);
useEffect(() => {
const init = async () => {
// Request permission to use audio inputs
await navigator.mediaDevices.getUserMedia({ audio: true }).then((stream) => stream.getTracks().forEach((t) => t.stop()))
await navigator.mediaDevices
.getUserMedia({ audio: true })
.then((stream) => stream.getTracks().forEach((t) => t.stop()));
const devices = await navigator.mediaDevices.enumerateDevices()
const devices = await navigator.mediaDevices.enumerateDevices();
const audioDevices = devices
.filter((d) => d.kind === "audioinput" && d.deviceId != "")
.map((d) => ({ value: d.deviceId, label: d.label }))
.map((d) => ({ value: d.deviceId, label: d.label }));
if (audioDevices.length < 1) return console.log("no audio input devices")
if (audioDevices.length < 1) return console.log("no audio input devices");
setDdOptions(audioDevices)
props.setDeviceId(audioDevices[0].value)
}
init()
}, [])
setDdOptions(audioDevices);
props.setDeviceId(audioDevices[0].value);
};
init();
}, []);
const handleDropdownChange = (e) => {
props.setDeviceId(e.value);
@@ -40,8 +41,8 @@ const AudioInputsDropdown = (props) => {
value={ddOptions[0]}
disabled={props.disabled}
/>
)
}
);
};
export default function Recorder(props) {
const waveformRef = useRef();

View File

@@ -64,7 +64,7 @@ const useWebRTC = (stream) => {
duration: serverData.duration,
summary: serverData.summary,
},
text: ''
text: "",
}));
break;
default:

View File

@@ -17,9 +17,8 @@ export default function RootLayout({ children }) {
<title>Test</title>
</Head>
<body className={roboto.className + " flex flex-col min-h-screen"}>
{children}
</body>
{children}
</body>
</html>
);
}

View File

@@ -12,7 +12,8 @@ const App = () => {
// transcription, summary, etc
const serverData = useWebRTC(stream);
const sendStopCmd = () => serverData?.peer?.send(JSON.stringify({ cmd: "STOP" }))
const sendStopCmd = () =>
serverData?.peer?.send(JSON.stringify({ cmd: "STOP" }));
return (
<div className="flex flex-col items-center h-[100svh] bg-gradient-to-r from-[#8ec5fc30] to-[#e0c3fc42]">

View File

@@ -1,11 +1,10 @@
/** @type {import('next').NextConfig} */
const nextConfig = {
output: 'standalone',
output: "standalone",
};
module.exports = nextConfig;
// Sentry content below
const { withSentryConfig } = require("@sentry/nextjs");
@@ -40,5 +39,5 @@ module.exports = withSentryConfig(
// Automatically tree-shake Sentry logger statements to reduce bundle size
disableLogger: true,
}
},
);

View File

@@ -30,8 +30,8 @@
},
"main": "index.js",
"repository": "https://github.com/Monadical-SAS/reflector-ui.git",
"author": "Koper <andreas@monadical.com>",
"license": "MIT",
"author": "Andreas <andreas@monadical.com>",
"license": "All Rights Reserved",
"devDependencies": {
"prettier": "^3.0.0"
}

View File

@@ -70,7 +70,10 @@ export default function Home() {
<p>
Next, look for the error on the{" "}
<a href="https://monadical.sentry.io/issues/?project=4505634666577920">Issues Page</a>.
<a href="https://monadical.sentry.io/issues/?project=4505634666577920">
Issues Page
</a>
.
</p>
<p style={{ marginTop: "24px" }}>
For more information, see{" "}