flake8 / pylint updates

This commit is contained in:
Gokul Mohanarangan
2023-07-26 11:28:14 +05:30
parent c970fc89dd
commit e512b4dca5
15 changed files with 279 additions and 146 deletions

View File

@@ -93,6 +93,6 @@ def generate_finetuning_dataset(video_ids):
video_ids = ["yTnSEZIwnkU"]
dataset = generate_finetuning_dataset(video_ids)
with open("finetuning_dataset.jsonl", "w") as f:
with open("finetuning_dataset.jsonl", "w", encoding="utf-8") as file:
for example in dataset:
f.write(json.dumps(example) + "\n")
file.write(json.dumps(example) + "\n")

View File

@@ -16,10 +16,10 @@ from av import AudioFifo
from sortedcontainers import SortedDict
from whisper_jax import FlaxWhisperPipline
from reflector.utils.log_utils import logger
from reflector.utils.run_utils import config, Mutex
from reflector.utils.log_utils import LOGGER
from reflector.utils.run_utils import CONFIG, Mutex
WHISPER_MODEL_SIZE = config['WHISPER']["WHISPER_REAL_TIME_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_REAL_TIME_MODEL_SIZE"]
pcs = set()
relay = MediaRelay()
data_channel = None
@@ -127,7 +127,7 @@ async def offer(request: requests.Request):
pcs.add(pc)
def log_info(msg: str, *args):
logger.info(pc_id + " " + msg, *args)
LOGGER.info(pc_id + " " + msg, *args)
log_info("Created for " + request.remote)

View File

@@ -3,14 +3,14 @@ import sys
# Observe the incremental summaries by performing summaries in chunks
with open("transcript.txt") as f:
transcription = f.read()
with open("transcript.txt", "r", encoding="utf-8") as file:
transcription = file.read()
def split_text_file(filename, token_count):
nlp = spacy.load('en_core_web_md')
with open(filename, 'r') as file:
with open(filename, 'r', encoding="utf-8") as file:
text = file.read()
doc = nlp(text)
@@ -36,9 +36,9 @@ chunks = split_text_file("transcript.txt", MAX_CHUNK_LENGTH)
print("Number of chunks", len(chunks))
# Write chunks to file to refer to input vs output, separated by blank lines
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a") as f:
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a", encoding="utf-8") as file:
for c in chunks:
f.write(c + "\n\n")
file.write(c + "\n\n")
# If we want to run only a certain model, type the option while running
# ex. python incsum.py 1 => will run approach 1
@@ -78,9 +78,9 @@ if index == "1" or index is None:
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summaries.append(summary)
with open("bart-summaries.txt", "a") as f:
with open("bart-summaries.txt", "a", encoding="utf-8") as file:
for summary in summaries:
f.write(summary + "\n\n")
file.write(summary + "\n\n")
# Approach 2
if index == "2" or index is None:
@@ -114,8 +114,8 @@ if index == "2" or index is None:
summary_ids = output[0, input_length:]
summary = tokenizer.decode(summary_ids, skip_special_tokens=True)
summaries.append(summary)
with open("gptneo1.3B-summaries.txt", "a") as f:
f.write(summary + "\n\n")
with open("gptneo1.3B-summaries.txt", "a", encoding="utf-8") as file:
file.write(summary + "\n\n")
# Approach 3
if index == "3" or index is None:
@@ -152,6 +152,6 @@ if index == "3" or index is None:
skip_special_tokens=True)
summaries.append(summary)
with open("mpt-7b-summaries.txt", "a") as f:
with open("mpt-7b-summaries.txt", "a", encoding="utf-8") as file:
for summary in summaries:
f.write(summary + "\n\n")
file.write(summary + "\n\n")

View File

@@ -19,15 +19,15 @@ import yt_dlp as youtube_dl
from whisper_jax import FlaxWhisperPipline
from ...utils.file_utils import download_files, upload_files
from ...utils.log_utils import logger
from ...utils.run_utils import config
from ...utils.log_utils import LOGGER
from ...utils.run_utils import CONFIG
from ...utils.text_utils import post_process_transcription, summarize
from ...utils.viz_utils import create_talk_diff_scatter_viz, create_wordcloud
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
WHISPER_MODEL_SIZE = config['WHISPER']["WHISPER_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_MODEL_SIZE"]
NOW = datetime.now()
if not os.path.exists('../../artefacts'):
@@ -75,7 +75,7 @@ def main():
# Download the lowest resolution YouTube video
# (since we're just interested in the audio).
# It will be saved to the current directory.
logger.info("Downloading YouTube video at url: " + args.location)
LOGGER.info("Downloading YouTube video at url: " + args.location)
# Create options for the download
ydl_opts = {
@@ -93,12 +93,12 @@ def main():
ydl.download([args.location])
media_file = "../artefacts/audio.mp3"
logger.info("Saved downloaded YouTube video to: " + media_file)
LOGGER.info("Saved downloaded YouTube video to: " + media_file)
else:
# XXX - Download file using urllib, check if file is
# audio/video using python-magic
logger.info(f"Downloading file at url: {args.location}")
logger.info(" XXX - This method hasn't been implemented yet.")
LOGGER.info(f"Downloading file at url: {args.location}")
LOGGER.info(" XXX - This method hasn't been implemented yet.")
elif url.scheme == '':
media_file = url.path
# If file is not present locally, take it from S3 bucket
@@ -119,7 +119,7 @@ def main():
audio_filename = tempfile.NamedTemporaryFile(suffix=".mp3",
delete=False).name
video.audio.write_audiofile(audio_filename, logger=None)
logger.info(f"Extracting audio to: {audio_filename}")
LOGGER.info(f"Extracting audio to: {audio_filename}")
# Handle audio only file
except Exception:
audio = moviepy.editor.AudioFileClip(media_file)
@@ -129,14 +129,14 @@ def main():
else:
audio_filename = media_file
logger.info("Finished extracting audio")
logger.info("Transcribing")
LOGGER.info("Finished extracting audio")
LOGGER.info("Transcribing")
# Convert the audio to text using the OpenAI Whisper model
pipeline = FlaxWhisperPipline("openai/whisper-" + WHISPER_MODEL_SIZE,
dtype=jnp.float16,
batch_size=16)
whisper_result = pipeline(audio_filename, return_timestamps=True)
logger.info("Finished transcribing file")
LOGGER.info("Finished transcribing file")
whisper_result = post_process_transcription(whisper_result)
@@ -153,10 +153,10 @@ def main():
"w") as transcript_file_timestamps:
transcript_file_timestamps.write(str(whisper_result))
logger.info("Creating word cloud")
LOGGER.info("Creating word cloud")
create_wordcloud(NOW)
logger.info("Performing talk-diff and talk-diff visualization")
LOGGER.info("Performing talk-diff and talk-diff visualization")
create_talk_diff_scatter_viz(NOW)
# S3 : Push artefacts to S3 bucket
@@ -172,7 +172,7 @@ def main():
summarize(transcript_text, NOW, False, False)
logger.info("Summarization completed")
LOGGER.info("Summarization completed")
# Summarization takes a lot of time, so do this separately at the end
files_to_upload = [prefix + "summary_" + suffix + ".txt"]

View File

@@ -11,12 +11,12 @@ from termcolor import colored
from whisper_jax import FlaxWhisperPipline
from ...utils.file_utils import upload_files
from ...utils.log_utils import logger
from ...utils.run_utils import config
from ...utils.log_utils import LOGGER
from ...utils.run_utils import CONFIG
from ...utils.text_utils import post_process_transcription, summarize
from ...utils.viz_utils import create_talk_diff_scatter_viz, create_wordcloud
WHISPER_MODEL_SIZE = config['WHISPER']["WHISPER_MODEL_SIZE"]
WHISPER_MODEL_SIZE = CONFIG['WHISPER']["WHISPER_MODEL_SIZE"]
FRAMES_PER_BUFFER = 8000
FORMAT = pyaudio.paInt16
@@ -31,7 +31,7 @@ def main():
AUDIO_DEVICE_ID = -1
for i in range(p.get_device_count()):
if p.get_device_info_by_index(i)["name"] == \
config["AUDIO"]["BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME"]:
CONFIG["AUDIO"]["BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME"]:
AUDIO_DEVICE_ID = i
audio_devices = p.get_device_info_by_index(AUDIO_DEVICE_ID)
stream = p.open(
@@ -44,7 +44,7 @@ def main():
)
pipeline = FlaxWhisperPipline("openai/whisper-" +
config["WHISPER"]["WHISPER_REAL_TIME_MODEL_SIZE"],
CONFIG["WHISPER"]["WHISPER_REAL_TIME_MODEL_SIZE"],
dtype=jnp.float16,
batch_size=16)
@@ -106,23 +106,26 @@ def main():
" | Transcribed duration: " +
str(duration), "yellow"))
except Exception as e:
print(e)
except Exception as exception:
print(str(exception))
finally:
with open("real_time_transcript_" +
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
f.write(transcription)
with open("real_time_transcript_" + NOW.strftime("%m-%d-%Y_%H:%M:%S")
+ ".txt", "w", encoding="utf-8") as file:
file.write(transcription)
with open("real_time_transcript_with_timestamp_" +
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w",
encoding="utf-8") as file:
transcript_with_timestamp["text"] = transcription
f.write(str(transcript_with_timestamp))
file.write(str(transcript_with_timestamp))
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
transcript_with_timestamp = \
post_process_transcription(transcript_with_timestamp)
logger.info("Creating word cloud")
LOGGER.info("Creating word cloud")
create_wordcloud(NOW, True)
logger.info("Performing talk-diff and talk-diff visualization")
LOGGER.info("Performing talk-diff and talk-diff visualization")
create_talk_diff_scatter_viz(NOW, True)
# S3 : Push artefacts to S3 bucket
@@ -137,7 +140,7 @@ def main():
summarize(transcript_with_timestamp["text"], NOW, True, True)
logger.info("Summarization completed")
LOGGER.info("Summarization completed")
# Summarization takes a lot of time, so do this separately at the end
files_to_upload = ["real_time_summary_" + suffix + ".txt"]