mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 12:19:06 +00:00
Upgrade modal apps
This commit is contained in:
@@ -72,7 +72,7 @@ diarizer_image = (
|
||||
@app.cls(
|
||||
gpu=modal.gpu.A100(size="40GB"),
|
||||
timeout=60 * 30,
|
||||
container_idle_timeout=60,
|
||||
scaledown_window=60,
|
||||
allow_concurrent_inputs=1,
|
||||
image=diarizer_image,
|
||||
)
|
||||
@@ -126,7 +126,7 @@ class Diarizer:
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
container_idle_timeout=60 * 3,
|
||||
scaledown_window=60 * 3,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
|
||||
@@ -3,13 +3,14 @@ Reflector GPU backend - LLM
|
||||
===========================
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
import modal
|
||||
from modal import Image, Secret, App, asgi_app, method, enter, exit
|
||||
from modal import App, Image, Secret, asgi_app, enter, exit, method
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
|
||||
@@ -56,7 +57,7 @@ llm_image = (
|
||||
"accelerate==0.21.0",
|
||||
"einops==0.6.1",
|
||||
"hf-transfer~=0.1",
|
||||
"huggingface_hub==0.16.4"
|
||||
"huggingface_hub==0.16.4",
|
||||
)
|
||||
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
||||
.run_function(download_llm)
|
||||
@@ -67,7 +68,7 @@ llm_image = (
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=15,
|
||||
image=llm_image,
|
||||
)
|
||||
@@ -83,7 +84,7 @@ class LLM:
|
||||
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
|
||||
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
# JSONFormer doesn't yet support generation configs
|
||||
@@ -97,9 +98,7 @@ class LLM:
|
||||
# load tokenizer
|
||||
print("Instance llm tokenizer")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
LLM_MODEL,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True
|
||||
LLM_MODEL, cache_dir=IMAGE_MODEL_DIR, local_files_only=True
|
||||
)
|
||||
|
||||
# move model to gpu
|
||||
@@ -119,7 +118,9 @@ class LLM:
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
def generate(self, prompt: str, gen_schema: str | None, gen_cfg: str | None) -> dict:
|
||||
def generate(
|
||||
self, prompt: str, gen_schema: str | None, gen_cfg: str | None
|
||||
) -> dict:
|
||||
"""
|
||||
Perform a generation action using the LLM
|
||||
"""
|
||||
@@ -140,7 +141,7 @@ class LLM:
|
||||
tokenizer=self.tokenizer,
|
||||
json_schema=json.loads(gen_schema),
|
||||
prompt=prompt,
|
||||
max_string_token_length=gen_cfg.max_new_tokens
|
||||
max_string_token_length=gen_cfg.max_new_tokens,
|
||||
)
|
||||
response = jsonformer_llm()
|
||||
else:
|
||||
@@ -153,18 +154,21 @@ class LLM:
|
||||
output = self.model.generate(input_ids, generation_config=gen_cfg)
|
||||
|
||||
# decode output
|
||||
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
|
||||
response = response[len(prompt):]
|
||||
response = self.tokenizer.decode(
|
||||
output[0].cpu(), skip_special_tokens=True
|
||||
)
|
||||
response = response[len(prompt) :]
|
||||
print(f"Generated {response=}")
|
||||
return {"text": response}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
container_idle_timeout=60 * 10,
|
||||
scaledown_window=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=45,
|
||||
secrets=[
|
||||
@@ -201,7 +205,9 @@ def web():
|
||||
):
|
||||
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None
|
||||
gen_cfg = json.dumps(req.gen_cfg) if req.gen_cfg else None
|
||||
func = llmstub.generate.spawn(prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg)
|
||||
func = llmstub.generate.spawn(
|
||||
prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
|
||||
@@ -3,13 +3,14 @@ Reflector GPU backend - LLM
|
||||
===========================
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
import modal
|
||||
from modal import Image, Secret, App, asgi_app, method, enter, exit
|
||||
from modal import App, Image, Secret, asgi_app, enter, exit, method
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
|
||||
@@ -56,7 +57,7 @@ llm_image = (
|
||||
"accelerate==0.21.0",
|
||||
"einops==0.6.1",
|
||||
"hf-transfer~=0.1",
|
||||
"huggingface_hub==0.16.4"
|
||||
"huggingface_hub==0.16.4",
|
||||
)
|
||||
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
||||
.run_function(download_llm)
|
||||
@@ -67,7 +68,7 @@ llm_image = (
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=10,
|
||||
image=llm_image,
|
||||
)
|
||||
@@ -83,7 +84,7 @@ class LLM:
|
||||
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
|
||||
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
# JSONFormer doesn't yet support generation configs
|
||||
@@ -97,9 +98,7 @@ class LLM:
|
||||
# load tokenizer
|
||||
print("Instance llm tokenizer")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
LLM_MODEL,
|
||||
cache_dir=IMAGE_MODEL_DIR,
|
||||
local_files_only=True
|
||||
LLM_MODEL, cache_dir=IMAGE_MODEL_DIR, local_files_only=True
|
||||
)
|
||||
gen_cfg.pad_token_id = tokenizer.eos_token_id
|
||||
gen_cfg.eos_token_id = tokenizer.eos_token_id
|
||||
@@ -122,7 +121,9 @@ class LLM:
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
def generate(self, prompt: str, gen_schema: str | None, gen_cfg: str | None) -> dict:
|
||||
def generate(
|
||||
self, prompt: str, gen_schema: str | None, gen_cfg: str | None
|
||||
) -> dict:
|
||||
"""
|
||||
Perform a generation action using the LLM
|
||||
"""
|
||||
@@ -145,7 +146,7 @@ class LLM:
|
||||
tokenizer=self.tokenizer,
|
||||
json_schema=json.loads(gen_schema),
|
||||
prompt=prompt,
|
||||
max_string_token_length=gen_cfg.max_new_tokens
|
||||
max_string_token_length=gen_cfg.max_new_tokens,
|
||||
)
|
||||
response = jsonformer_llm()
|
||||
else:
|
||||
@@ -158,21 +159,22 @@ class LLM:
|
||||
output = self.model.generate(input_ids, generation_config=gen_cfg)
|
||||
|
||||
# decode output
|
||||
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
|
||||
response = response[len(prompt):]
|
||||
response = {
|
||||
"long_summary": response
|
||||
}
|
||||
response = self.tokenizer.decode(
|
||||
output[0].cpu(), skip_special_tokens=True
|
||||
)
|
||||
response = response[len(prompt) :]
|
||||
response = {"long_summary": response}
|
||||
print(f"Generated {response=}")
|
||||
return {"text": response}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
container_idle_timeout=60 * 10,
|
||||
scaledown_window=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=30,
|
||||
secrets=[
|
||||
@@ -205,11 +207,13 @@ def web():
|
||||
|
||||
@app.post("/llm", dependencies=[Depends(apikey_auth)])
|
||||
def llm(
|
||||
req: LLMRequest,
|
||||
req: LLMRequest,
|
||||
):
|
||||
gen_schema = json.dumps(req.gen_schema) if req.gen_schema else None
|
||||
gen_cfg = json.dumps(req.gen_cfg) if req.gen_cfg else None
|
||||
func = llmstub.generate.spawn(prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg)
|
||||
func = llmstub.generate.spawn(
|
||||
prompt=req.prompt, gen_schema=gen_schema, gen_cfg=gen_cfg
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ image = (
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
container_idle_timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
@@ -107,7 +107,7 @@ class Transcriber:
|
||||
|
||||
|
||||
@app.function(
|
||||
container_idle_timeout=60,
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
|
||||
@@ -6,7 +6,7 @@ Reflector GPU backend - transcriber
|
||||
import os
|
||||
import threading
|
||||
|
||||
from modal import Image, Secret, App, asgi_app, method, enter
|
||||
from modal import App, Image, Secret, asgi_app, enter, method
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Seamless M4T
|
||||
@@ -137,7 +137,7 @@ transcriber_image = (
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=4,
|
||||
image=transcriber_image,
|
||||
)
|
||||
@@ -169,195 +169,195 @@ class Translator:
|
||||
# TODO: Enhance with complete list of lang codes
|
||||
seamless_lang_code = {
|
||||
# Afrikaans
|
||||
'af': 'afr',
|
||||
"af": "afr",
|
||||
# Amharic
|
||||
'am': 'amh',
|
||||
"am": "amh",
|
||||
# Modern Standard Arabic
|
||||
'ar': 'arb',
|
||||
"ar": "arb",
|
||||
# Moroccan Arabic
|
||||
'ary': 'ary',
|
||||
"ary": "ary",
|
||||
# Egyptian Arabic
|
||||
'arz': 'arz',
|
||||
"arz": "arz",
|
||||
# Assamese
|
||||
'as': 'asm',
|
||||
"as": "asm",
|
||||
# North Azerbaijani
|
||||
'az': 'azj',
|
||||
"az": "azj",
|
||||
# Belarusian
|
||||
'be': 'bel',
|
||||
"be": "bel",
|
||||
# Bengali
|
||||
'bn': 'ben',
|
||||
"bn": "ben",
|
||||
# Bosnian
|
||||
'bs': 'bos',
|
||||
"bs": "bos",
|
||||
# Bulgarian
|
||||
'bg': 'bul',
|
||||
"bg": "bul",
|
||||
# Catalan
|
||||
'ca': 'cat',
|
||||
"ca": "cat",
|
||||
# Cebuano
|
||||
'ceb': 'ceb',
|
||||
"ceb": "ceb",
|
||||
# Czech
|
||||
'cs': 'ces',
|
||||
"cs": "ces",
|
||||
# Central Kurdish
|
||||
'ku': 'ckb',
|
||||
"ku": "ckb",
|
||||
# Mandarin Chinese
|
||||
'cmn': 'cmn_Hant',
|
||||
"cmn": "cmn_Hant",
|
||||
# Welsh
|
||||
'cy': 'cym',
|
||||
"cy": "cym",
|
||||
# Danish
|
||||
'da': 'dan',
|
||||
"da": "dan",
|
||||
# German
|
||||
'de': 'deu',
|
||||
"de": "deu",
|
||||
# Greek
|
||||
'el': 'ell',
|
||||
"el": "ell",
|
||||
# English
|
||||
'en': 'eng',
|
||||
"en": "eng",
|
||||
# Estonian
|
||||
'et': 'est',
|
||||
"et": "est",
|
||||
# Basque
|
||||
'eu': 'eus',
|
||||
"eu": "eus",
|
||||
# Finnish
|
||||
'fi': 'fin',
|
||||
"fi": "fin",
|
||||
# French
|
||||
'fr': 'fra',
|
||||
"fr": "fra",
|
||||
# Irish
|
||||
'ga': 'gle',
|
||||
"ga": "gle",
|
||||
# West Central Oromo,
|
||||
'gaz': 'gaz',
|
||||
"gaz": "gaz",
|
||||
# Galician
|
||||
'gl': 'glg',
|
||||
"gl": "glg",
|
||||
# Gujarati
|
||||
'gu': 'guj',
|
||||
"gu": "guj",
|
||||
# Hebrew
|
||||
'he': 'heb',
|
||||
"he": "heb",
|
||||
# Hindi
|
||||
'hi': 'hin',
|
||||
"hi": "hin",
|
||||
# Croatian
|
||||
'hr': 'hrv',
|
||||
"hr": "hrv",
|
||||
# Hungarian
|
||||
'hu': 'hun',
|
||||
"hu": "hun",
|
||||
# Armenian
|
||||
'hy': 'hye',
|
||||
"hy": "hye",
|
||||
# Igbo
|
||||
'ig': 'ibo',
|
||||
"ig": "ibo",
|
||||
# Indonesian
|
||||
'id': 'ind',
|
||||
"id": "ind",
|
||||
# Icelandic
|
||||
'is': 'isl',
|
||||
"is": "isl",
|
||||
# Italian
|
||||
'it': 'ita',
|
||||
"it": "ita",
|
||||
# Javanese
|
||||
'jv': 'jav',
|
||||
"jv": "jav",
|
||||
# Japanese
|
||||
'ja': 'jpn',
|
||||
"ja": "jpn",
|
||||
# Kannada
|
||||
'kn': 'kan',
|
||||
"kn": "kan",
|
||||
# Georgian
|
||||
'ka': 'kat',
|
||||
"ka": "kat",
|
||||
# Kazakh
|
||||
'kk': 'kaz',
|
||||
"kk": "kaz",
|
||||
# Halh Mongolian
|
||||
'khk': 'khk',
|
||||
"khk": "khk",
|
||||
# Khmer
|
||||
'km': 'khm',
|
||||
"km": "khm",
|
||||
# Kyrgyz
|
||||
'ky': 'kir',
|
||||
"ky": "kir",
|
||||
# Korean
|
||||
'ko': 'kor',
|
||||
"ko": "kor",
|
||||
# Lao
|
||||
'lo': 'lao',
|
||||
"lo": "lao",
|
||||
# Lithuanian
|
||||
'lt': 'lit',
|
||||
"lt": "lit",
|
||||
# Ganda
|
||||
'lg': 'lug',
|
||||
"lg": "lug",
|
||||
# Luo
|
||||
'luo': 'luo',
|
||||
"luo": "luo",
|
||||
# Standard Latvian
|
||||
'lv': 'lvs',
|
||||
"lv": "lvs",
|
||||
# Maithili
|
||||
'mai': 'mai',
|
||||
"mai": "mai",
|
||||
# Malayalam
|
||||
'ml': 'mal',
|
||||
"ml": "mal",
|
||||
# Marathi
|
||||
'mr': 'mar',
|
||||
"mr": "mar",
|
||||
# Macedonian
|
||||
'mk': 'mkd',
|
||||
"mk": "mkd",
|
||||
# Maltese
|
||||
'mt': 'mlt',
|
||||
"mt": "mlt",
|
||||
# Meitei
|
||||
'mni': 'mni',
|
||||
"mni": "mni",
|
||||
# Burmese
|
||||
'my': 'mya',
|
||||
"my": "mya",
|
||||
# Dutch
|
||||
'nl': 'nld',
|
||||
"nl": "nld",
|
||||
# Norwegian Nynorsk
|
||||
'nn': 'nno',
|
||||
"nn": "nno",
|
||||
# Norwegian Bokmål
|
||||
'nb': 'nob',
|
||||
"nb": "nob",
|
||||
# Nepali
|
||||
'ne': 'npi',
|
||||
"ne": "npi",
|
||||
# Nyanja
|
||||
'ny': 'nya',
|
||||
"ny": "nya",
|
||||
# Odia
|
||||
'or': 'ory',
|
||||
"or": "ory",
|
||||
# Punjabi
|
||||
'pa': 'pan',
|
||||
"pa": "pan",
|
||||
# Southern Pashto
|
||||
'pbt': 'pbt',
|
||||
"pbt": "pbt",
|
||||
# Western Persian
|
||||
'pes': 'pes',
|
||||
"pes": "pes",
|
||||
# Polish
|
||||
'pl': 'pol',
|
||||
"pl": "pol",
|
||||
# Portuguese
|
||||
'pt': 'por',
|
||||
"pt": "por",
|
||||
# Romanian
|
||||
'ro': 'ron',
|
||||
"ro": "ron",
|
||||
# Russian
|
||||
'ru': 'rus',
|
||||
"ru": "rus",
|
||||
# Slovak
|
||||
'sk': 'slk',
|
||||
"sk": "slk",
|
||||
# Slovenian
|
||||
'sl': 'slv',
|
||||
"sl": "slv",
|
||||
# Shona
|
||||
'sn': 'sna',
|
||||
"sn": "sna",
|
||||
# Sindhi
|
||||
'sd': 'snd',
|
||||
"sd": "snd",
|
||||
# Somali
|
||||
'so': 'som',
|
||||
"so": "som",
|
||||
# Spanish
|
||||
'es': 'spa',
|
||||
"es": "spa",
|
||||
# Serbian
|
||||
'sr': 'srp',
|
||||
"sr": "srp",
|
||||
# Swedish
|
||||
'sv': 'swe',
|
||||
"sv": "swe",
|
||||
# Swahili
|
||||
'sw': 'swh',
|
||||
"sw": "swh",
|
||||
# Tamil
|
||||
'ta': 'tam',
|
||||
"ta": "tam",
|
||||
# Telugu
|
||||
'te': 'tel',
|
||||
"te": "tel",
|
||||
# Tajik
|
||||
'tg': 'tgk',
|
||||
"tg": "tgk",
|
||||
# Tagalog
|
||||
'tl': 'tgl',
|
||||
"tl": "tgl",
|
||||
# Thai
|
||||
'th': 'tha',
|
||||
"th": "tha",
|
||||
# Turkish
|
||||
'tr': 'tur',
|
||||
"tr": "tur",
|
||||
# Ukrainian
|
||||
'uk': 'ukr',
|
||||
"uk": "ukr",
|
||||
# Urdu
|
||||
'ur': 'urd',
|
||||
"ur": "urd",
|
||||
# Northern Uzbek
|
||||
'uz': 'uzn',
|
||||
"uz": "uzn",
|
||||
# Vietnamese
|
||||
'vi': 'vie',
|
||||
"vi": "vie",
|
||||
# Yoruba
|
||||
'yo': 'yor',
|
||||
"yo": "yor",
|
||||
# Cantonese
|
||||
'yue': 'yue',
|
||||
"yue": "yue",
|
||||
# Standard Malay
|
||||
'ms': 'zsm',
|
||||
"ms": "zsm",
|
||||
# Zulu
|
||||
'zu': 'zul'
|
||||
"zu": "zul",
|
||||
}
|
||||
return seamless_lang_code.get(lang_code, "eng")
|
||||
|
||||
@@ -381,7 +381,7 @@ class Translator:
|
||||
|
||||
|
||||
@app.function(
|
||||
container_idle_timeout=60,
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
@@ -413,9 +413,9 @@ def web():
|
||||
|
||||
@app.post("/translate", dependencies=[Depends(apikey_auth)])
|
||||
async def translate(
|
||||
text: str,
|
||||
source_language: Annotated[str, Body(...)] = "en",
|
||||
target_language: Annotated[str, Body(...)] = "fr",
|
||||
text: str,
|
||||
source_language: Annotated[str, Body(...)] = "en",
|
||||
target_language: Annotated[str, Body(...)] = "fr",
|
||||
) -> TranslateResponse:
|
||||
func = translatorstub.translate_text.spawn(
|
||||
text=text,
|
||||
|
||||
@@ -53,7 +53,7 @@ app = modal.App("reflector-vllm-hermes3")
|
||||
image=vllm_image,
|
||||
gpu=modal.gpu.A100(count=N_GPU, size="40GB"),
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
scaledown_window=60 * 5,
|
||||
allow_concurrent_inputs=100,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
|
||||
Reference in New Issue
Block a user