flake8 warnings fix

This commit is contained in:
Gokul Mohanarangan
2023-07-11 14:06:20 +05:30
parent 88af112131
commit d962ff1712
10 changed files with 122 additions and 70 deletions

0
utils/__init__.py Normal file
View File

View File

@@ -1,4 +1,4 @@
from loguru import logger
import loguru
class SingletonLogger:
@@ -11,7 +11,7 @@ class SingletonLogger:
:return: SingletonLogger instance
"""
if not SingletonLogger.__instance:
SingletonLogger.__instance = logger
SingletonLogger.__instance = loguru.logger
return SingletonLogger.__instance

View File

@@ -31,7 +31,7 @@ def run_in_executor(func, *args, executor=None, **kwargs):
"""
callback = partial(func, *args, **kwargs)
loop = asyncio.get_event_loop()
return asyncio.get_event_loop().run_in_executor(executor, callback)
return loop.run_in_executor(executor, callback)
# Genetic type template

View File

@@ -15,7 +15,8 @@ nltk.download('punkt', quiet=True)
def preprocess_sentence(sentence):
stop_words = set(stopwords.words('english'))
tokens = word_tokenize(sentence.lower())
tokens = [token for token in tokens if token.isalnum() and token not in stop_words]
tokens = [token for token in tokens
if token.isalnum() and token not in stop_words]
return ' '.join(tokens)
@@ -49,12 +50,14 @@ def remove_almost_alike_sentences(sentences, threshold=0.7):
sentence1 = preprocess_sentence(sentences[i])
sentence2 = preprocess_sentence(sentences[j])
if len(sentence1) != 0 and len(sentence2) != 0:
similarity = compute_similarity(sentence1, sentence2)
similarity = compute_similarity(sentence1,
sentence2)
if similarity >= threshold:
removed_indices.add(max(i, j))
filtered_sentences = [sentences[i] for i in range(num_sentences) if i not in removed_indices]
filtered_sentences = [sentences[i] for i in range(num_sentences)
if i not in removed_indices]
return filtered_sentences
@@ -74,11 +77,13 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
words = nltk.word_tokenize(sent)
n_gram_filter = 3
for i in range(len(words)):
if str(words[i:i + n_gram_filter]) in seen and seen[str(words[i:i + n_gram_filter])] == words[
i + 1:i + n_gram_filter + 2]:
if str(words[i:i + n_gram_filter]) in seen and \
seen[str(words[i:i + n_gram_filter])] == \
words[i + 1:i + n_gram_filter + 2]:
pass
else:
seen[str(words[i:i + n_gram_filter])] = words[i + 1:i + n_gram_filter + 2]
seen[str(words[i:i + n_gram_filter])] = \
words[i + 1:i + n_gram_filter + 2]
temp_result += words[i]
temp_result += " "
chunk_sentences.append(temp_result)
@@ -88,9 +93,12 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
def post_process_transcription(whisper_result):
transcript_text = ""
for chunk in whisper_result["chunks"]:
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
chunk_sentences = remove_whisper_repetitive_hallucination(nonduplicate_sentences)
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
nonduplicate_sentences = \
remove_outright_duplicate_sentences_from_chunk(chunk)
chunk_sentences = \
remove_whisper_repetitive_hallucination(nonduplicate_sentences)
similarity_matched_sentences = \
remove_almost_alike_sentences(chunk_sentences)
chunk["text"] = " ".join(similarity_matched_sentences)
transcript_text += chunk["text"]
whisper_result["text"] = transcript_text
@@ -111,18 +119,23 @@ def summarize_chunks(chunks, tokenizer, model):
input_ids = tokenizer.encode(c, return_tensors='pt')
input_ids = input_ids.to(device)
with torch.no_grad():
summary_ids = model.generate(input_ids,
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summary_ids = \
model.generate(input_ids,
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]),
length_penalty=2.0,
max_length=int(config["DEFAULT"]["MAX_LENGTH"]),
early_stopping=True)
summary = tokenizer.decode(summary_ids[0],
skip_special_tokens=True)
summaries.append(summary)
return summaries
def chunk_text(text, max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])):
def chunk_text(text,
max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])):
"""
Split text into smaller chunks.
:param txt: Text to be chunked
:param text: Text to be chunked
:param max_chunk_length: length of chunk
:return: chunked texts
"""
@@ -140,7 +153,8 @@ def chunk_text(text, max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])
def summarize(transcript_text, timestamp,
real_time=False, summarize_using_chunks=config["DEFAULT"]["SUMMARIZE_USING_CHUNKS"]):
real_time=False,
summarize_using_chunks=config["DEFAULT"]["SUMMARIZE_USING_CHUNKS"]):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = config["DEFAULT"]["SUMMARY_MODEL"]
if not summary_model:
@@ -157,9 +171,11 @@ def summarize(transcript_text, timestamp,
output_filename = "real_time_" + output_filename
if summarize_using_chunks != "YES":
inputs = tokenizer.batch_encode_plus([transcript_text], truncation=True, padding='longest',
max_length=int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"]),
return_tensors='pt')
inputs = tokenizer.\
batch_encode_plus([transcript_text], truncation=True,
padding='longest',
max_length=int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"]),
return_tensors='pt')
inputs = inputs.to(device)
with torch.no_grad():
@@ -167,8 +183,8 @@ def summarize(transcript_text, timestamp,
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
decoded_summaries = [tokenizer.decode(summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for
summary in summaries]
decoded_summaries = [tokenizer.decode(summary, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for summary in summaries]
summary = " ".join(decoded_summaries)
with open(output_filename, 'w') as f:
f.write(summary.strip() + "\n")
@@ -176,7 +192,8 @@ def summarize(transcript_text, timestamp,
logger.info("Breaking transcript into smaller chunks")
chunks = chunk_text(transcript_text)
logger.info(f"Transcript broken into {len(chunks)} chunks of at most 500 words") # TODO fix variable
logger.info(f"Transcript broken into {len(chunks)} "
f"chunks of at most 500 words")
logger.info(f"Writing summary text to: {output_filename}")
with open(output_filename, 'w') as f:

View File

@@ -2,7 +2,6 @@ import ast
import collections
import os
import pickle
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
@@ -14,7 +13,8 @@ from wordcloud import STOPWORDS, WordCloud
en = spacy.load('en_core_web_md')
spacy_stopwords = en.Defaults.stop_words
STOPWORDS = set(STOPWORDS).union(set(stopwords.words("english"))).union(set(spacy_stopwords))
STOPWORDS = set(STOPWORDS).union(set(stopwords.words("english"))).\
union(set(spacy_stopwords))
def create_wordcloud(timestamp, real_time=False):
@@ -24,7 +24,8 @@ def create_wordcloud(timestamp, real_time=False):
"""
filename = "transcript"
if real_time:
filename = "real_time_" + filename + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
filename = "real_time_" + filename + "_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
else:
filename += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
@@ -46,7 +47,8 @@ def create_wordcloud(timestamp, real_time=False):
wordcloud_name = "wordcloud"
if real_time:
wordcloud_name = "real_time_" + wordcloud_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
wordcloud_name = "real_time_" + wordcloud_name + "_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
else:
wordcloud_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
@@ -66,7 +68,6 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
agenda_topics = []
agenda = []
# Load the agenda
path = Path(__file__)
with open(os.path.join(os.getcwd(), "agenda-headers.txt"), "r") as f:
for line in f.readlines():
if line.strip():
@@ -76,9 +77,11 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
# Load the transcription with timestamp
filename = ""
if real_time:
filename = "real_time_transcript_with_timestamp_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
filename = "real_time_transcript_with_timestamp_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
else:
filename = "transcript_with_timestamp_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
filename = "transcript_with_timestamp_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
with open(filename) as f:
transcription_timestamp_text = f.read()
@@ -94,7 +97,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
ts_to_topic_mapping_top_1 = {}
ts_to_topic_mapping_top_2 = {}
# Also create a mapping of the different timestamps in which each topic was covered
# Also create a mapping of the different timestamps
# in which each topic was covered
topic_to_ts_mapping_top_1 = collections.defaultdict(list)
topic_to_ts_mapping_top_2 = collections.defaultdict(list)
@@ -105,7 +109,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
topic_similarities = []
for item in range(len(agenda)):
item_doc = nlp(agenda[item])
# if not doc_transcription or not all(token.has_vector for token in doc_transcription):
# if not doc_transcription or not all
# (token.has_vector for token in doc_transcription):
if not doc_transcription:
continue
similarity = doc_transcription.similarity(item_doc)
@@ -129,8 +134,10 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
:param record:
:return:
"""
record["ts_to_topic_mapping_top_1"] = ts_to_topic_mapping_top_1[record["timestamp"]]
record["ts_to_topic_mapping_top_2"] = ts_to_topic_mapping_top_2[record["timestamp"]]
record["ts_to_topic_mapping_top_1"] = \
ts_to_topic_mapping_top_1[record["timestamp"]]
record["ts_to_topic_mapping_top_2"] = \
ts_to_topic_mapping_top_2[record["timestamp"]]
return record
df = df.apply(create_new_columns, axis=1)
@@ -151,7 +158,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
# Save df, mappings for further experimentation
df_name = "df"
if real_time:
df_name = "real_time_" + df_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
df_name = "real_time_" + df_name + "_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
else:
df_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
df.to_pickle(df_name)
@@ -161,7 +169,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
mappings_name = "mappings"
if real_time:
mappings_name = "real_time_" + mappings_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
mappings_name = "real_time_" + mappings_name + "_" +\
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
else:
mappings_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
pickle.dump(my_mappings, open(mappings_name, "wb"))
@@ -197,6 +206,8 @@ def create_talk_diff_scatter_viz(timestamp, real_time=False):
transform=st.Scalers.dense_rank
)
if real_time:
open('./artefacts/real_time_scatter_' + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
open('./artefacts/real_time_scatter_' +
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
else:
open('./artefacts/scatter_' + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
open('./artefacts/scatter_' +
timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)