mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Change diarization internal flow (#320)
* change diarization internal flow
This commit is contained in:
188
server/gpu/modal/reflector_diarizer.py
Normal file
188
server/gpu/modal/reflector_diarizer.py
Normal file
@@ -0,0 +1,188 @@
|
|||||||
|
"""
|
||||||
|
Reflector GPU backend - diarizer
|
||||||
|
===================================
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import modal.gpu
|
||||||
|
from modal import Image, Secret, Stub, asgi_app, method
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.0"
|
||||||
|
MODEL_DIR = "/root/diarization_models"
|
||||||
|
|
||||||
|
stub = Stub(name="reflector-diarizer")
|
||||||
|
|
||||||
|
|
||||||
|
def migrate_cache_llm():
|
||||||
|
"""
|
||||||
|
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||||
|
Migrating your old cache. This is a one-time only operation. You can
|
||||||
|
interrupt this and resume the migration later on by calling
|
||||||
|
`transformers.utils.move_cache()`.
|
||||||
|
"""
|
||||||
|
from transformers.utils.hub import move_cache
|
||||||
|
|
||||||
|
print("Moving LLM cache")
|
||||||
|
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||||
|
print("LLM cache moved")
|
||||||
|
|
||||||
|
|
||||||
|
def download_pyannote_audio():
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
Pipeline.from_pretrained(
|
||||||
|
"pyannote/speaker-diarization-3.0",
|
||||||
|
cache_dir=MODEL_DIR,
|
||||||
|
use_auth_token="***REMOVED***"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
diarizer_image = (
|
||||||
|
Image.debian_slim(python_version="3.10.8")
|
||||||
|
.pip_install(
|
||||||
|
"pyannote.audio",
|
||||||
|
"requests",
|
||||||
|
"onnx",
|
||||||
|
"torchaudio",
|
||||||
|
"onnxruntime-gpu",
|
||||||
|
"torch==2.0.0",
|
||||||
|
"transformers==4.34.0",
|
||||||
|
"sentencepiece",
|
||||||
|
"protobuf",
|
||||||
|
"numpy",
|
||||||
|
"huggingface_hub",
|
||||||
|
"hf-transfer"
|
||||||
|
)
|
||||||
|
.run_function(migrate_cache_llm)
|
||||||
|
.run_function(download_pyannote_audio)
|
||||||
|
.env(
|
||||||
|
{
|
||||||
|
"LD_LIBRARY_PATH": (
|
||||||
|
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||||
|
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||||
|
)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@stub.cls(
|
||||||
|
gpu=modal.gpu.A100(memory=40),
|
||||||
|
timeout=60 * 10,
|
||||||
|
container_idle_timeout=60 * 3,
|
||||||
|
allow_concurrent_inputs=6,
|
||||||
|
image=diarizer_image,
|
||||||
|
)
|
||||||
|
class Diarizer:
|
||||||
|
def __enter__(self):
|
||||||
|
import torch
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
self.use_gpu = torch.cuda.is_available()
|
||||||
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||||
|
"pyannote/speaker-diarization-3.0",
|
||||||
|
cache_dir=MODEL_DIR
|
||||||
|
)
|
||||||
|
self.diarization_pipeline.to(torch.device(self.device))
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def diarize(
|
||||||
|
self,
|
||||||
|
audio_data: str,
|
||||||
|
audio_suffix: str,
|
||||||
|
timestamp: float
|
||||||
|
):
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||||
|
fp.write(audio_data)
|
||||||
|
|
||||||
|
print("Diarizing audio")
|
||||||
|
waveform, sample_rate = torchaudio.load(fp.name)
|
||||||
|
diarization = self.diarization_pipeline({"waveform": waveform, "sample_rate": sample_rate})
|
||||||
|
|
||||||
|
words = []
|
||||||
|
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
|
words.append(
|
||||||
|
{
|
||||||
|
"start": round(timestamp + diarization_segment.start, 3),
|
||||||
|
"end": round(timestamp + diarization_segment.end, 3),
|
||||||
|
"speaker": int(speaker[-2:])
|
||||||
|
}
|
||||||
|
)
|
||||||
|
print("Diarization complete")
|
||||||
|
return {
|
||||||
|
"diarization": words
|
||||||
|
}
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------
|
||||||
|
# Web API
|
||||||
|
# -------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
@stub.function(
|
||||||
|
timeout=60 * 10,
|
||||||
|
container_idle_timeout=60 * 3,
|
||||||
|
allow_concurrent_inputs=40,
|
||||||
|
secrets=[
|
||||||
|
Secret.from_name("reflector-gpu"),
|
||||||
|
],
|
||||||
|
image=diarizer_image
|
||||||
|
)
|
||||||
|
@asgi_app()
|
||||||
|
def web():
|
||||||
|
import requests
|
||||||
|
from fastapi import Depends, FastAPI, HTTPException, status
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
|
||||||
|
diarizerstub = Diarizer()
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
|
|
||||||
|
def validate_audio_file(audio_file_url: str):
|
||||||
|
# Check if the audio file exists
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=response.status_code,
|
||||||
|
detail="The audio file does not exist."
|
||||||
|
)
|
||||||
|
|
||||||
|
class DiarizationResponse(BaseModel):
|
||||||
|
result: dict
|
||||||
|
|
||||||
|
@app.post("/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)])
|
||||||
|
def diarize(
|
||||||
|
audio_file_url: str,
|
||||||
|
timestamp: float = 0.0
|
||||||
|
) -> HTTPException | DiarizationResponse:
|
||||||
|
# Currently the uploaded files are in mp3 format
|
||||||
|
audio_suffix = "mp3"
|
||||||
|
|
||||||
|
print("Downloading audio file")
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
print("Audio file downloaded successfully")
|
||||||
|
|
||||||
|
func = diarizerstub.diarize.spawn(
|
||||||
|
audio_data=response.content,
|
||||||
|
audio_suffix=audio_suffix,
|
||||||
|
timestamp=timestamp
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
return result
|
||||||
|
|
||||||
|
return app
|
||||||
@@ -31,7 +31,7 @@ class AudioDiarizationModalProcessor(AudioDiarizationProcessor):
|
|||||||
follow_redirects=True,
|
follow_redirects=True,
|
||||||
)
|
)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
return response.json()["text"]
|
return response.json()["diarization"]
|
||||||
|
|
||||||
|
|
||||||
AudioDiarizationAutoProcessor.register("modal", AudioDiarizationModalProcessor)
|
AudioDiarizationAutoProcessor.register("modal", AudioDiarizationModalProcessor)
|
||||||
|
|||||||
Reference in New Issue
Block a user