feat: Multitrack segmentation (#747)

* segmentation multitrack (no-mistakes)

* segmentation multitrack (no-mistakes)

* self review

* self review

* recording poll daily doc

* filter cam_audio tracks to remove screensharing from daily processing

* pr review

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
2025-11-26 16:21:32 -05:00
committed by GitHub
parent 8d696aa775
commit d63040e2fd
8 changed files with 485 additions and 81 deletions

View File

@@ -1,6 +1,7 @@
import io
import re
import tempfile
from collections import defaultdict
from pathlib import Path
from typing import Annotated, TypedDict
@@ -16,6 +17,17 @@ class DiarizationSegment(TypedDict):
PUNC_RE = re.compile(r"[.;:?!…]")
SENTENCE_END_RE = re.compile(r"[.?!…]$")
# Max segment length for words_to_segments() - breaks on any punctuation (. ; : ? ! …)
# when segment exceeds this limit. Used for non-multitrack recordings.
MAX_SEGMENT_CHARS = 120
# Max segment length for words_to_segments_by_sentence() - only breaks on sentence-ending
# punctuation (. ? ! …) when segment exceeds this limit. Higher threshold allows complete
# sentences in multitrack recordings where speakers overlap.
# similar number to server/reflector/processors/transcript_liner.py
MAX_SENTENCE_SEGMENT_CHARS = 1000
class AudioFile(BaseModel):
@@ -76,7 +88,6 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
# but separate if the speaker changes, or if the punctuation is a . , ; : ? !
segments = []
current_segment = None
MAX_SEGMENT_LENGTH = 120
for word in words:
if current_segment is None:
@@ -106,7 +117,7 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
current_segment.end = word.end
have_punc = PUNC_RE.search(word.text)
if have_punc and (len(current_segment.text) > MAX_SEGMENT_LENGTH):
if have_punc and (len(current_segment.text) > MAX_SEGMENT_CHARS):
segments.append(current_segment)
current_segment = None
@@ -116,6 +127,70 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
return segments
def words_to_segments_by_sentence(words: list[Word]) -> list[TranscriptSegment]:
"""Group words by speaker, then split into sentences.
For multitrack recordings where words from different speakers are interleaved
by timestamp, this function first groups all words by speaker, then creates
segments based on sentence boundaries within each speaker's words.
This produces cleaner output than words_to_segments() which breaks on every
speaker change, resulting in many tiny segments when speakers overlap.
"""
if not words:
return []
# Group words by speaker, preserving order within each speaker
by_speaker: dict[int, list[Word]] = defaultdict(list)
for w in words:
by_speaker[w.speaker].append(w)
segments: list[TranscriptSegment] = []
for speaker, speaker_words in by_speaker.items():
current_text = ""
current_start: float | None = None
current_end: float = 0.0
for word in speaker_words:
if current_start is None:
current_start = word.start
current_text += word.text
current_end = word.end
# Check for sentence end or max length
is_sentence_end = SENTENCE_END_RE.search(word.text.strip())
is_too_long = len(current_text) >= MAX_SENTENCE_SEGMENT_CHARS
if is_sentence_end or is_too_long:
segments.append(
TranscriptSegment(
text=current_text,
start=current_start,
end=current_end,
speaker=speaker,
)
)
current_text = ""
current_start = None
# Flush remaining words for this speaker
if current_text and current_start is not None:
segments.append(
TranscriptSegment(
text=current_text,
start=current_start,
end=current_end,
speaker=speaker,
)
)
# Sort segments by start time
segments.sort(key=lambda s: s.start)
return segments
class Transcript(BaseModel):
translation: str | None = None
words: list[Word] = []
@@ -154,7 +229,9 @@ class Transcript(BaseModel):
word.start += offset
word.end += offset
def as_segments(self) -> list[TranscriptSegment]:
def as_segments(self, is_multitrack: bool = False) -> list[TranscriptSegment]:
if is_multitrack:
return words_to_segments_by_sentence(self.words)
return words_to_segments(self.words)