mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
make schema optional argument
This commit is contained in:
@@ -5,9 +5,9 @@ Reflector GPU backend - LLM
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from modal import asgi_app, Image, method, Secret, Stub
|
||||
from pydantic.typing import Optional
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from reflector.settings import settings
|
||||
from reflector.utils.retry import retry
|
||||
from reflector.logger import logger as reflector_logger
|
||||
from time import monotonic
|
||||
import importlib
|
||||
import json
|
||||
import re
|
||||
from time import monotonic
|
||||
from typing import Union
|
||||
|
||||
from reflector.logger import logger as reflector_logger
|
||||
from reflector.settings import settings
|
||||
from reflector.utils.retry import retry
|
||||
|
||||
|
||||
class LLM:
|
||||
@@ -44,10 +46,12 @@ class LLM:
|
||||
async def _warmup(self, logger: reflector_logger):
|
||||
pass
|
||||
|
||||
async def generate(self, prompt: str, logger: reflector_logger, **kwargs) -> dict:
|
||||
async def generate(
|
||||
self, prompt: str, logger: reflector_logger, schema: str = None, **kwargs
|
||||
) -> dict:
|
||||
logger.info("LLM generate", prompt=repr(prompt))
|
||||
try:
|
||||
result = await retry(self._generate)(prompt=prompt, **kwargs)
|
||||
result = await retry(self._generate)(prompt=prompt, schema=schema, **kwargs)
|
||||
except Exception:
|
||||
logger.exception("Failed to call llm after retrying")
|
||||
raise
|
||||
@@ -59,7 +63,7 @@ class LLM:
|
||||
|
||||
return result
|
||||
|
||||
async def _generate(self, prompt: str, **kwargs) -> str:
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
def _parse_json(self, result: str) -> dict:
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
from typing import Union
|
||||
|
||||
import httpx
|
||||
from reflector.llm.base import LLM
|
||||
@@ -15,10 +16,10 @@ class BananaLLM(LLM):
|
||||
"X-Banana-Model-Key": settings.LLM_BANANA_MODEL_KEY,
|
||||
}
|
||||
|
||||
async def _generate(self, prompt: str, **kwargs):
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
||||
json_payload = {"prompt": prompt}
|
||||
if "schema" in kwargs:
|
||||
json_payload["schema"] = json.dumps(kwargs["schema"])
|
||||
if schema:
|
||||
json_payload["schema"] = json.dumps(schema)
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await retry(client.post)(
|
||||
settings.LLM_URL,
|
||||
@@ -29,7 +30,7 @@ class BananaLLM(LLM):
|
||||
)
|
||||
response.raise_for_status()
|
||||
text = response.json()["text"]
|
||||
if "schema" not in json_payload:
|
||||
if not schema:
|
||||
text = text[len(prompt) :]
|
||||
return text
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
from typing import Union
|
||||
|
||||
import httpx
|
||||
from reflector.llm.base import LLM
|
||||
@@ -25,10 +26,10 @@ class ModalLLM(LLM):
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
async def _generate(self, prompt: str, **kwargs):
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
||||
json_payload = {"prompt": prompt}
|
||||
if "schema" in kwargs:
|
||||
json_payload["schema"] = json.dumps(kwargs["schema"])
|
||||
if schema:
|
||||
json_payload["schema"] = json.dumps(schema)
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await retry(client.post)(
|
||||
self.llm_url,
|
||||
@@ -39,7 +40,7 @@ class ModalLLM(LLM):
|
||||
)
|
||||
response.raise_for_status()
|
||||
text = response.json()["text"]
|
||||
if "schema" not in json_payload:
|
||||
if not schema:
|
||||
text = text[len(prompt) :]
|
||||
return text
|
||||
|
||||
@@ -54,13 +55,12 @@ if __name__ == "__main__":
|
||||
result = await llm.generate("Hello, my name is", logger=logger)
|
||||
print(result)
|
||||
|
||||
kwargs = {
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {"name": {"type": "string"}},
|
||||
}
|
||||
schema = {
|
||||
"type": "object",
|
||||
"properties": {"name": {"type": "string"}},
|
||||
}
|
||||
result = await llm.generate("Hello, my name is", kwargs=kwargs, logger=logger)
|
||||
|
||||
result = await llm.generate("Hello, my name is", schema=schema, logger=logger)
|
||||
print(result)
|
||||
|
||||
import asyncio
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
from typing import Union
|
||||
|
||||
import httpx
|
||||
from reflector.llm.base import LLM
|
||||
@@ -6,10 +7,10 @@ from reflector.settings import settings
|
||||
|
||||
|
||||
class OobaboogaLLM(LLM):
|
||||
async def _generate(self, prompt: str, **kwargs):
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
||||
json_payload = {"prompt": prompt}
|
||||
if "schema" in kwargs:
|
||||
json_payload["schema"] = json.dumps(kwargs["schema"])
|
||||
if schema:
|
||||
json_payload["schema"] = json.dumps(schema)
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.LLM_URL,
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
from typing import Union
|
||||
|
||||
import httpx
|
||||
from reflector.llm.base import LLM
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
import httpx
|
||||
|
||||
|
||||
class OpenAILLM(LLM):
|
||||
@@ -15,7 +17,7 @@ class OpenAILLM(LLM):
|
||||
self.max_tokens = settings.LLM_MAX_TOKENS
|
||||
logger.info(f"LLM use openai backend at {self.openai_url}")
|
||||
|
||||
async def _generate(self, prompt: str, **kwargs) -> str:
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs) -> str:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.openai_key}",
|
||||
|
||||
@@ -14,7 +14,6 @@ class TranscriptTopicDetectorProcessor(Processor):
|
||||
|
||||
PROMPT = """
|
||||
### Human:
|
||||
Generate information based on the given schema:
|
||||
|
||||
For the title field, generate a short title for the given text.
|
||||
For the summary field, summarize the given text in a maximum of
|
||||
@@ -62,7 +61,7 @@ class TranscriptTopicDetectorProcessor(Processor):
|
||||
self.logger.info(f"Topic detector got {len(text)} length transcript")
|
||||
prompt = self.PROMPT.format(input_text=text)
|
||||
result = await retry(self.llm.generate)(
|
||||
prompt=prompt, kwargs=self.kwargs, logger=self.logger
|
||||
prompt=prompt, schema=self.topic_detector_schema, logger=self.logger
|
||||
)
|
||||
summary = TitleSummary(
|
||||
title=result["title"],
|
||||
|
||||
@@ -9,13 +9,16 @@ async def test_basic_process(event_loop):
|
||||
from reflector.settings import settings
|
||||
from reflector.llm.base import LLM
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
# use an LLM test backend
|
||||
settings.LLM_BACKEND = "test"
|
||||
settings.TRANSCRIPT_BACKEND = "whisper"
|
||||
|
||||
class LLMTest(LLM):
|
||||
async def _generate(self, prompt: str, **kwargs) -> str:
|
||||
async def _generate(
|
||||
self, prompt: str, schema: Union[str | None], **kwargs
|
||||
) -> str:
|
||||
return {
|
||||
"title": "TITLE",
|
||||
"summary": "SUMMARY",
|
||||
|
||||
@@ -3,17 +3,18 @@
|
||||
# FIXME test websocket connection after RTC is finished still send the full events
|
||||
# FIXME try with locked session, RTC should not work
|
||||
|
||||
import pytest
|
||||
import asyncio
|
||||
import json
|
||||
import threading
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from unittest.mock import patch
|
||||
from httpx import AsyncClient
|
||||
|
||||
import pytest
|
||||
from httpx import AsyncClient
|
||||
from httpx_ws import aconnect_ws
|
||||
from reflector.app import app
|
||||
from uvicorn import Config, Server
|
||||
import threading
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
from httpx_ws import aconnect_ws
|
||||
|
||||
|
||||
class ThreadedUvicorn:
|
||||
@@ -61,7 +62,7 @@ async def dummy_llm():
|
||||
from reflector.llm.base import LLM
|
||||
|
||||
class TestLLM(LLM):
|
||||
async def _generate(self, prompt: str, **kwargs):
|
||||
async def _generate(self, prompt: str, schema: Union[str | None], **kwargs):
|
||||
return json.dumps({"title": "LLM TITLE", "summary": "LLM SUMMARY"})
|
||||
|
||||
with patch("reflector.llm.base.LLM.get_instance") as mock_llm:
|
||||
|
||||
Reference in New Issue
Block a user