mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Moved all server files to server/
This commit is contained in:
183
server/trials/whisper-jax/whisjax.py
Normal file
183
server/trials/whisper-jax/whisjax.py
Normal file
@@ -0,0 +1,183 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# summarize https://www.youtube.com/watch?v=imzTxoEDH_g
|
||||
# summarize https://www.sprocket.org/video/cheesemaking.mp4 summary.txt
|
||||
# summarize podcast.mp3 summary.txt
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import tempfile
|
||||
from datetime import datetime
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import jax.numpy as jnp
|
||||
import moviepy.editor
|
||||
import nltk
|
||||
import yt_dlp as youtube_dl
|
||||
from whisper_jax import FlaxWhisperPipline
|
||||
|
||||
from ...utils.file_utils import download_files, upload_files
|
||||
from ...utils.log_utils import LOGGER
|
||||
from ...utils.run_utils import CONFIG
|
||||
from ...utils.text_utils import post_process_transcription, summarize
|
||||
from ...utils.viz_utils import create_talk_diff_scatter_viz, create_wordcloud
|
||||
|
||||
nltk.download('punkt', quiet=True)
|
||||
nltk.download('stopwords', quiet=True)
|
||||
|
||||
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_MODEL_SIZE"]
|
||||
NOW = datetime.now()
|
||||
|
||||
if not os.path.exists('../../artefacts'):
|
||||
os.makedirs('../../artefacts')
|
||||
|
||||
|
||||
def init_argparse() -> argparse.ArgumentParser:
|
||||
"""
|
||||
Parse the CLI arguments
|
||||
:return: parser object
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
usage="%(prog)s [OPTIONS] <LOCATION> <OUTPUT>",
|
||||
description="Creates a transcript of a video or audio file, then"
|
||||
" summarizes it using ChatGPT."
|
||||
)
|
||||
|
||||
parser.add_argument("-l", "--language",
|
||||
help="Language that the summary should be written in",
|
||||
type=str,
|
||||
default="english",
|
||||
choices=['english', 'spanish', 'french', 'german',
|
||||
'romanian'])
|
||||
parser.add_argument("location")
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = init_argparse()
|
||||
args = parser.parse_args()
|
||||
|
||||
# Parse the location string that was given to us, and figure out if it's a
|
||||
# local file (audio or video), a YouTube URL, or a URL referencing an
|
||||
# audio or video file.
|
||||
url = urlparse(args.location)
|
||||
|
||||
# S3 : Pull artefacts to S3 bucket ?
|
||||
|
||||
media_file = ""
|
||||
if url.scheme == 'http' or url.scheme == 'https':
|
||||
# Check if we're being asked to retreive a YouTube URL, which is
|
||||
# handled differently, as we'll use a secondary site to download
|
||||
# the video first.
|
||||
if re.search('youtube.com', url.netloc, re.IGNORECASE):
|
||||
# Download the lowest resolution YouTube video
|
||||
# (since we're just interested in the audio).
|
||||
# It will be saved to the current directory.
|
||||
LOGGER.info("Downloading YouTube video at url: " + args.location)
|
||||
|
||||
# Create options for the download
|
||||
ydl_opts = {
|
||||
'format': 'bestaudio/best',
|
||||
'postprocessors': [{
|
||||
'key': 'FFmpegExtractAudio',
|
||||
'preferredcodec': 'mp3',
|
||||
'preferredquality': '192',
|
||||
}],
|
||||
'outtmpl': './artefacts/audio', # Specify output file path and name
|
||||
}
|
||||
|
||||
# Download the audio
|
||||
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
||||
ydl.download([args.location])
|
||||
media_file = "../artefacts/audio.mp3"
|
||||
|
||||
LOGGER.info("Saved downloaded YouTube video to: " + media_file)
|
||||
else:
|
||||
# XXX - Download file using urllib, check if file is
|
||||
# audio/video using python-magic
|
||||
LOGGER.info(f"Downloading file at url: {args.location}")
|
||||
LOGGER.info(" XXX - This method hasn't been implemented yet.")
|
||||
elif url.scheme == '':
|
||||
media_file = url.path
|
||||
# If file is not present locally, take it from S3 bucket
|
||||
if not os.path.exists(media_file):
|
||||
download_files([media_file])
|
||||
|
||||
if media_file.endswith(".m4a"):
|
||||
subprocess.run(["ffmpeg", "-i", media_file, f"./artefacts/{media_file}.mp4"])
|
||||
media_file = f"./artefacts/{media_file}.mp4"
|
||||
else:
|
||||
print("Unsupported URL scheme: " + url.scheme)
|
||||
quit()
|
||||
|
||||
# Handle video
|
||||
if not media_file.endswith(".mp3"):
|
||||
try:
|
||||
video = moviepy.editor.VideoFileClip(media_file)
|
||||
audio_filename = tempfile.NamedTemporaryFile(suffix=".mp3",
|
||||
delete=False).name
|
||||
video.audio.write_audiofile(audio_filename, logger=None)
|
||||
LOGGER.info(f"Extracting audio to: {audio_filename}")
|
||||
# Handle audio only file
|
||||
except Exception:
|
||||
audio = moviepy.editor.AudioFileClip(media_file)
|
||||
audio_filename = tempfile.NamedTemporaryFile(suffix=".mp3",
|
||||
delete=False).name
|
||||
audio.write_audiofile(audio_filename, logger=None)
|
||||
else:
|
||||
audio_filename = media_file
|
||||
|
||||
LOGGER.info("Finished extracting audio")
|
||||
LOGGER.info("Transcribing")
|
||||
# Convert the audio to text using the OpenAI Whisper model
|
||||
pipeline = FlaxWhisperPipline("openai/whisper-" + WHISPER_MODEL_SIZE,
|
||||
dtype=jnp.float16,
|
||||
batch_size=16)
|
||||
whisper_result = pipeline(audio_filename, return_timestamps=True)
|
||||
LOGGER.info("Finished transcribing file")
|
||||
|
||||
whisper_result = post_process_transcription(whisper_result)
|
||||
|
||||
transcript_text = ""
|
||||
for chunk in whisper_result["chunks"]:
|
||||
transcript_text += chunk["text"]
|
||||
|
||||
with open("./artefacts/transcript_" + NOW.strftime("%m-%d-%Y_%H:%M:%S") +
|
||||
".txt", "w") as transcript_file:
|
||||
transcript_file.write(transcript_text)
|
||||
|
||||
with open("./artefacts/transcript_with_timestamp_" +
|
||||
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt",
|
||||
"w") as transcript_file_timestamps:
|
||||
transcript_file_timestamps.write(str(whisper_result))
|
||||
|
||||
LOGGER.info("Creating word cloud")
|
||||
create_wordcloud(NOW)
|
||||
|
||||
LOGGER.info("Performing talk-diff and talk-diff visualization")
|
||||
create_talk_diff_scatter_viz(NOW)
|
||||
|
||||
# S3 : Push artefacts to S3 bucket
|
||||
prefix = "./artefacts/"
|
||||
suffix = NOW.strftime("%m-%d-%Y_%H:%M:%S")
|
||||
files_to_upload = [prefix + "transcript_" + suffix + ".txt",
|
||||
prefix + "transcript_with_timestamp_" + suffix + ".txt",
|
||||
prefix + "df_" + suffix + ".pkl",
|
||||
prefix + "wordcloud_" + suffix + ".png",
|
||||
prefix + "mappings_" + suffix + ".pkl",
|
||||
prefix + "scatter_" + suffix + ".html"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
summarize(transcript_text, NOW, False, False)
|
||||
|
||||
LOGGER.info("Summarization completed")
|
||||
|
||||
# Summarization takes a lot of time, so do this separately at the end
|
||||
files_to_upload = [prefix + "summary_" + suffix + ".txt"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user