Compare commits

..

9 Commits

Author SHA1 Message Date
fa3cf5da0f chore(main): release 0.32.2 (#842) 2026-02-03 22:05:22 -05:00
8707c6694a fix: use Daily API recording.duration as master source for transcript duration (#844)
Set duration early in get_participants from Daily API (seconds -> ms),
ensuring post_zulip has the value before mixdown_tracks completes.

Removes redundant duration update from mixdown_tracks.

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2026-02-03 17:15:03 -05:00
4acde4b7fd fix: increase TIMEOUT_MEDIUM from 2m to 5m for LLM tasks (#843)
Topic detection was timing out on longer transcripts when LLM
responses are slow. This affects detect_chunk_topic and other
LLM-calling tasks that use TIMEOUT_MEDIUM.

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2026-02-03 16:05:16 -05:00
a2ed7d60d5 fix: make caddy optional (#841) 2026-02-03 00:18:47 +01:00
a08f94a5bf chore(main): release 0.32.1 (#840) 2026-01-30 17:34:48 -05:00
Igor Loskutov
c05d1f03cd fix: match httpx pad with hatchet audio timeout 2026-01-30 15:56:18 -05:00
Igor Loskutov
23eb1371cb fix: daily multitrack pipeline finalze dependency fix 2026-01-30 15:19:27 -05:00
2592e369f6 chore(main): release 0.32.0 (#838) 2026-01-30 13:13:59 -05:00
7fde64e252 feat: modal padding (#837)
* Add Modal backend for audio padding

- Create reflector_padding.py Modal deployment (CPU-based)
- Add PaddingWorkflow with conditional Modal/local backend
- Update deploy-all.sh to include padding deployment

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2026-01-30 13:11:51 -05:00
23 changed files with 898 additions and 355 deletions

1
.gitignore vendored
View File

@@ -1,5 +1,6 @@
.DS_Store
server/.env
server/.env.production
.env
Caddyfile
server/exportdanswer

View File

@@ -4,4 +4,3 @@ docs/docs/installation/daily-setup.md:curl-auth-header:277
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:74
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:83
server/reflector/worker/process.py:generic-api-key:465
server/reflector/worker/process.py:generic-api-key:594

View File

@@ -1,5 +1,29 @@
# Changelog
## [0.32.2](https://github.com/Monadical-SAS/reflector/compare/v0.32.1...v0.32.2) (2026-02-03)
### Bug Fixes
* increase TIMEOUT_MEDIUM from 2m to 5m for LLM tasks ([#843](https://github.com/Monadical-SAS/reflector/issues/843)) ([4acde4b](https://github.com/Monadical-SAS/reflector/commit/4acde4b7fdef88cc02ca12cf38c9020b05ed96ac))
* make caddy optional ([#841](https://github.com/Monadical-SAS/reflector/issues/841)) ([a2ed7d6](https://github.com/Monadical-SAS/reflector/commit/a2ed7d60d557b551a5b64e4dfd909b63a791d9fc))
* use Daily API recording.duration as master source for transcript duration ([#844](https://github.com/Monadical-SAS/reflector/issues/844)) ([8707c66](https://github.com/Monadical-SAS/reflector/commit/8707c6694a80c939b6214bbc13331741f192e082))
## [0.32.1](https://github.com/Monadical-SAS/reflector/compare/v0.32.0...v0.32.1) (2026-01-30)
### Bug Fixes
* daily multitrack pipeline finalze dependency fix ([23eb137](https://github.com/Monadical-SAS/reflector/commit/23eb1371cb9348c4b81eb12ad506b582f8a4799e))
* match httpx pad with hatchet audio timeout ([c05d1f0](https://github.com/Monadical-SAS/reflector/commit/c05d1f03cd8369fc06efd455527e50246887efd0))
## [0.32.0](https://github.com/Monadical-SAS/reflector/compare/v0.31.0...v0.32.0) (2026-01-30)
### Features
* modal padding ([#837](https://github.com/Monadical-SAS/reflector/issues/837)) ([7fde64e](https://github.com/Monadical-SAS/reflector/commit/7fde64e2529a1d37b0f7507c62d983a7bd0b5b89))
## [0.31.0](https://github.com/Monadical-SAS/reflector/compare/v0.30.0...v0.31.0) (2026-01-23)

View File

@@ -1,6 +1,8 @@
# Reflector Caddyfile
# Replace example.com with your actual domains
# CORS is handled by the backend - Caddy just proxies
# Reflector Caddyfile (optional reverse proxy)
# Use this only when you run Caddy via: docker compose -f docker-compose.prod.yml --profile caddy up -d
# If Coolify, Traefik, or nginx already use ports 80/443, do NOT start Caddy; point your proxy at web:3000 and server:1250.
#
# Replace example.com with your actual domains. CORS is handled by the backend - Caddy just proxies.
#
# For environment variable substitution, set:
# FRONTEND_DOMAIN=app.example.com

View File

@@ -1,9 +1,14 @@
# Production Docker Compose configuration
# Usage: docker compose -f docker-compose.prod.yml up -d
#
# Caddy (reverse proxy on ports 80/443) is OPTIONAL and behind the "caddy" profile:
# - With Caddy (self-hosted, you manage SSL): docker compose -f docker-compose.prod.yml --profile caddy up -d
# - Without Caddy (Coolify/Traefik/nginx already on 80/443): docker compose -f docker-compose.prod.yml up -d
# Then point your proxy at web:3000 (frontend) and server:1250 (API).
#
# Prerequisites:
# 1. Copy .env.example to .env and configure for both server/ and www/
# 2. Copy Caddyfile.example to Caddyfile and edit with your domains
# 2. If using Caddy: copy Caddyfile.example to Caddyfile and edit your domains
# 3. Deploy Modal GPU functions (see gpu/modal_deployments/deploy-all.sh)
services:
@@ -84,6 +89,8 @@ services:
retries: 3
caddy:
profiles:
- caddy
image: caddy:2-alpine
restart: unless-stopped
ports:

View File

@@ -12,14 +12,14 @@ This page documents the Docker Compose configuration for Reflector. For the comp
The `docker-compose.prod.yml` includes these services:
| Service | Image | Purpose |
|---------|-------|---------|
| ---------- | --------------------------------- | --------------------------------------------------------------------------- |
| `web` | `monadicalsas/reflector-frontend` | Next.js frontend |
| `server` | `monadicalsas/reflector-backend` | FastAPI backend |
| `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks |
| `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler |
| `redis` | `redis:7.2-alpine` | Message broker and cache |
| `postgres` | `postgres:17-alpine` | Primary database |
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL |
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL (optional; see [Caddy profile](#caddy-profile)) |
## Environment Files
@@ -30,6 +30,7 @@ Reflector uses two separate environment files:
Used by: `server`, `worker`, `beat`
Key variables:
```env
# Database connection
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
@@ -54,6 +55,7 @@ TRANSCRIPT_MODAL_API_KEY=...
Used by: `web`
Key variables:
```env
# Domain configuration
SITE_URL=https://app.example.com
@@ -71,7 +73,7 @@ Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-s
## Volumes
| Volume | Purpose |
|--------|---------|
| --------------- | ----------------------------- |
| `redis_data` | Redis persistence |
| `postgres_data` | PostgreSQL data |
| `server_data` | Uploaded files, local storage |
@@ -82,14 +84,30 @@ Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-s
All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join.
## Caddy profile
Caddy (ports 80 and 443) is **optional** and behind the `caddy` profile so it does not conflict with an existing reverse proxy (e.g. Coolify, Traefik, nginx).
- **With Caddy** (you want Reflector to handle SSL):
`docker compose -f docker-compose.prod.yml --profile caddy up -d`
- **Without Caddy** (Coolify or another proxy already on 80/443):
`docker compose -f docker-compose.prod.yml up -d`
Then configure your proxy to send traffic to `web:3000` (frontend) and `server:1250` (API).
## Common Commands
### Start all services
```bash
# Without Caddy (e.g. when using Coolify)
docker compose -f docker-compose.prod.yml up -d
# With Caddy as reverse proxy
docker compose -f docker-compose.prod.yml --profile caddy up -d
```
### View logs
```bash
# All services
docker compose -f docker-compose.prod.yml logs -f
@@ -99,6 +117,7 @@ docker compose -f docker-compose.prod.yml logs server --tail 50
```
### Restart a service
```bash
# Quick restart (doesn't reload .env changes)
docker compose -f docker-compose.prod.yml restart server
@@ -108,27 +127,32 @@ docker compose -f docker-compose.prod.yml up -d server
```
### Run database migrations
```bash
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```
### Access database
```bash
docker compose -f docker-compose.prod.yml exec postgres psql -U reflector
```
### Pull latest images
```bash
docker compose -f docker-compose.prod.yml pull
docker compose -f docker-compose.prod.yml up -d
```
### Stop all services
```bash
docker compose -f docker-compose.prod.yml down
```
### Full reset (WARNING: deletes data)
```bash
docker compose -f docker-compose.prod.yml down -v
```
@@ -187,6 +211,7 @@ The Caddyfile supports environment variable substitution:
Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly.
### Reload Caddy after changes
```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```

View File

@@ -61,7 +61,7 @@ Type: A Name: api Value: <your-server-ip>
Reflector requires GPU processing for transcription and speaker diarization. Choose one option:
| | **Modal.com (Cloud)** | **Self-Hosted GPU** |
|---|---|---|
| ------------ | --------------------------------- | ---------------------------- |
| **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control |
| **Pricing** | Pay-per-use | Fixed infrastructure cost |
@@ -70,6 +70,7 @@ Reflector requires GPU processing for transcription and speaker diarization. Cho
#### Accept HuggingFace Licenses
Visit both pages and click "Accept":
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
@@ -179,6 +180,7 @@ Save these credentials - you'll need them in the next step.
## Configure Environment
Reflector has two env files:
- `server/.env` - Backend configuration
- `www/.env` - Frontend configuration
@@ -190,6 +192,7 @@ nano server/.env
```
**Required settings:**
```env
# Database (defaults work with docker-compose.prod.yml)
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
@@ -249,6 +252,7 @@ nano www/.env
```
**Required settings:**
```env
# Your domains
SITE_URL=https://app.example.com
@@ -266,7 +270,11 @@ FEATURE_REQUIRE_LOGIN=false
---
## Configure Caddy
## Reverse proxy (Caddy or existing)
**If Coolify, Traefik, or nginx already use ports 80/443** (e.g. Coolify on your host): skip Caddy. Start the stack without the Caddy profile (see [Start Services](#start-services) below), then point your proxy at `web:3000` (frontend) and `server:1250` (API).
**If you want Reflector to provide the reverse proxy and SSL:**
```bash
cp Caddyfile.example Caddyfile
@@ -289,10 +297,18 @@ Replace `example.com` with your domains. The `{$VAR:default}` syntax uses Caddy'
## Start Services
**Without Caddy** (e.g. Coolify already on 80/443):
```bash
docker compose -f docker-compose.prod.yml up -d
```
**With Caddy** (Reflector handles SSL):
```bash
docker compose -f docker-compose.prod.yml --profile caddy up -d
```
Wait for containers to start (first run may take 1-2 minutes to pull images and initialize).
---
@@ -300,18 +316,21 @@ Wait for containers to start (first run may take 1-2 minutes to pull images and
## Verify Deployment
### Check services
```bash
docker compose -f docker-compose.prod.yml ps
# All should show "Up"
```
### Test API
```bash
curl https://api.example.com/health
# Should return: {"status":"healthy"}
```
### Test Frontend
- Visit https://app.example.com
- You should see the Reflector interface
- Try uploading an audio file to test transcription
@@ -327,6 +346,7 @@ By default, Reflector is open (no login required). **Authentication is required
See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration.
Quick summary:
1. Deploy Authentik on your server
2. Create OAuth provider in Authentik
3. Extract public key for JWT verification
@@ -358,6 +378,7 @@ DAILYCO_STORAGE_AWS_ROLE_ARN=<arn:aws:iam::ACCOUNT:role/DailyCo>
```
Reload env and restart:
```bash
docker compose -f docker-compose.prod.yml up -d server worker
```
@@ -367,35 +388,43 @@ docker compose -f docker-compose.prod.yml up -d server worker
## Troubleshooting
### Check logs for errors
```bash
docker compose -f docker-compose.prod.yml logs server --tail 20
docker compose -f docker-compose.prod.yml logs worker --tail 20
```
### Services won't start
```bash
docker compose -f docker-compose.prod.yml logs
```
### CORS errors in browser
- Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`)
- Reload env: `docker compose -f docker-compose.prod.yml up -d server`
### SSL certificate errors
### SSL certificate errors (when using Caddy)
- Caddy auto-provisions Let's Encrypt certificates
- Ensure ports 80 and 443 are open
- Ensure ports 80 and 443 are open and not used by another proxy
- Check: `docker compose -f docker-compose.prod.yml logs caddy`
- If port 80 is already in use (e.g. by Coolify), run without Caddy: `docker compose -f docker-compose.prod.yml up -d` and use your existing proxy
### Transcription not working
- Check Modal dashboard: https://modal.com/apps
- Verify URLs in `server/.env` match deployed functions
- Check worker logs: `docker compose -f docker-compose.prod.yml logs worker`
### "Login required" but auth not configured
- Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env`
- Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web`
### Database migrations or connectivity issues
Migrations run automatically on server startup. To check database connectivity or debug migration failures:
```bash
@@ -408,4 +437,3 @@ docker compose -f docker-compose.prod.yml exec server uv run python -c "from ref
# Manually run migrations (if needed)
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```

View File

@@ -131,6 +131,15 @@ if [ -z "$DIARIZER_URL" ]; then
fi
echo " -> $DIARIZER_URL"
echo ""
echo "Deploying padding (CPU audio processing via Modal SDK)..."
modal deploy reflector_padding.py
if [ $? -ne 0 ]; then
echo "Error: Failed to deploy padding. Check Modal dashboard for details."
exit 1
fi
echo " -> reflector-padding.pad_track (Modal SDK function)"
# --- Output Configuration ---
echo ""
echo "=========================================="
@@ -147,4 +156,6 @@ echo ""
echo "DIARIZATION_BACKEND=modal"
echo "DIARIZATION_URL=$DIARIZER_URL"
echo "DIARIZATION_MODAL_API_KEY=$API_KEY"
echo ""
echo "# Padding uses Modal SDK (requires MODAL_TOKEN_ID/SECRET in worker containers)"
echo "# --- End Modal Configuration ---"

View File

@@ -0,0 +1,277 @@
"""
Reflector GPU backend - audio padding
======================================
CPU-intensive audio padding service for adding silence to audio tracks.
Uses PyAV filter graph (adelay) for precise track synchronization.
IMPORTANT: This padding logic is duplicated from server/reflector/utils/audio_padding.py
for Modal deployment isolation (Modal can't import from server/reflector/). If you modify
the PyAV filter graph or padding algorithm, you MUST update both:
- gpu/modal_deployments/reflector_padding.py (this file)
- server/reflector/utils/audio_padding.py
Constants duplicated from server/reflector/utils/audio_constants.py for same reason.
"""
import os
import tempfile
from fractions import Fraction
import math
import asyncio
import modal
S3_TIMEOUT = 60 # happens 2 times
PADDING_TIMEOUT = 600 + (S3_TIMEOUT * 2)
SCALEDOWN_WINDOW = 60 # The maximum duration (in seconds) that individual containers can remain idle when scaling down.
DISCONNECT_CHECK_INTERVAL = 2 # Check for client disconnect
app = modal.App("reflector-padding")
# CPU-based image
image = (
modal.Image.debian_slim(python_version="3.12")
.apt_install("ffmpeg") # Required by PyAV
.pip_install(
"av==13.1.0", # PyAV for audio processing
"requests==2.32.3", # HTTP for presigned URL downloads/uploads
"fastapi==0.115.12", # API framework
)
)
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_STANDARD_SAMPLE_RATE = 48000
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_DEFAULT_BIT_RATE = 128000
@app.function(
cpu=2.0,
timeout=PADDING_TIMEOUT,
scaledown_window=SCALEDOWN_WINDOW,
image=image,
)
@modal.asgi_app()
def web():
from fastapi import FastAPI, Request, HTTPException
from pydantic import BaseModel
class PaddingRequest(BaseModel):
track_url: str
output_url: str
start_time_seconds: float
track_index: int
class PaddingResponse(BaseModel):
size: int
cancelled: bool = False
web_app = FastAPI()
@web_app.post("/pad")
async def pad_track_endpoint(request: Request, req: PaddingRequest) -> PaddingResponse:
"""Modal web endpoint for padding audio tracks with disconnect detection.
"""
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
if not req.track_url:
raise HTTPException(status_code=400, detail="track_url cannot be empty")
if not req.output_url:
raise HTTPException(status_code=400, detail="output_url cannot be empty")
if req.start_time_seconds <= 0:
raise HTTPException(status_code=400, detail=f"start_time_seconds must be positive, got {req.start_time_seconds}")
if req.start_time_seconds > 18000:
raise HTTPException(status_code=400, detail=f"start_time_seconds exceeds maximum 18000s (5 hours)")
logger.info(f"Padding request: track {req.track_index}, delay={req.start_time_seconds}s")
# Thread-safe cancellation flag shared between async disconnect checker and blocking thread
import threading
cancelled = threading.Event()
async def check_disconnect():
"""Background task to check for client disconnect every 2 seconds."""
while not cancelled.is_set():
await asyncio.sleep(DISCONNECT_CHECK_INTERVAL)
if await request.is_disconnected():
logger.warning("Client disconnected, setting cancellation flag")
cancelled.set()
break
# Start disconnect checker in background
disconnect_task = asyncio.create_task(check_disconnect())
try:
result = await asyncio.get_event_loop().run_in_executor(
None, _pad_track_blocking, req, cancelled, logger
)
return PaddingResponse(**result)
finally:
cancelled.set()
disconnect_task.cancel()
try:
await disconnect_task
except asyncio.CancelledError:
pass
def _pad_track_blocking(req, cancelled, logger) -> dict:
"""Blocking CPU-bound padding work with periodic cancellation checks.
Args:
cancelled: threading.Event for thread-safe cancellation signaling
"""
import av
import requests
from av.audio.resampler import AudioResampler
import time
temp_dir = tempfile.mkdtemp()
input_path = None
output_path = None
last_check = time.time()
try:
logger.info("Downloading track for padding")
response = requests.get(req.track_url, stream=True, timeout=S3_TIMEOUT)
response.raise_for_status()
input_path = os.path.join(temp_dir, "track.webm")
total_bytes = 0
chunk_count = 0
with open(input_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
total_bytes += len(chunk)
chunk_count += 1
# Check for cancellation every arbitrary amount of chunks
if chunk_count % 12 == 0:
now = time.time()
if now - last_check >= DISCONNECT_CHECK_INTERVAL:
if cancelled.is_set():
logger.info("Cancelled during download, exiting early")
return {"size": 0, "cancelled": True}
last_check = now
logger.info(f"Track downloaded: {total_bytes} bytes")
if cancelled.is_set():
logger.info("Cancelled after download, exiting early")
return {"size": 0, "cancelled": True}
# Apply padding using PyAV
output_path = os.path.join(temp_dir, "padded.webm")
delay_ms = math.floor(req.start_time_seconds * 1000)
logger.info(f"Padding track {req.track_index} with {delay_ms}ms delay using PyAV")
in_container = av.open(input_path)
in_stream = next((s for s in in_container.streams if s.type == "audio"), None)
if in_stream is None:
raise ValueError("No audio stream in input")
with av.open(output_path, "w", format="webm") as out_container:
out_stream = out_container.add_stream("libopus", rate=OPUS_STANDARD_SAMPLE_RATE)
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
graph = av.filter.Graph()
abuf_args = (
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_fmt=s16:"
f"channel_layout=stereo"
)
src = graph.add("abuffer", args=abuf_args, name="src")
aresample_f = graph.add("aresample", args="async=1", name="ares")
delays_arg = f"{delay_ms}|{delay_ms}"
adelay_f = graph.add("adelay", args=f"delays={delays_arg}:all=1", name="delay")
sink = graph.add("abuffersink", name="sink")
src.link_to(aresample_f)
aresample_f.link_to(adelay_f)
adelay_f.link_to(sink)
graph.configure()
resampler = AudioResampler(
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
)
for frame in in_container.decode(in_stream):
# Check for cancellation periodically
now = time.time()
if now - last_check >= DISCONNECT_CHECK_INTERVAL:
if cancelled.is_set():
logger.info("Cancelled during processing, exiting early")
in_container.close()
return {"size": 0, "cancelled": True}
last_check = now
out_frames = resampler.resample(frame) or []
for rframe in out_frames:
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
src.push(rframe)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush filter graph
src.push(None)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush encoder
for packet in out_stream.encode(None):
out_container.mux(packet)
in_container.close()
file_size = os.path.getsize(output_path)
logger.info(f"Padding complete: {file_size} bytes")
logger.info("Uploading padded track to S3")
with open(output_path, "rb") as f:
upload_response = requests.put(req.output_url, data=f, timeout=S3_TIMEOUT)
upload_response.raise_for_status()
logger.info(f"Upload complete: {file_size} bytes")
return {"size": file_size}
finally:
if input_path and os.path.exists(input_path):
try:
os.unlink(input_path)
except Exception as e:
logger.warning(f"Failed to cleanup input file: {e}")
if output_path and os.path.exists(output_path):
try:
os.unlink(output_path)
except Exception as e:
logger.warning(f"Failed to cleanup output file: {e}")
try:
os.rmdir(temp_dir)
except Exception as e:
logger.warning(f"Failed to cleanup temp directory: {e}")
return web_app

View File

@@ -8,7 +8,7 @@ readme = "README.md"
dependencies = [
"aiohttp>=3.9.0",
"aiohttp-cors>=0.7.0",
"av>=10.0.0",
"av>=15.0.0",
"requests>=2.31.0",
"aiortc>=1.5.0",
"sortedcontainers>=2.4.0",

View File

@@ -8,8 +8,7 @@ from enum import StrEnum
class TaskName(StrEnum):
GET_RECORDING = "get_recording"
GET_PARTICIPANTS = "get_participants"
PROCESS_PADDINGS = "process_paddings"
PROCESS_TRANSCRIPTIONS = "process_transcriptions"
PROCESS_TRACKS = "process_tracks"
MIXDOWN_TRACKS = "mixdown_tracks"
GENERATE_WAVEFORM = "generate_waveform"
DETECT_TOPICS = "detect_topics"
@@ -36,7 +35,9 @@ LLM_RATE_LIMIT_PER_SECOND = 10
# Task execution timeouts (seconds)
TIMEOUT_SHORT = 60 # Quick operations: API calls, DB updates
TIMEOUT_MEDIUM = 120 # Single LLM calls, waveform generation
TIMEOUT_MEDIUM = (
300 # Single LLM calls, waveform generation (5m for slow LLM responses)
)
TIMEOUT_LONG = 180 # Action items (larger context LLM)
TIMEOUT_AUDIO = 300 # Audio processing: padding, mixdown
TIMEOUT_AUDIO = 720 # Audio processing: padding, mixdown
TIMEOUT_HEAVY = 600 # Transcription, fan-out LLM tasks

View File

@@ -1,9 +1,9 @@
"""
CPU-heavy worker pool for audio processing tasks.
Handles: mixdown_tracks only (serialized with max_runs=1)
Handles ONLY: mixdown_tracks
Configuration:
- slots=1: Only one mixdown at a time
- slots=1: Only mixdown (already serialized globally with max_runs=1)
- Worker affinity: pool=cpu-heavy
"""
@@ -26,7 +26,7 @@ def main():
cpu_worker = hatchet.worker(
"cpu-worker-pool",
slots=1,
slots=1, # Only 1 mixdown at a time (already serialized globally)
labels={
"pool": "cpu-heavy",
},

View File

@@ -1,16 +1,15 @@
"""
LLM/I/O worker pool for all non-CPU tasks.
Handles: all tasks except mixdown_tracks (padding, transcription, LLM inference, orchestration)
Handles: all tasks except mixdown_tracks (transcription, LLM inference, orchestration)
"""
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.workflows.daily_multitrack_pipeline import (
daily_multitrack_pipeline,
)
from reflector.hatchet.workflows.padding_workflow import padding_workflow
from reflector.hatchet.workflows.subject_processing import subject_workflow
from reflector.hatchet.workflows.topic_chunk_processing import topic_chunk_workflow
from reflector.hatchet.workflows.transcription_workflow import transcription_workflow
from reflector.hatchet.workflows.track_processing import track_workflow
from reflector.logger import logger
SLOTS = 10
@@ -30,7 +29,7 @@ def main():
llm_worker = hatchet.worker(
WORKER_NAME,
slots=SLOTS,
slots=SLOTS, # not all slots are probably used
labels={
"pool": POOL,
},
@@ -38,8 +37,7 @@ def main():
daily_multitrack_pipeline,
topic_chunk_workflow,
subject_workflow,
padding_workflow,
transcription_workflow,
track_workflow,
],
)

View File

@@ -4,10 +4,6 @@ from reflector.hatchet.workflows.daily_multitrack_pipeline import (
PipelineInput,
daily_multitrack_pipeline,
)
from reflector.hatchet.workflows.padding_workflow import (
PaddingInput,
padding_workflow,
)
from reflector.hatchet.workflows.subject_processing import (
SubjectInput,
subject_workflow,
@@ -16,20 +12,15 @@ from reflector.hatchet.workflows.topic_chunk_processing import (
TopicChunkInput,
topic_chunk_workflow,
)
from reflector.hatchet.workflows.transcription_workflow import (
TranscriptionInput,
transcription_workflow,
)
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
__all__ = [
"daily_multitrack_pipeline",
"subject_workflow",
"topic_chunk_workflow",
"padding_workflow",
"transcription_workflow",
"track_workflow",
"PipelineInput",
"SubjectInput",
"TopicChunkInput",
"PaddingInput",
"TranscriptionInput",
"TrackInput",
]

View File

@@ -54,9 +54,8 @@ from reflector.hatchet.workflows.models import (
PadTrackResult,
ParticipantInfo,
ParticipantsResult,
ProcessPaddingsResult,
ProcessSubjectsResult,
ProcessTranscriptionsResult,
ProcessTracksResult,
RecapResult,
RecordingResult,
SubjectsResult,
@@ -69,7 +68,6 @@ from reflector.hatchet.workflows.models import (
WebhookResult,
ZulipResult,
)
from reflector.hatchet.workflows.padding_workflow import PaddingInput, padding_workflow
from reflector.hatchet.workflows.subject_processing import (
SubjectInput,
subject_workflow,
@@ -78,10 +76,7 @@ from reflector.hatchet.workflows.topic_chunk_processing import (
TopicChunkInput,
topic_chunk_workflow,
)
from reflector.hatchet.workflows.transcription_workflow import (
TranscriptionInput,
transcription_workflow,
)
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
from reflector.logger import logger
from reflector.pipelines import topic_processing
from reflector.processors import AudioFileWriterProcessor
@@ -327,6 +322,7 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
mtg_session_id = recording.mtg_session_id
async with fresh_db_connection():
from reflector.db.transcripts import ( # noqa: PLC0415
TranscriptDuration,
TranscriptParticipant,
transcripts_controller,
)
@@ -335,15 +331,26 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
if not transcript:
raise ValueError(f"Transcript {input.transcript_id} not found")
# Note: title NOT cleared - preserves existing titles
# Duration from Daily API (seconds -> milliseconds) - master source
duration_ms = recording.duration * 1000 if recording.duration else 0
await transcripts_controller.update(
transcript,
{
"events": [],
"topics": [],
"participants": [],
"duration": duration_ms,
},
)
await append_event_and_broadcast(
input.transcript_id,
transcript,
"DURATION",
TranscriptDuration(duration=duration_ms),
logger=logger,
)
mtg_session_id = assert_non_none_and_non_empty(
mtg_session_id, "mtg_session_id is required"
)
@@ -409,115 +416,72 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3,
)
@with_error_handling(TaskName.PROCESS_PADDINGS)
async def process_paddings(input: PipelineInput, ctx: Context) -> ProcessPaddingsResult:
"""Spawn child workflows for each track to apply padding (dynamic fan-out)."""
ctx.log(f"process_paddings: spawning {len(input.tracks)} padding workflows")
@with_error_handling(TaskName.PROCESS_TRACKS)
async def process_tracks(input: PipelineInput, ctx: Context) -> ProcessTracksResult:
"""Spawn child workflows for each track (dynamic fan-out)."""
ctx.log(f"process_tracks: spawning {len(input.tracks)} track workflows")
participants_result = ctx.task_output(get_participants)
source_language = participants_result.source_language
bulk_runs = [
padding_workflow.create_bulk_run_item(
input=PaddingInput(
track_workflow.create_bulk_run_item(
input=TrackInput(
track_index=i,
s3_key=track["s3_key"],
bucket_name=input.bucket_name,
transcript_id=input.transcript_id,
language=source_language,
)
)
for i, track in enumerate(input.tracks)
]
results = await padding_workflow.aio_run_many(bulk_runs)
results = await track_workflow.aio_run_many(bulk_runs)
target_language = participants_result.target_language
track_words: list[list[Word]] = []
padded_tracks = []
created_padded_files = []
created_padded_files = set()
for result in results:
transcribe_result = TranscribeTrackResult(**result[TaskName.TRANSCRIBE_TRACK])
track_words.append(transcribe_result.words)
pad_result = PadTrackResult(**result[TaskName.PAD_TRACK])
# Store S3 key info (not presigned URL) - consumer tasks presign on demand
if pad_result.padded_key:
padded_tracks.append(
PaddedTrackInfo(
key=pad_result.padded_key,
bucket_name=pad_result.bucket_name,
track_index=pad_result.track_index,
key=pad_result.padded_key, bucket_name=pad_result.bucket_name
)
)
if pad_result.size > 0:
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{pad_result.track_index}.webm"
created_padded_files.append(storage_path)
ctx.log(f"process_paddings complete: {len(padded_tracks)} padded tracks")
return ProcessPaddingsResult(
padded_tracks=padded_tracks,
num_tracks=len(input.tracks),
created_padded_files=list(created_padded_files),
)
@daily_multitrack_pipeline.task(
parents=[process_paddings],
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3,
)
@with_error_handling(TaskName.PROCESS_TRANSCRIPTIONS)
async def process_transcriptions(
input: PipelineInput, ctx: Context
) -> ProcessTranscriptionsResult:
"""Spawn child workflows for each padded track to transcribe (dynamic fan-out)."""
participants_result = ctx.task_output(get_participants)
paddings_result = ctx.task_output(process_paddings)
source_language = participants_result.source_language
if not source_language:
raise ValueError("source_language is required for transcription")
target_language = participants_result.target_language
padded_tracks = paddings_result.padded_tracks
if not padded_tracks:
raise ValueError("No padded tracks available for transcription")
ctx.log(
f"process_transcriptions: spawning {len(padded_tracks)} transcription workflows"
)
bulk_runs = [
transcription_workflow.create_bulk_run_item(
input=TranscriptionInput(
track_index=padded_track.track_index,
padded_key=padded_track.key,
bucket_name=padded_track.bucket_name,
language=source_language,
)
)
for padded_track in padded_tracks
]
results = await transcription_workflow.aio_run_many(bulk_runs)
track_words: list[list[Word]] = []
for result in results:
transcribe_result = TranscribeTrackResult(**result[TaskName.TRANSCRIBE_TRACK])
track_words.append(transcribe_result.words)
created_padded_files.add(storage_path)
all_words = [word for words in track_words for word in words]
all_words.sort(key=lambda w: w.start)
ctx.log(
f"process_transcriptions complete: {len(all_words)} words from {len(padded_tracks)} tracks"
f"process_tracks complete: {len(all_words)} words from {len(input.tracks)} tracks"
)
return ProcessTranscriptionsResult(
return ProcessTracksResult(
all_words=all_words,
padded_tracks=padded_tracks,
word_count=len(all_words),
num_tracks=len(input.tracks),
target_language=target_language,
created_padded_files=list(created_padded_files),
)
@daily_multitrack_pipeline.task(
parents=[process_paddings],
parents=[process_tracks],
execution_timeout=timedelta(seconds=TIMEOUT_AUDIO),
retries=3,
desired_worker_labels={
@@ -537,12 +501,12 @@ async def process_transcriptions(
)
@with_error_handling(TaskName.MIXDOWN_TRACKS)
async def mixdown_tracks(input: PipelineInput, ctx: Context) -> MixdownResult:
"""Mix all padded tracks into single audio file using PyAV."""
"""Mix all padded tracks into single audio file using PyAV (same as Celery)."""
ctx.log("mixdown_tracks: mixing padded tracks into single audio file")
paddings_result = ctx.task_output(process_paddings)
track_result = ctx.task_output(process_tracks)
recording_result = ctx.task_output(get_recording)
padded_tracks = paddings_result.padded_tracks
padded_tracks = track_result.padded_tracks
# Dynamic timeout: scales with track count and recording duration
# Base 300s + 60s per track + 1s per 10s of recording
@@ -696,7 +660,7 @@ async def generate_waveform(input: PipelineInput, ctx: Context) -> WaveformResul
@daily_multitrack_pipeline.task(
parents=[process_transcriptions],
parents=[process_tracks],
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3,
)
@@ -705,8 +669,8 @@ async def detect_topics(input: PipelineInput, ctx: Context) -> TopicsResult:
"""Detect topics using parallel child workflows (one per chunk)."""
ctx.log("detect_topics: analyzing transcript for topics")
transcriptions_result = ctx.task_output(process_transcriptions)
words = transcriptions_result.all_words
track_result = ctx.task_output(process_tracks)
words = track_result.all_words
if not words:
ctx.log("detect_topics: no words, returning empty topics")
@@ -1143,7 +1107,7 @@ async def identify_action_items(
@daily_multitrack_pipeline.task(
parents=[generate_title, generate_recap, identify_action_items],
parents=[process_tracks, generate_title, generate_recap, identify_action_items],
execution_timeout=timedelta(seconds=TIMEOUT_SHORT),
retries=3,
)
@@ -1156,15 +1120,10 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
"""
ctx.log("finalize: saving transcript and setting status to 'ended'")
mixdown_result = ctx.task_output(mixdown_tracks)
transcriptions_result = ctx.task_output(process_transcriptions)
paddings_result = ctx.task_output(process_paddings)
duration = mixdown_result.duration
all_words = transcriptions_result.all_words
track_result = ctx.task_output(process_tracks)
# Cleanup temporary padded S3 files (deferred until finalize for semantic parity with Celery)
created_padded_files = paddings_result.created_padded_files
created_padded_files = track_result.created_padded_files
if created_padded_files:
ctx.log(f"Cleaning up {len(created_padded_files)} temporary S3 files")
storage = _spawn_storage()
@@ -1182,7 +1141,6 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
async with fresh_db_connection():
from reflector.db.transcripts import ( # noqa: PLC0415
TranscriptDuration,
TranscriptText,
transcripts_controller,
)
@@ -1191,8 +1149,6 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
if transcript is None:
raise ValueError(f"Transcript {input.transcript_id} not found in database")
merged_transcript = TranscriptType(words=all_words, translation=None)
await append_event_and_broadcast(
input.transcript_id,
transcript,
@@ -1204,21 +1160,15 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
logger=logger,
)
# Save duration and clear workflow_run_id (workflow completed successfully)
# Note: title/long_summary/short_summary already saved by their callbacks
# Clear workflow_run_id (workflow completed successfully)
# Note: title/long_summary/short_summary/duration already saved by their callbacks
await transcripts_controller.update(
transcript,
{
"duration": duration,
"workflow_run_id": None, # Clear on success - no need to resume
},
)
duration_data = TranscriptDuration(duration=duration)
await append_event_and_broadcast(
input.transcript_id, transcript, "DURATION", duration_data, logger=logger
)
await set_status_and_broadcast(input.transcript_id, "ended", logger=logger)
ctx.log(

View File

@@ -21,14 +21,12 @@ class ParticipantInfo(BaseModel):
class PadTrackResult(BaseModel):
"""Result from pad_track task.
"""Result from pad_track task."""
If size=0, track required no padding and padded_key contains original S3 key.
If size>0, track was padded and padded_key contains new padded file S3 key.
"""
padded_key: NonEmptyString
bucket_name: NonEmptyString | None
padded_key: NonEmptyString # S3 key (not presigned URL) - presign on demand to avoid stale URLs on replay
bucket_name: (
NonEmptyString | None
) # None means use default transcript storage bucket
size: int
track_index: int
@@ -61,25 +59,18 @@ class PaddedTrackInfo(BaseModel):
"""Info for a padded track - S3 key + bucket for on-demand presigning."""
key: NonEmptyString
bucket_name: NonEmptyString | None
track_index: int
bucket_name: NonEmptyString | None # None = use default storage bucket
class ProcessPaddingsResult(BaseModel):
"""Result from process_paddings task."""
padded_tracks: list[PaddedTrackInfo]
num_tracks: int
created_padded_files: list[NonEmptyString]
class ProcessTranscriptionsResult(BaseModel):
"""Result from process_transcriptions task."""
class ProcessTracksResult(BaseModel):
"""Result from process_tracks task."""
all_words: list[Word]
padded_tracks: list[PaddedTrackInfo] # S3 keys, not presigned URLs
word_count: int
num_tracks: int
target_language: NonEmptyString
created_padded_files: list[NonEmptyString]
class MixdownResult(BaseModel):

View File

@@ -1,11 +1,9 @@
"""
Hatchet child workflow: PaddingWorkflow
Handles individual audio track padding only.
Handles individual audio track padding via Modal.com backend.
"""
import tempfile
from datetime import timedelta
from pathlib import Path
import av
from hatchet_sdk import Context
@@ -16,10 +14,7 @@ from reflector.hatchet.constants import TIMEOUT_AUDIO
from reflector.hatchet.workflows.models import PadTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_padding import (
apply_audio_padding_to_file,
extract_stream_start_time_from_container,
)
from reflector.utils.audio_padding import extract_stream_start_time_from_container
class PaddingInput(BaseModel):
@@ -68,7 +63,7 @@ async def pad_track(input: PaddingInput, ctx: Context) -> PadTrackResult:
bucket=input.bucket_name,
)
with av.open(source_url) as in_container:
# Extract start_time to determine if padding needed
with av.open(source_url) as in_container:
if in_container.duration:
try:
@@ -99,30 +94,52 @@ async def pad_track(input: PaddingInput, ctx: Context) -> PadTrackResult:
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
temp_path = temp_file.name
# Presign PUT URL for output (Modal will upload directly)
output_url = await storage.get_file_url(
storage_path,
operation="put_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
)
import httpx # noqa: PLC0415
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415
AudioPaddingModalProcessor,
)
try:
apply_audio_padding_to_file(
in_container,
temp_path,
start_time_seconds,
input.track_index,
logger=logger,
processor = AudioPaddingModalProcessor()
result = await processor.pad_track(
track_url=source_url,
output_url=output_url,
start_time_seconds=start_time_seconds,
track_index=input.track_index,
)
file_size = result.size
file_size = Path(temp_path).stat().st_size
with open(temp_path, "rb") as padded_file:
await storage.put_file(storage_path, padded_file)
logger.info(
f"Uploaded padded track to S3",
key=storage_path,
size=file_size,
ctx.log(f"pad_track: Modal returned size={file_size}")
except httpx.HTTPStatusError as e:
error_detail = e.response.text if hasattr(e.response, "text") else str(e)
logger.error(
"[Hatchet] Modal padding HTTP error",
transcript_id=input.transcript_id,
track_index=input.track_index,
status_code=e.response.status_code if hasattr(e, "response") else None,
error=error_detail,
exc_info=True,
)
finally:
Path(temp_path).unlink(missing_ok=True)
raise Exception(
f"Modal padding failed: HTTP {e.response.status_code}"
) from e
except httpx.TimeoutException as e:
logger.error(
"[Hatchet] Modal padding timeout",
transcript_id=input.transcript_id,
track_index=input.track_index,
error=str(e),
exc_info=True,
)
raise Exception("Modal padding timeout") from e
logger.info(
"[Hatchet] pad_track complete",

View File

@@ -0,0 +1,205 @@
"""
Hatchet child workflow: TrackProcessing
Handles individual audio track processing: padding and transcription.
Spawned dynamically by the main diarization pipeline for each track.
Architecture note: This is a separate workflow (not inline tasks in DailyMultitrackPipeline)
because Hatchet workflow DAGs are defined statically, but the number of tracks varies
at runtime. Child workflow spawning via `aio_run()` + `asyncio.gather()` is the
standard pattern for dynamic fan-out. See `process_tracks` in daily_multitrack_pipeline.py.
Note: This file uses deferred imports (inside tasks) intentionally.
Hatchet workers run in forked processes; fresh imports per task ensure
storage/DB connections are not shared across forks.
"""
from datetime import timedelta
import av
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.constants import TIMEOUT_AUDIO, TIMEOUT_HEAVY
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_padding import extract_stream_start_time_from_container
class TrackInput(BaseModel):
"""Input for individual track processing."""
track_index: int
s3_key: str
bucket_name: str
transcript_id: str
language: str = "en"
hatchet = HatchetClientManager.get_client()
track_workflow = hatchet.workflow(name="TrackProcessing", input_validator=TrackInput)
@track_workflow.task(execution_timeout=timedelta(seconds=TIMEOUT_AUDIO), retries=3)
async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
"""Pad single audio track with silence for alignment.
Extracts stream.start_time from WebM container metadata and applies
silence padding using PyAV filter graph (adelay).
"""
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
logger.info(
"[Hatchet] pad_track",
track_index=input.track_index,
s3_key=input.s3_key,
transcript_id=input.transcript_id,
)
try:
# Create fresh storage instance to avoid aioboto3 fork issues
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
source_url = await storage.get_file_url(
input.s3_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=input.bucket_name,
)
with av.open(source_url) as in_container:
start_time_seconds = extract_stream_start_time_from_container(
in_container, input.track_index, logger=logger
)
# If no padding needed, return original S3 key
if start_time_seconds <= 0:
logger.info(
f"Track {input.track_index} requires no padding",
track_index=input.track_index,
)
return PadTrackResult(
padded_key=input.s3_key,
bucket_name=input.bucket_name,
size=0,
track_index=input.track_index,
)
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
# Presign PUT URL for output (Modal uploads directly)
output_url = await storage.get_file_url(
storage_path,
operation="put_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
)
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415
AudioPaddingModalProcessor,
)
processor = AudioPaddingModalProcessor()
result = await processor.pad_track(
track_url=source_url,
output_url=output_url,
start_time_seconds=start_time_seconds,
track_index=input.track_index,
)
file_size = result.size
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
logger.info(
"[Hatchet] pad_track complete",
track_index=input.track_index,
padded_key=storage_path,
)
# Return S3 key (not presigned URL) - consumer tasks presign on demand
# This avoids stale URLs when workflow is replayed
return PadTrackResult(
padded_key=storage_path,
bucket_name=None, # None = use default transcript storage bucket
size=file_size,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] pad_track failed", error=str(e), exc_info=True)
raise
@track_workflow.task(
parents=[pad_track], execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), retries=3
)
async def transcribe_track(input: TrackInput, ctx: Context) -> TranscribeTrackResult:
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
logger.info(
"[Hatchet] transcribe_track",
track_index=input.track_index,
language=input.language,
)
try:
pad_result = ctx.task_output(pad_track)
padded_key = pad_result.padded_key
bucket_name = pad_result.bucket_name
if not padded_key:
raise ValueError("Missing padded_key from pad_track")
# Presign URL on demand (avoids stale URLs on workflow replay)
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
audio_url = await storage.get_file_url(
padded_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=bucket_name,
)
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
transcribe_file_with_processor,
)
transcript = await transcribe_file_with_processor(audio_url, input.language)
# Tag all words with speaker index
for word in transcript.words:
word.speaker = input.track_index
ctx.log(
f"transcribe_track complete: track {input.track_index}, {len(transcript.words)} words"
)
logger.info(
"[Hatchet] transcribe_track complete",
track_index=input.track_index,
word_count=len(transcript.words),
)
return TranscribeTrackResult(
words=transcript.words,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] transcribe_track failed", error=str(e), exc_info=True)
raise

View File

@@ -1,98 +0,0 @@
"""
Hatchet child workflow: TranscriptionWorkflow
Handles individual audio track transcription only.
"""
from datetime import timedelta
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.constants import TIMEOUT_HEAVY
from reflector.hatchet.workflows.models import TranscribeTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
class TranscriptionInput(BaseModel):
"""Input for individual track transcription."""
track_index: int
padded_key: str # S3 key from padding step
bucket_name: str | None # None = use default bucket
language: str = "en"
hatchet = HatchetClientManager.get_client()
transcription_workflow = hatchet.workflow(
name="TranscriptionWorkflow", input_validator=TranscriptionInput
)
@transcription_workflow.task(
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), retries=3
)
async def transcribe_track(
input: TranscriptionInput, ctx: Context
) -> TranscribeTrackResult:
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
logger.info(
"[Hatchet] transcribe_track",
track_index=input.track_index,
language=input.language,
)
try:
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
audio_url = await storage.get_file_url(
input.padded_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=input.bucket_name,
)
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
transcribe_file_with_processor,
)
transcript = await transcribe_file_with_processor(audio_url, input.language)
for word in transcript.words:
word.speaker = input.track_index
ctx.log(
f"transcribe_track complete: track {input.track_index}, {len(transcript.words)} words"
)
logger.info(
"[Hatchet] transcribe_track complete",
track_index=input.track_index,
word_count=len(transcript.words),
)
return TranscribeTrackResult(
words=transcript.words,
track_index=input.track_index,
)
except Exception as e:
logger.error(
"[Hatchet] transcribe_track failed",
track_index=input.track_index,
padded_key=input.padded_key,
language=input.language,
error=str(e),
exc_info=True,
)
raise

View File

@@ -0,0 +1,113 @@
"""
Modal.com backend for audio padding.
"""
import asyncio
import os
import httpx
from pydantic import BaseModel
from reflector.hatchet.constants import TIMEOUT_AUDIO
from reflector.logger import logger
class PaddingResponse(BaseModel):
size: int
cancelled: bool = False
class AudioPaddingModalProcessor:
"""Audio padding processor using Modal.com CPU backend via HTTP."""
def __init__(
self, padding_url: str | None = None, modal_api_key: str | None = None
):
self.padding_url = padding_url or os.getenv("PADDING_URL")
if not self.padding_url:
raise ValueError(
"PADDING_URL required to use AudioPaddingModalProcessor. "
"Set PADDING_URL environment variable or pass padding_url parameter."
)
self.modal_api_key = modal_api_key or os.getenv("MODAL_API_KEY")
async def pad_track(
self,
track_url: str,
output_url: str,
start_time_seconds: float,
track_index: int,
) -> PaddingResponse:
"""Pad audio track with silence via Modal backend.
Args:
track_url: Presigned GET URL for source audio track
output_url: Presigned PUT URL for output WebM
start_time_seconds: Amount of silence to prepend
track_index: Track index for logging
"""
if not track_url:
raise ValueError("track_url cannot be empty")
if start_time_seconds <= 0:
raise ValueError(
f"start_time_seconds must be positive, got {start_time_seconds}"
)
log = logger.bind(track_index=track_index, padding_seconds=start_time_seconds)
log.info("Sending Modal padding HTTP request")
url = f"{self.padding_url}/pad"
headers = {}
if self.modal_api_key:
headers["Authorization"] = f"Bearer {self.modal_api_key}"
try:
async with httpx.AsyncClient(timeout=TIMEOUT_AUDIO) as client:
response = await client.post(
url,
headers=headers,
json={
"track_url": track_url,
"output_url": output_url,
"start_time_seconds": start_time_seconds,
"track_index": track_index,
},
follow_redirects=True,
)
if response.status_code != 200:
error_body = response.text
log.error(
"Modal padding API error",
status_code=response.status_code,
error_body=error_body,
)
response.raise_for_status()
result = response.json()
# Check if work was cancelled
if result.get("cancelled"):
log.warning("Modal padding was cancelled by disconnect detection")
raise asyncio.CancelledError(
"Padding cancelled due to client disconnect"
)
log.info("Modal padding complete", size=result["size"])
return PaddingResponse(**result)
except asyncio.CancelledError:
log.warning(
"Modal padding cancelled (Hatchet timeout, disconnect detected on Modal side)"
)
raise
except httpx.TimeoutException as e:
log.error("Modal padding timeout", error=str(e), exc_info=True)
raise Exception(f"Modal padding timeout: {e}") from e
except httpx.HTTPStatusError as e:
log.error("Modal padding HTTP error", error=str(e), exc_info=True)
raise Exception(f"Modal padding HTTP error: {e}") from e
except Exception as e:
log.error("Modal padding unexpected error", error=str(e), exc_info=True)
raise

View File

@@ -98,6 +98,10 @@ class Settings(BaseSettings):
# Diarization: local pyannote.audio
DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None
# Audio Padding (Modal.com backend)
PADDING_URL: str | None = None
PADDING_MODAL_API_KEY: str | None = None
# Sentry
SENTRY_DSN: str | None = None

View File

@@ -5,7 +5,9 @@ Used by both Hatchet workflows and Celery pipelines for consistent audio encodin
"""
# Opus codec settings
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_STANDARD_SAMPLE_RATE = 48000
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality
# S3 presigned URL expiration

45
server/uv.lock generated
View File

@@ -159,21 +159,20 @@ wheels = [
[[package]]
name = "aiortc"
version = "1.13.0"
version = "1.14.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aioice" },
{ name = "av" },
{ name = "cffi" },
{ name = "cryptography" },
{ name = "google-crc32c" },
{ name = "pyee" },
{ name = "pylibsrtp" },
{ name = "pyopenssl" },
]
sdist = { url = "https://files.pythonhosted.org/packages/62/03/bc947d74c548e0c17cf94e5d5bdacaed0ee9e5b2bb7b8b8cf1ac7a7c01ec/aiortc-1.13.0.tar.gz", hash = "sha256:5d209975c22d0910fb5a0f0e2caa828f2da966c53580f7c7170ac3a16a871620", size = 1179894 }
sdist = { url = "https://files.pythonhosted.org/packages/51/9c/4e027bfe0195de0442da301e2389329496745d40ae44d2d7c4571c4290ce/aiortc-1.14.0.tar.gz", hash = "sha256:adc8a67ace10a085721e588e06a00358ed8eaf5f6b62f0a95358ff45628dd762", size = 1180864 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/87/29/765633cab5f1888890f5f172d1d53009b9b14e079cdfa01a62d9896a9ea9/aiortc-1.13.0-py3-none-any.whl", hash = "sha256:9ccccec98796f6a96bd1c3dd437a06da7e0f57521c96bd56e4b965a91b03a0a0", size = 92910 },
{ url = "https://files.pythonhosted.org/packages/57/ab/31646a49209568cde3b97eeade0d28bb78b400e6645c56422c101df68932/aiortc-1.14.0-py3-none-any.whl", hash = "sha256:4b244d7e482f4e1f67e685b3468269628eca1ec91fa5b329ab517738cfca086e", size = 93183 },
]
[[package]]
@@ -327,28 +326,24 @@ wheels = [
[[package]]
name = "av"
version = "14.4.0"
version = "16.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/86/f6/0b473dab52dfdea05f28f3578b1c56b6c796ce85e76951bab7c4e38d5a74/av-14.4.0.tar.gz", hash = "sha256:3ecbf803a7fdf67229c0edada0830d6bfaea4d10bfb24f0c3f4e607cd1064b42", size = 3892203 }
sdist = { url = "https://files.pythonhosted.org/packages/78/cd/3a83ffbc3cc25b39721d174487fb0d51a76582f4a1703f98e46170ce83d4/av-16.1.0.tar.gz", hash = "sha256:a094b4fd87a3721dacf02794d3d2c82b8d712c85b9534437e82a8a978c175ffd", size = 4285203 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/18/8a/d57418b686ffd05fabd5a0a9cfa97e63b38c35d7101af00e87c51c8cc43c/av-14.4.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5b21d5586a88b9fce0ab78e26bd1c38f8642f8e2aad5b35e619f4d202217c701", size = 19965048 },
{ url = "https://files.pythonhosted.org/packages/f5/aa/3f878b0301efe587e9b07bb773dd6b47ef44ca09a3cffb4af50c08a170f3/av-14.4.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:cf8762d90b0f94a20c9f6e25a94f1757db5a256707964dfd0b1d4403e7a16835", size = 23750064 },
{ url = "https://files.pythonhosted.org/packages/9a/b4/6fe94a31f9ed3a927daa72df67c7151968587106f30f9f8fcd792b186633/av-14.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0ac9f08920c7bbe0795319689d901e27cb3d7870b9a0acae3f26fc9daa801a6", size = 33648775 },
{ url = "https://files.pythonhosted.org/packages/6c/f3/7f3130753521d779450c935aec3f4beefc8d4645471159f27b54e896470c/av-14.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a56d9ad2afdb638ec0404e962dc570960aae7e08ae331ad7ff70fbe99a6cf40e", size = 32216915 },
{ url = "https://files.pythonhosted.org/packages/f8/9a/8ffabfcafb42154b4b3a67d63f9b69e68fa8c34cb39ddd5cb813dd049ed4/av-14.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bed513cbcb3437d0ae47743edc1f5b4a113c0b66cdd4e1aafc533abf5b2fbf2", size = 35287279 },
{ url = "https://files.pythonhosted.org/packages/ad/11/7023ba0a2ca94a57aedf3114ab8cfcecb0819b50c30982a4c5be4d31df41/av-14.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d030c2d3647931e53d51f2f6e0fcf465263e7acf9ec6e4faa8dbfc77975318c3", size = 36294683 },
{ url = "https://files.pythonhosted.org/packages/3d/fa/b8ac9636bd5034e2b899354468bef9f4dadb067420a16d8a493a514b7817/av-14.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1cc21582a4f606271d8c2036ec7a6247df0831050306c55cf8a905701d0f0474", size = 34552391 },
{ url = "https://files.pythonhosted.org/packages/fb/29/0db48079c207d1cba7a2783896db5aec3816e17de55942262c244dffbc0f/av-14.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce7c9cd452153d36f1b1478f904ed5f9ab191d76db873bdd3a597193290805d4", size = 37265250 },
{ url = "https://files.pythonhosted.org/packages/1c/55/715858c3feb7efa4d667ce83a829c8e6ee3862e297fb2b568da3f968639d/av-14.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd261e31cc6b43ca722f80656c39934199d8f2eb391e0147e704b6226acebc29", size = 27925845 },
{ url = "https://files.pythonhosted.org/packages/a6/75/b8641653780336c90ba89e5352cac0afa6256a86a150c7703c0b38851c6d/av-14.4.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:a53e682b239dd23b4e3bc9568cfb1168fc629ab01925fdb2e7556eb426339e94", size = 19954125 },
{ url = "https://files.pythonhosted.org/packages/99/e6/37fe6fa5853a48d54d749526365780a63a4bc530be6abf2115e3a21e292a/av-14.4.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:5aa0b901751a32703fa938d2155d56ce3faf3630e4a48d238b35d2f7e49e5395", size = 23751479 },
{ url = "https://files.pythonhosted.org/packages/f7/75/9a5f0e6bda5f513b62bafd1cff2b495441a8b07ab7fb7b8e62f0c0d1683f/av-14.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3b316fed3597675fe2aacfed34e25fc9d5bb0196dc8c0b014ae5ed4adda48de", size = 33801401 },
{ url = "https://files.pythonhosted.org/packages/6a/c9/e4df32a2ad1cb7f3a112d0ed610c5e43c89da80b63c60d60e3dc23793ec0/av-14.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a587b5c5014c3c0e16143a0f8d99874e46b5d0c50db6111aa0b54206b5687c81", size = 32364330 },
{ url = "https://files.pythonhosted.org/packages/ca/f0/64e7444a41817fde49a07d0239c033f7e9280bec4a4bb4784f5c79af95e6/av-14.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d53f75e8ac1ec8877a551c0db32a83c0aaeae719d05285281eaaba211bbc30", size = 35519508 },
{ url = "https://files.pythonhosted.org/packages/c2/a8/a370099daa9033a3b6f9b9bd815304b3d8396907a14d09845f27467ba138/av-14.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c8558cfde79dd8fc92d97c70e0f0fa8c94c7a66f68ae73afdf58598f0fe5e10d", size = 36448593 },
{ url = "https://files.pythonhosted.org/packages/27/bb/edb6ceff8fa7259cb6330c51dbfbc98dd1912bd6eb5f7bc05a4bb14a9d6e/av-14.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:455b6410dea0ab2d30234ffb28df7d62ca3cdf10708528e247bec3a4cdcced09", size = 34701485 },
{ url = "https://files.pythonhosted.org/packages/a7/8a/957da1f581aa1faa9a5dfa8b47ca955edb47f2b76b949950933b457bfa1d/av-14.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1661efbe9d975f927b8512d654704223d936f39016fad2ddab00aee7c40f412c", size = 37521981 },
{ url = "https://files.pythonhosted.org/packages/28/76/3f1cf0568592f100fd68eb40ed8c491ce95ca3c1378cc2d4c1f6d1bd295d/av-14.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:fbbeef1f421a3461086853d6464ad5526b56ffe8ccb0ab3fd0a1f121dfbf26ad", size = 27925944 },
{ url = "https://files.pythonhosted.org/packages/48/d0/b71b65d1b36520dcb8291a2307d98b7fc12329a45614a303ff92ada4d723/av-16.1.0-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:e88ad64ee9d2b9c4c5d891f16c22ae78e725188b8926eb88187538d9dd0b232f", size = 26927747 },
{ url = "https://files.pythonhosted.org/packages/2f/79/720a5a6ccdee06eafa211b945b0a450e3a0b8fc3d12922f0f3c454d870d2/av-16.1.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:cb296073fa6935724de72593800ba86ae49ed48af03960a4aee34f8a611f442b", size = 21492232 },
{ url = "https://files.pythonhosted.org/packages/8e/4f/a1ba8d922f2f6d1a3d52419463ef26dd6c4d43ee364164a71b424b5ae204/av-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:720edd4d25aa73723c1532bb0597806d7b9af5ee34fc02358782c358cfe2f879", size = 39291737 },
{ url = "https://files.pythonhosted.org/packages/1a/31/fc62b9fe8738d2693e18d99f040b219e26e8df894c10d065f27c6b4f07e3/av-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:c7f2bc703d0df260a1fdf4de4253c7f5500ca9fc57772ea241b0cb241bcf972e", size = 40846822 },
{ url = "https://files.pythonhosted.org/packages/53/10/ab446583dbce730000e8e6beec6ec3c2753e628c7f78f334a35cad0317f4/av-16.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d69c393809babada7d54964d56099e4b30a3e1f8b5736ca5e27bd7be0e0f3c83", size = 40675604 },
{ url = "https://files.pythonhosted.org/packages/31/d7/1003be685277005f6d63fd9e64904ee222fe1f7a0ea70af313468bb597db/av-16.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:441892be28582356d53f282873c5a951592daaf71642c7f20165e3ddcb0b4c63", size = 42015955 },
{ url = "https://files.pythonhosted.org/packages/2f/4a/fa2a38ee9306bf4579f556f94ecbc757520652eb91294d2a99c7cf7623b9/av-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:273a3e32de64819e4a1cd96341824299fe06f70c46f2288b5dc4173944f0fd62", size = 31750339 },
{ url = "https://files.pythonhosted.org/packages/9c/84/2535f55edcd426cebec02eb37b811b1b0c163f26b8d3f53b059e2ec32665/av-16.1.0-cp312-cp312-macosx_11_0_x86_64.whl", hash = "sha256:640f57b93f927fba8689f6966c956737ee95388a91bd0b8c8b5e0481f73513d6", size = 26945785 },
{ url = "https://files.pythonhosted.org/packages/b6/17/ffb940c9e490bf42e86db4db1ff426ee1559cd355a69609ec1efe4d3a9eb/av-16.1.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:ae3fb658eec00852ebd7412fdc141f17f3ddce8afee2d2e1cf366263ad2a3b35", size = 21481147 },
{ url = "https://files.pythonhosted.org/packages/15/c1/e0d58003d2d83c3921887d5c8c9b8f5f7de9b58dc2194356a2656a45cfdc/av-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:27ee558d9c02a142eebcbe55578a6d817fedfde42ff5676275504e16d07a7f86", size = 39517197 },
{ url = "https://files.pythonhosted.org/packages/32/77/787797b43475d1b90626af76f80bfb0c12cfec5e11eafcfc4151b8c80218/av-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7ae547f6d5fa31763f73900d43901e8c5fa6367bb9a9840978d57b5a7ae14ed2", size = 41174337 },
{ url = "https://files.pythonhosted.org/packages/8e/ac/d90df7f1e3b97fc5554cf45076df5045f1e0a6adf13899e10121229b826c/av-16.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8cf065f9d438e1921dc31fc7aa045790b58aee71736897866420d80b5450f62a", size = 40817720 },
{ url = "https://files.pythonhosted.org/packages/80/6f/13c3a35f9dbcebafd03fe0c4cbd075d71ac8968ec849a3cfce406c35a9d2/av-16.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a345877a9d3cc0f08e2bc4ec163ee83176864b92587afb9d08dff50f37a9a829", size = 42267396 },
{ url = "https://files.pythonhosted.org/packages/c8/b9/275df9607f7fb44317ccb1d4be74827185c0d410f52b6e2cd770fe209118/av-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:f49243b1d27c91cd8c66fdba90a674e344eb8eb917264f36117bf2b6879118fd", size = 31752045 },
]
[[package]]
@@ -3267,7 +3262,7 @@ requires-dist = [
{ name = "aiohttp-cors", specifier = ">=0.7.0" },
{ name = "aiortc", specifier = ">=1.5.0" },
{ name = "alembic", specifier = ">=1.11.3" },
{ name = "av", specifier = ">=10.0.0" },
{ name = "av", specifier = ">=15.0.0" },
{ name = "celery", specifier = ">=5.3.4" },
{ name = "databases", extras = ["aiosqlite", "asyncpg"], specifier = ">=0.7.0" },
{ name = "fastapi", extras = ["standard"], specifier = ">=0.100.1" },