mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
107 Commits
mathieu/pa
...
v0.22.3
| Author | SHA1 | Date | |
|---|---|---|---|
| c8024484b3 | |||
| 28f87c09dc | |||
| dabf7251db | |||
|
|
b51b7aa917 | ||
|
|
a8983b4e7e | ||
|
|
fe47c46489 | ||
| a2bb6a27d6 | |||
| 7f0b728991 | |||
| 692895c859 | |||
|
|
d63040e2fd | ||
| 8d696aa775 | |||
| f6ca07505f | |||
|
|
3aef926203 | ||
|
|
0b2c82227d | ||
|
|
689c8075cc | ||
| 201671368a | |||
|
|
86d5e26224 | ||
| 9bec39808f | |||
| 86ac23868b | |||
|
|
c442a62787 | ||
|
|
8e438ca285 | ||
|
|
11731c9d38 | ||
|
|
4287f8b8ae | ||
| 3e47c2c057 | |||
|
|
616092a9bb | ||
| 18ed713369 | |||
| 2801ab3643 | |||
|
|
b20cad76e6 | ||
| 28a7258e45 | |||
| a9a4f32324 | |||
|
|
857e035562 | ||
| 34a3f5618c | |||
|
|
1473fd82dc | ||
| 372202b0e1 | |||
|
|
d20aac66c4 | ||
| dc4b737daa | |||
|
|
0baff7abf7 | ||
|
|
962c40e2b6 | ||
|
|
3c4b9f2103 | ||
|
|
c6c035aacf | ||
| c086b91445 | |||
|
|
9a258abc02 | ||
| af86c47f1d | |||
| 5f6910e513 | |||
| 9a71af145e | |||
| eef6dc3903 | |||
|
|
1dee255fed | ||
| 5d98754305 | |||
|
|
969bd84fcc | ||
|
|
36608849ec | ||
|
|
5bf64b5a41 | ||
| 0aaa42528a | |||
| 565a62900f | |||
|
|
27016e6051 | ||
| 6ddfee0b4e | |||
|
|
47716f6e5d | ||
| 0abcebfc94 | |||
|
|
2b723da08b | ||
| 6566e04300 | |||
| 870e860517 | |||
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 |
5
.github/workflows/db_migrations.yml
vendored
5
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,6 +19,9 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
|
||||
2
.github/workflows/deploy.yml
vendored
2
.github/workflows/deploy.yml
vendored
@@ -1,4 +1,4 @@
|
||||
name: Deploy to Amazon ECS
|
||||
name: Build container/push to container registry
|
||||
|
||||
on: [workflow_dispatch]
|
||||
|
||||
|
||||
57
.github/workflows/docker-frontend.yml
vendored
Normal file
57
.github/workflows/docker-frontend.yml
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
name: Build and Push Frontend Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'www/**'
|
||||
- '.github/workflows/docker-frontend.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}-frontend
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Log in to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=sha,prefix={{branch}}-
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./www
|
||||
file: ./www/Dockerfile
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64,linux/arm64
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
11
.github/workflows/test_server.yml
vendored
11
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -30,6 +35,9 @@ jobs:
|
||||
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
@@ -45,6 +53,9 @@ jobs:
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -14,4 +14,7 @@ data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -27,3 +27,8 @@ repos:
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
241
CHANGELOG.md
241
CHANGELOG.md
@@ -1,5 +1,246 @@
|
||||
# Changelog
|
||||
|
||||
## [0.22.3](https://github.com/Monadical-SAS/reflector/compare/v0.22.2...v0.22.3) (2025-12-02)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align daily room settings ([#759](https://github.com/Monadical-SAS/reflector/issues/759)) ([28f87c0](https://github.com/Monadical-SAS/reflector/commit/28f87c09dc459846873d0dde65b03e3d7b2b9399))
|
||||
|
||||
## [0.22.2](https://github.com/Monadical-SAS/reflector/compare/v0.22.1...v0.22.2) (2025-12-02)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* daily auto refresh fix ([#755](https://github.com/Monadical-SAS/reflector/issues/755)) ([fe47c46](https://github.com/Monadical-SAS/reflector/commit/fe47c46489c5aa0cc538109f7559cc9accb35c01))
|
||||
* Skip mixdown for multitrack ([#760](https://github.com/Monadical-SAS/reflector/issues/760)) ([b51b7aa](https://github.com/Monadical-SAS/reflector/commit/b51b7aa9176c1a53ba57ad99f5e976c804a1e80c))
|
||||
|
||||
## [0.22.1](https://github.com/Monadical-SAS/reflector/compare/v0.22.0...v0.22.1) (2025-11-27)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* participants update from daily ([#749](https://github.com/Monadical-SAS/reflector/issues/749)) ([7f0b728](https://github.com/Monadical-SAS/reflector/commit/7f0b728991c1b9f9aae702c96297eae63b561ef5))
|
||||
|
||||
## [0.22.0](https://github.com/Monadical-SAS/reflector/compare/v0.21.0...v0.22.0) (2025-11-26)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* Multitrack segmentation ([#747](https://github.com/Monadical-SAS/reflector/issues/747)) ([d63040e](https://github.com/Monadical-SAS/reflector/commit/d63040e2fdc07e7b272e85a39eb2411cd6a14798))
|
||||
|
||||
## [0.21.0](https://github.com/Monadical-SAS/reflector/compare/v0.20.0...v0.21.0) (2025-11-26)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* add transcript format parameter to GET endpoint ([#709](https://github.com/Monadical-SAS/reflector/issues/709)) ([f6ca075](https://github.com/Monadical-SAS/reflector/commit/f6ca07505f34483b02270a2ef3bd809e9d2e1045))
|
||||
|
||||
## [0.20.0](https://github.com/Monadical-SAS/reflector/compare/v0.19.0...v0.20.0) (2025-11-25)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* link transcript participants ([#737](https://github.com/Monadical-SAS/reflector/issues/737)) ([9bec398](https://github.com/Monadical-SAS/reflector/commit/9bec39808fc6322612d8b87e922a6f7901fc01c1))
|
||||
* transcript restart script ([#742](https://github.com/Monadical-SAS/reflector/issues/742)) ([86d5e26](https://github.com/Monadical-SAS/reflector/commit/86d5e26224bb55a0f1cc785aeda52065bb92ee6f))
|
||||
|
||||
## [0.19.0](https://github.com/Monadical-SAS/reflector/compare/v0.18.0...v0.19.0) (2025-11-25)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* dailyco api module ([#725](https://github.com/Monadical-SAS/reflector/issues/725)) ([4287f8b](https://github.com/Monadical-SAS/reflector/commit/4287f8b8aeee60e51db7539f4dcbda5f6e696bd8))
|
||||
* dailyco poll ([#730](https://github.com/Monadical-SAS/reflector/issues/730)) ([8e438ca](https://github.com/Monadical-SAS/reflector/commit/8e438ca285152bd48fdc42767e706fb448d3525c))
|
||||
* multitrack cli ([#735](https://github.com/Monadical-SAS/reflector/issues/735)) ([11731c9](https://github.com/Monadical-SAS/reflector/commit/11731c9d38439b04e93b1c3afbd7090bad11a11f))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* default platform fix ([#736](https://github.com/Monadical-SAS/reflector/issues/736)) ([c442a62](https://github.com/Monadical-SAS/reflector/commit/c442a627873ca667656eeaefb63e54ab10b8d19e))
|
||||
* parakeet vad not getting the end timestamp ([#728](https://github.com/Monadical-SAS/reflector/issues/728)) ([18ed713](https://github.com/Monadical-SAS/reflector/commit/18ed7133693653ef4ddac6c659a8c14b320d1657))
|
||||
* start raw tracks recording ([#729](https://github.com/Monadical-SAS/reflector/issues/729)) ([3e47c2c](https://github.com/Monadical-SAS/reflector/commit/3e47c2c0573504858e0d2e1798b6ed31f16b4a5d))
|
||||
|
||||
## [0.18.0](https://github.com/Monadical-SAS/reflector/compare/v0.17.0...v0.18.0) (2025-11-14)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* daily QOL: participants dictionary ([#721](https://github.com/Monadical-SAS/reflector/issues/721)) ([b20cad7](https://github.com/Monadical-SAS/reflector/commit/b20cad76e69fb6a76405af299a005f1ddcf60eae))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* add proccessing page to file upload and reprocessing ([#650](https://github.com/Monadical-SAS/reflector/issues/650)) ([28a7258](https://github.com/Monadical-SAS/reflector/commit/28a7258e45317b78e60e6397be2bc503647eaace))
|
||||
* copy transcript ([#674](https://github.com/Monadical-SAS/reflector/issues/674)) ([a9a4f32](https://github.com/Monadical-SAS/reflector/commit/a9a4f32324f66c838e081eee42bb9502f38c1db1))
|
||||
|
||||
## [0.17.0](https://github.com/Monadical-SAS/reflector/compare/v0.16.0...v0.17.0) (2025-11-13)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* add API key management UI ([#716](https://github.com/Monadical-SAS/reflector/issues/716)) ([372202b](https://github.com/Monadical-SAS/reflector/commit/372202b0e1a86823900b0aa77be1bfbc2893d8a1))
|
||||
* daily.co support as alternative to whereby ([#691](https://github.com/Monadical-SAS/reflector/issues/691)) ([1473fd8](https://github.com/Monadical-SAS/reflector/commit/1473fd82dc472c394cbaa2987212ad662a74bcac))
|
||||
|
||||
## [0.16.0](https://github.com/Monadical-SAS/reflector/compare/v0.15.0...v0.16.0) (2025-10-24)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* search date filter ([#710](https://github.com/Monadical-SAS/reflector/issues/710)) ([962c40e](https://github.com/Monadical-SAS/reflector/commit/962c40e2b6428ac42fd10aea926782d7a6f3f902))
|
||||
|
||||
## [0.15.0](https://github.com/Monadical-SAS/reflector/compare/v0.14.0...v0.15.0) (2025-10-20)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* api tokens ([#705](https://github.com/Monadical-SAS/reflector/issues/705)) ([9a258ab](https://github.com/Monadical-SAS/reflector/commit/9a258abc0209b0ac3799532a507ea6a9125d703a))
|
||||
|
||||
## [0.14.0](https://github.com/Monadical-SAS/reflector/compare/v0.13.1...v0.14.0) (2025-10-08)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* Add calendar event data to transcript webhook payload ([#689](https://github.com/Monadical-SAS/reflector/issues/689)) ([5f6910e](https://github.com/Monadical-SAS/reflector/commit/5f6910e5131b7f28f86c9ecdcc57fed8412ee3cd))
|
||||
* container build for www / github ([#672](https://github.com/Monadical-SAS/reflector/issues/672)) ([969bd84](https://github.com/Monadical-SAS/reflector/commit/969bd84fcc14851d1a101412a0ba115f1b7cde82))
|
||||
* docker-compose for production frontend ([#664](https://github.com/Monadical-SAS/reflector/issues/664)) ([5bf64b5](https://github.com/Monadical-SAS/reflector/commit/5bf64b5a41f64535e22849b4bb11734d4dbb4aae))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* restore feature boolean logic ([#671](https://github.com/Monadical-SAS/reflector/issues/671)) ([3660884](https://github.com/Monadical-SAS/reflector/commit/36608849ec64e953e3be456172502762e3c33df9))
|
||||
* security review ([#656](https://github.com/Monadical-SAS/reflector/issues/656)) ([5d98754](https://github.com/Monadical-SAS/reflector/commit/5d98754305c6c540dd194dda268544f6d88bfaf8))
|
||||
* update transcript list on reprocess ([#676](https://github.com/Monadical-SAS/reflector/issues/676)) ([9a71af1](https://github.com/Monadical-SAS/reflector/commit/9a71af145ee9b833078c78d0c684590ab12e9f0e))
|
||||
* upgrade nemo toolkit ([#678](https://github.com/Monadical-SAS/reflector/issues/678)) ([eef6dc3](https://github.com/Monadical-SAS/reflector/commit/eef6dc39037329b65804297786d852dddb0557f9))
|
||||
|
||||
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
|
||||
|
||||
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
|
||||
|
||||
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
|
||||
|
||||
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||
|
||||
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||
|
||||
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||
|
||||
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||
|
||||
|
||||
|
||||
@@ -66,7 +66,6 @@ pnpm install
|
||||
|
||||
# Copy configuration templates
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
```
|
||||
|
||||
**Development:**
|
||||
@@ -152,7 +151,7 @@ All endpoints prefixed `/v1/`:
|
||||
|
||||
**Frontend** (`www/.env`):
|
||||
- `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration
|
||||
- `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
94
README.md
94
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
@@ -80,11 +99,10 @@ Start with `cd www`.
|
||||
|
||||
```bash
|
||||
pnpm install
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
|
||||
**Run in development mode**
|
||||
|
||||
@@ -149,3 +167,47 @@ You can manually process an audio file by calling the process tool:
|
||||
```bash
|
||||
uv run python -m reflector.tools.process path/to/audio.wav
|
||||
```
|
||||
|
||||
## Reprocessing any transcription
|
||||
|
||||
```bash
|
||||
uv run -m reflector.tools.process_transcript 81ec38d1-9dd7-43d2-b3f8-51f4d34a07cd --sync
|
||||
```
|
||||
|
||||
## Build-time env variables
|
||||
|
||||
Next.js projects are more used to NEXT_PUBLIC_ prefixed buildtime vars. We don't have those for the reason we need to serve a ccustomizable prebuild docker container.
|
||||
|
||||
Instead, all the variables are runtime. Variables needed to the frontend are served to the frontend app at initial render.
|
||||
|
||||
It also means there's no static prebuild and no static files to serve for js/html.
|
||||
|
||||
## Feature Flags
|
||||
|
||||
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||
|
||||
### Available Feature Flags
|
||||
|
||||
| Feature Flag | Environment Variable |
|
||||
|-------------|---------------------|
|
||||
| `requireLogin` | `FEATURE_REQUIRE_LOGIN` |
|
||||
| `privacy` | `FEATURE_PRIVACY` |
|
||||
| `browse` | `FEATURE_BROWSE` |
|
||||
| `sendToZulip` | `FEATURE_SEND_TO_ZULIP` |
|
||||
| `rooms` | `FEATURE_ROOMS` |
|
||||
|
||||
### Setting Feature Flags
|
||||
|
||||
Feature flags are controlled via environment variables using the pattern `FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Enable user authentication requirement
|
||||
FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Disable browse functionality
|
||||
FEATURE_BROWSE=false
|
||||
|
||||
# Enable Zulip integration
|
||||
FEATURE_SEND_TO_ZULIP=true
|
||||
```
|
||||
|
||||
39
docker-compose.prod.yml
Normal file
39
docker-compose.prod.yml
Normal file
@@ -0,0 +1,39 @@
|
||||
# Production Docker Compose configuration for Frontend
|
||||
# Usage: docker compose -f docker-compose.prod.yml up -d
|
||||
|
||||
services:
|
||||
web:
|
||||
build:
|
||||
context: ./www
|
||||
dockerfile: Dockerfile
|
||||
image: reflector-frontend:latest
|
||||
environment:
|
||||
- KV_URL=${KV_URL:-redis://redis:6379}
|
||||
- SITE_URL=${SITE_URL}
|
||||
- API_URL=${API_URL}
|
||||
- WEBSOCKET_URL=${WEBSOCKET_URL}
|
||||
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
|
||||
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
|
||||
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
|
||||
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
|
||||
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
|
||||
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
|
||||
- SENTRY_DSN=${SENTRY_DSN}
|
||||
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
|
||||
depends_on:
|
||||
- redis
|
||||
restart: unless-stopped
|
||||
|
||||
redis:
|
||||
image: redis:7.2-alpine
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "redis-cli", "ping"]
|
||||
interval: 30s
|
||||
timeout: 3s
|
||||
retries: 3
|
||||
volumes:
|
||||
- redis_data:/data
|
||||
|
||||
volumes:
|
||||
redis_data:
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -36,7 +39,7 @@ services:
|
||||
ports:
|
||||
- 6379:6379
|
||||
web:
|
||||
image: node:18
|
||||
image: node:22-alpine
|
||||
ports:
|
||||
- "3000:3000"
|
||||
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||
@@ -47,6 +50,8 @@ services:
|
||||
- /app/node_modules
|
||||
env_file:
|
||||
- ./www/.env.local
|
||||
environment:
|
||||
- NODE_ENV=development
|
||||
|
||||
postgres:
|
||||
image: postgres:17
|
||||
241
docs/transcript.md
Normal file
241
docs/transcript.md
Normal file
@@ -0,0 +1,241 @@
|
||||
# Transcript Formats
|
||||
|
||||
The Reflector API provides multiple output formats for transcript data through the `transcript_format` query parameter on the GET `/v1/transcripts/{id}` endpoint.
|
||||
|
||||
## Overview
|
||||
|
||||
When retrieving a transcript, you can specify the desired format using the `transcript_format` query parameter. The API supports four formats optimized for different use cases:
|
||||
|
||||
- **text** - Plain text with speaker names (default)
|
||||
- **text-timestamped** - Timestamped text with speaker names
|
||||
- **webvtt-named** - WebVTT subtitle format with participant names
|
||||
- **json** - Structured JSON segments with full metadata
|
||||
|
||||
All formats include participant information when available, resolving speaker IDs to actual names.
|
||||
|
||||
## Query Parameter Usage
|
||||
|
||||
```
|
||||
GET /v1/transcripts/{id}?transcript_format={format}
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
- `transcript_format` (optional): The desired output format
|
||||
- Type: `"text" | "text-timestamped" | "webvtt-named" | "json"`
|
||||
- Default: `"text"`
|
||||
|
||||
## Format Descriptions
|
||||
|
||||
### Text Format (`text`)
|
||||
|
||||
**Use case:** Simple, human-readable transcript for display or export.
|
||||
|
||||
**Format:** Speaker names followed by their dialogue, one line per segment.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
John Smith: Hello everyone
|
||||
Jane Doe: Hi there
|
||||
John Smith: How are you today?
|
||||
```
|
||||
|
||||
**Request:**
|
||||
```bash
|
||||
GET /v1/transcripts/{id}?transcript_format=text
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "transcript_123",
|
||||
"name": "Meeting Recording",
|
||||
"transcript_format": "text",
|
||||
"transcript": "John Smith: Hello everyone\nJane Doe: Hi there\nJohn Smith: How are you today?",
|
||||
"participants": [
|
||||
{"id": "p1", "speaker": 0, "name": "John Smith"},
|
||||
{"id": "p2", "speaker": 1, "name": "Jane Doe"}
|
||||
],
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
### Text Timestamped Format (`text-timestamped`)
|
||||
|
||||
**Use case:** Transcript with timing information for navigation or reference.
|
||||
|
||||
**Format:** `[MM:SS]` timestamp prefix before each speaker and dialogue.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
[00:00] John Smith: Hello everyone
|
||||
[00:05] Jane Doe: Hi there
|
||||
[00:12] John Smith: How are you today?
|
||||
```
|
||||
|
||||
**Request:**
|
||||
```bash
|
||||
GET /v1/transcripts/{id}?transcript_format=text-timestamped
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "transcript_123",
|
||||
"name": "Meeting Recording",
|
||||
"transcript_format": "text-timestamped",
|
||||
"transcript": "[00:00] John Smith: Hello everyone\n[00:05] Jane Doe: Hi there\n[00:12] John Smith: How are you today?",
|
||||
"participants": [
|
||||
{"id": "p1", "speaker": 0, "name": "John Smith"},
|
||||
{"id": "p2", "speaker": 1, "name": "Jane Doe"}
|
||||
],
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
### WebVTT Named Format (`webvtt-named`)
|
||||
|
||||
**Use case:** Subtitle files for video players, accessibility tools, or video editing.
|
||||
|
||||
**Format:** Standard WebVTT subtitle format with voice tags using participant names.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
WEBVTT
|
||||
|
||||
00:00:00.000 --> 00:00:05.000
|
||||
<v John Smith>Hello everyone
|
||||
|
||||
00:00:05.000 --> 00:00:12.000
|
||||
<v Jane Doe>Hi there
|
||||
|
||||
00:00:12.000 --> 00:00:18.000
|
||||
<v John Smith>How are you today?
|
||||
```
|
||||
|
||||
**Request:**
|
||||
```bash
|
||||
GET /v1/transcripts/{id}?transcript_format=webvtt-named
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "transcript_123",
|
||||
"name": "Meeting Recording",
|
||||
"transcript_format": "webvtt-named",
|
||||
"transcript": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v John Smith>Hello everyone\n\n...",
|
||||
"participants": [
|
||||
{"id": "p1", "speaker": 0, "name": "John Smith"},
|
||||
{"id": "p2", "speaker": 1, "name": "Jane Doe"}
|
||||
],
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
### JSON Format (`json`)
|
||||
|
||||
**Use case:** Programmatic access with full timing and speaker metadata.
|
||||
|
||||
**Format:** Array of segment objects with speaker information, text content, and precise timing.
|
||||
|
||||
**Example:**
|
||||
```json
|
||||
[
|
||||
{
|
||||
"speaker": 0,
|
||||
"speaker_name": "John Smith",
|
||||
"text": "Hello everyone",
|
||||
"start": 0.0,
|
||||
"end": 5.0
|
||||
},
|
||||
{
|
||||
"speaker": 1,
|
||||
"speaker_name": "Jane Doe",
|
||||
"text": "Hi there",
|
||||
"start": 5.0,
|
||||
"end": 12.0
|
||||
},
|
||||
{
|
||||
"speaker": 0,
|
||||
"speaker_name": "John Smith",
|
||||
"text": "How are you today?",
|
||||
"start": 12.0,
|
||||
"end": 18.0
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
**Request:**
|
||||
```bash
|
||||
GET /v1/transcripts/{id}?transcript_format=json
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "transcript_123",
|
||||
"name": "Meeting Recording",
|
||||
"transcript_format": "json",
|
||||
"transcript": [
|
||||
{
|
||||
"speaker": 0,
|
||||
"speaker_name": "John Smith",
|
||||
"text": "Hello everyone",
|
||||
"start": 0.0,
|
||||
"end": 5.0
|
||||
},
|
||||
{
|
||||
"speaker": 1,
|
||||
"speaker_name": "Jane Doe",
|
||||
"text": "Hi there",
|
||||
"start": 5.0,
|
||||
"end": 12.0
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{"id": "p1", "speaker": 0, "name": "John Smith"},
|
||||
{"id": "p2", "speaker": 1, "name": "Jane Doe"}
|
||||
],
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
## Response Structure
|
||||
|
||||
All formats return the same base transcript metadata with an additional `transcript_format` field and format-specific `transcript` field:
|
||||
|
||||
### Common Fields
|
||||
|
||||
- `id`: Transcript identifier
|
||||
- `user_id`: Owner user ID (if authenticated)
|
||||
- `name`: Transcript name
|
||||
- `status`: Processing status
|
||||
- `locked`: Whether transcript is locked for editing
|
||||
- `duration`: Total duration in seconds
|
||||
- `title`: Auto-generated or custom title
|
||||
- `short_summary`: Brief summary
|
||||
- `long_summary`: Detailed summary
|
||||
- `created_at`: Creation timestamp
|
||||
- `share_mode`: Access control setting
|
||||
- `source_language`: Original audio language
|
||||
- `target_language`: Translation target language
|
||||
- `reviewed`: Whether transcript has been reviewed
|
||||
- `meeting_id`: Associated meeting ID (if applicable)
|
||||
- `source_kind`: Source type (live, file, room)
|
||||
- `room_id`: Associated room ID (if applicable)
|
||||
- `audio_deleted`: Whether audio has been deleted
|
||||
- `participants`: Array of participant objects with speaker mappings
|
||||
|
||||
### Format-Specific Fields
|
||||
|
||||
- `transcript_format`: The format identifier (discriminator field)
|
||||
- `transcript`: The formatted transcript content (string for text/webvtt formats, array for json format)
|
||||
|
||||
## Speaker Name Resolution
|
||||
|
||||
All formats resolve speaker IDs to participant names when available:
|
||||
|
||||
- If a participant exists for the speaker ID, their name is used
|
||||
- If no participant exists, a default name like "Speaker 0" is generated
|
||||
- Speaker IDs are integers (0, 1, 2, etc.) assigned during diarization
|
||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
.env.*
|
||||
*.env
|
||||
*.secret
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Modal local state (if any)
|
||||
modal_mounts/
|
||||
.modal_cache/
|
||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
@@ -3,7 +3,7 @@ import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
@@ -14,10 +14,7 @@ SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"max_segment_duration": 30.0,
|
||||
"batch_max_files": 10,
|
||||
"batch_max_duration": 5.0,
|
||||
"min_segment_duration": 0.02,
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
@@ -25,6 +22,37 @@ VAD_CONFIG = {
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
@@ -49,13 +77,13 @@ image = (
|
||||
.pip_install(
|
||||
"hf_transfer==0.1.9",
|
||||
"huggingface_hub[hf-xet]==0.31.2",
|
||||
"nemo_toolkit[asr]==2.3.0",
|
||||
"nemo_toolkit[asr]==2.5.0",
|
||||
"cuda-python==12.8.0",
|
||||
"fastapi==0.115.12",
|
||||
"numpy<2",
|
||||
"librosa==0.10.1",
|
||||
"librosa==0.11.0",
|
||||
"requests",
|
||||
"silero-vad==5.1.0",
|
||||
"silero-vad==6.2.0",
|
||||
"torch",
|
||||
)
|
||||
.entrypoint([]) # silence chatty logs by container on start
|
||||
@@ -170,12 +198,14 @@ class TranscriberParakeetLive:
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -211,12 +241,12 @@ class TranscriberParakeetLive:
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -271,9 +301,12 @@ class TranscriberParakeetFile:
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(audio_array):
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
audio_duration = len(audio_array) / float(SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
start = None
|
||||
|
||||
@@ -297,107 +330,125 @@ class TranscriberParakeetFile:
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
# Extract the actual audio segment
|
||||
audio_segment = audio_array[start:end]
|
||||
|
||||
yield (start_time, end_time, audio_segment)
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
if start is not None:
|
||||
start_time = start / float(SAMPLERATE)
|
||||
yield TimeSegment(start_time, audio_duration)
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def vad_segment_filter(segments):
|
||||
"""Filter VAD segments by duration and chunk large segments"""
|
||||
min_dur = VAD_CONFIG["min_segment_duration"]
|
||||
max_dur = VAD_CONFIG["max_segment_duration"]
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
↓ (max_duration=10)
|
||||
|
||||
# Skip very small segments
|
||||
if segment_duration < min_dur:
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# If segment is within max duration, yield as-is
|
||||
if segment_duration <= max_dur:
|
||||
yield (start_time, end_time, audio_segment)
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# Chunk large segments into smaller pieces
|
||||
chunk_samples = int(max_dur * SAMPLERATE)
|
||||
current_start = start_time
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
for chunk_offset in range(0, len(audio_segment), chunk_samples):
|
||||
chunk_audio = audio_segment[
|
||||
chunk_offset : chunk_offset + chunk_samples
|
||||
]
|
||||
if len(chunk_audio) == 0:
|
||||
break
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
chunk_duration = len(chunk_audio) / float(SAMPLERATE)
|
||||
chunk_end = current_start + chunk_duration
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
# Only yield chunks that meet minimum duration
|
||||
if chunk_duration >= min_dur:
|
||||
yield (current_start, chunk_end, chunk_audio)
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
current_start = chunk_end
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
def batch_segments(segments, max_files=10, max_duration=5.0):
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
if segment_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(
|
||||
(VAD_CONFIG["silence_padding"] - segment_duration) * SAMPLERATE
|
||||
)
|
||||
padding = np.zeros(silence_samples, dtype=np.float32)
|
||||
audio_segment = np.concatenate([audio_segment, padding])
|
||||
segment_duration = VAD_CONFIG["silence_padding"]
|
||||
|
||||
batch.append((start_time, end_time, audio_segment))
|
||||
batch_duration += segment_duration
|
||||
|
||||
if len(batch) >= max_files or batch_duration >= max_duration:
|
||||
yield batch
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
|
||||
if batch:
|
||||
yield batch
|
||||
|
||||
def transcribe_batch(model, audio_segments):
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results,
|
||||
segments_info,
|
||||
batch_index,
|
||||
total_batches,
|
||||
):
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, (start_time, end_time, _)) in enumerate(
|
||||
zip(results, segments_info)
|
||||
):
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
"end": round(
|
||||
word_info["end"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
}
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield text, words
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
@@ -407,41 +458,31 @@ class TranscriberParakeetFile:
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
processed_duration = 0.0
|
||||
|
||||
all_text_parts = []
|
||||
all_words = []
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
filtered_segments = vad_segment_filter(raw_segments)
|
||||
batches = batch_segments(
|
||||
filtered_segments,
|
||||
VAD_CONFIG["batch_max_files"],
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
batch_index = 0
|
||||
total_batches = max(
|
||||
1, int(total_duration / VAD_CONFIG["batch_max_duration"]) + 1
|
||||
)
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for batch in batches:
|
||||
batch_index += 1
|
||||
audio_segments = [seg[2] for seg in batch]
|
||||
results = transcribe_batch(self.model, audio_segments)
|
||||
|
||||
for text, words in emit_results(
|
||||
for result in emit_results(
|
||||
results,
|
||||
batch,
|
||||
batch_index,
|
||||
total_batches,
|
||||
[batch],
|
||||
):
|
||||
if not text:
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(text)
|
||||
all_words.extend(words)
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
processed_duration += sum(len(seg[2]) / float(SAMPLERATE) for seg in batch)
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
REFLECTOR_GPU_APIKEY=
|
||||
HF_TOKEN=
|
||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
cache/
|
||||
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
*.env
|
||||
*.secret
|
||||
HF_TOKEN
|
||||
REFLECTOR_GPU_APIKEY
|
||||
|
||||
# Virtual env / uv
|
||||
.venv/
|
||||
venv/
|
||||
ENV/
|
||||
uv/
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
ffmpeg \
|
||||
curl \
|
||||
ca-certificates \
|
||||
gnupg \
|
||||
wget \
|
||||
&& apt-get clean
|
||||
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||
RUN dpkg -i /cuda-keyring.deb \
|
||||
&& rm /cuda-keyring.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-12-6 \
|
||||
libcublas-12-6 \
|
||||
libcudnn9-cuda-12 \
|
||||
libcudnn9-dev-cuda-12 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
|
||||
|
||||
COPY ./app /app/app
|
||||
COPY ./main.py /app/
|
||||
COPY ./runserver.sh /app/
|
||||
|
||||
EXPOSE 8000
|
||||
|
||||
CMD ["sh", "/app/runserver.sh"]
|
||||
|
||||
|
||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Self-hosted Model API
|
||||
|
||||
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||
|
||||
Environment variables
|
||||
|
||||
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||
|
||||
Requirements
|
||||
|
||||
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||
- Python 3.12+
|
||||
- NVIDIA GPU optional. If available, it will be used automatically
|
||||
|
||||
Local run
|
||||
Set env vars in self_hosted/.env file
|
||||
uv sync
|
||||
|
||||
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
Authentication
|
||||
|
||||
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||
|
||||
Endpoints
|
||||
|
||||
- POST /v1/audio/transcriptions
|
||||
|
||||
- multipart/form-data
|
||||
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||
- response: single { text, words, filename } or { results: [ ... ] }
|
||||
|
||||
- POST /v1/audio/transcriptions-from-url
|
||||
|
||||
- application/json
|
||||
- body: { audio_file_url, language, timestamp_offset }
|
||||
- response: { text, words }
|
||||
|
||||
- POST /translate
|
||||
|
||||
- text: query parameter
|
||||
- body (application/json): { source_language, target_language }
|
||||
- response: { text: { <src>: original, <tgt>: translated } }
|
||||
|
||||
- POST /diarize
|
||||
- query parameters: audio_file_url, timestamp (optional)
|
||||
- requires HF_TOKEN to be set (for pyannote)
|
||||
- response: { diarization: [ { start, end, speaker } ] }
|
||||
|
||||
OpenAPI docs
|
||||
|
||||
- Visit /docs when the server is running
|
||||
|
||||
Docker
|
||||
|
||||
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||
|
||||
Conformance tests
|
||||
|
||||
# From this directory
|
||||
|
||||
TRANSCRIPT_URL=http://localhost:8000 \
|
||||
TRANSCRIPT_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||
|
||||
TRANSLATION_URL=http://localhost:8000 \
|
||||
TRANSLATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||
|
||||
DIARIZATION_URL=http://localhost:8000 \
|
||||
DIARIZATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
from fastapi import Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||
if not required_key:
|
||||
return
|
||||
if apikey == required_key:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLE_RATE = 16000
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
# App-level paths
|
||||
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from fastapi import FastAPI
|
||||
|
||||
from .routers.diarization import router as diarization_router
|
||||
from .routers.transcription import router as transcription_router
|
||||
from .routers.translation import router as translation_router
|
||||
from .services.transcriber import WhisperService
|
||||
from .services.diarizer import PyannoteDiarizationService
|
||||
from .utils import ensure_dirs
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
ensure_dirs()
|
||||
whisper_service = WhisperService()
|
||||
whisper_service.load()
|
||||
app.state.whisper = whisper_service
|
||||
diarization_service = PyannoteDiarizationService()
|
||||
diarization_service.load()
|
||||
app.state.diarizer = diarization_service
|
||||
yield
|
||||
|
||||
|
||||
def create_app() -> FastAPI:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(transcription_router)
|
||||
app.include_router(translation_router)
|
||||
app.include_router(diarization_router)
|
||||
return app
|
||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.diarizer import PyannoteDiarizationService
|
||||
from ..utils import download_audio_file
|
||||
|
||||
router = APIRouter(tags=["diarization"])
|
||||
|
||||
|
||||
class DiarizationSegment(BaseModel):
|
||||
start: float
|
||||
end: float
|
||||
speaker: int
|
||||
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
diarization: List[DiarizationSegment]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||
)
|
||||
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
from pathlib import Path
|
||||
from ..auth import apikey_auth
|
||||
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
from ..services.transcriber import MODEL_NAME
|
||||
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||
|
||||
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||
|
||||
|
||||
class WordTiming(BaseModel):
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class TranscriptResult(BaseModel):
|
||||
text: str
|
||||
words: list[WordTiming]
|
||||
filename: Optional[str] = None
|
||||
|
||||
|
||||
class TranscriptBatchResponse(BaseModel):
|
||||
results: list[TranscriptResult]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||
)
|
||||
def transcribe(
|
||||
request: Request,
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_paths: list[Path] = []
|
||||
with cleanup_uploaded_files(uploaded_paths):
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = UPLOADS_PATH / unique_filename
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_paths.append(file_path)
|
||||
|
||||
if batch and len(upload_files) > 1:
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions-from-url",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranscriptResult,
|
||||
)
|
||||
def transcribe_from_url(
|
||||
request: Request,
|
||||
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
result = service.transcribe_vad_url_segment(
|
||||
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||
)
|
||||
return result
|
||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from typing import Dict
|
||||
|
||||
from fastapi import APIRouter, Body, Depends
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.translator import TextTranslatorService
|
||||
|
||||
router = APIRouter(tags=["translation"])
|
||||
|
||||
translator = TextTranslatorService()
|
||||
|
||||
|
||||
class TranslationResponse(BaseModel):
|
||||
text: Dict[str, str]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/translate",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranslationResponse,
|
||||
)
|
||||
def translate(
|
||||
text: str,
|
||||
source_language: str = Body("en"),
|
||||
target_language: str = Body("fr"),
|
||||
):
|
||||
return translator.translate(text, source_language, target_language)
|
||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
|
||||
class PyannoteDiarizationService:
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._device = "cpu"
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self._pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||
)
|
||||
self._pipeline.to(torch.device(self._device))
|
||||
|
||||
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load()
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
with self._lock:
|
||||
diarization = self._pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:])
|
||||
if speaker and speaker[-2:].isdigit()
|
||||
else 0,
|
||||
}
|
||||
)
|
||||
return {"diarization": words}
|
||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import threading
|
||||
from typing import Generator
|
||||
|
||||
import faster_whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import HTTPException
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||
|
||||
# Whisper configuration (service-local defaults)
|
||||
MODEL_NAME = "large-v2"
|
||||
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||
MODEL_COMPUTE_TYPE = None
|
||||
MODEL_NUM_WORKERS = 1
|
||||
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||
from ..utils import NoStdStreams
|
||||
|
||||
|
||||
class WhisperService:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
self.device = "cpu"
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
compute_type = MODEL_COMPUTE_TYPE or (
|
||||
"float16" if self.device == "cuda" else "int8"
|
||||
)
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=compute_type,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
)
|
||||
|
||||
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
enforced: list[dict] = []
|
||||
for i, word in enumerate(words):
|
||||
current = dict(word)
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if current["end"] > next_start:
|
||||
current["end"] = next_start
|
||||
enforced.append(current)
|
||||
return enforced
|
||||
|
||||
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||
input_for_model: str | "object" = file_path
|
||||
try:
|
||||
audio_array, _sample_rate = librosa.load(
|
||||
file_path, sr=SAMPLE_RATE, mono=True
|
||||
)
|
||||
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
input_for_model,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
words = self.enforce_word_timing_constraints(words)
|
||||
return {"text": text, "words": words}
|
||||
|
||||
def transcribe_vad_url_segment(
|
||||
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
) -> dict:
|
||||
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||
cmd = [
|
||||
ffmpeg_bin,
|
||||
"-nostdin",
|
||||
"-threads",
|
||||
"1",
|
||||
"-i",
|
||||
input_path,
|
||||
"-f",
|
||||
"f32le",
|
||||
"-acodec",
|
||||
"pcm_f32le",
|
||||
"-ac",
|
||||
"1",
|
||||
"-ar",
|
||||
str(sample_rate),
|
||||
"pipe:1",
|
||||
]
|
||||
try:
|
||||
proc = subprocess.run(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||
return audio
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLE_RATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[tuple[float, float], None, None]:
|
||||
vad_model = load_silero_vad(onnx=False)
|
||||
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||
|
||||
merged_batches: list[tuple[float, float]] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for seg_start, seg_end in vad_segments(audio_array):
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
for start_time, end_time in merged_batches:
|
||||
s_idx = int(start_time * SAMPLE_RATE)
|
||||
e_idx = int(end_time * SAMPLE_RATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
all_words = self.enforce_word_timing_constraints(all_words)
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import threading
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||
|
||||
|
||||
class TextTranslatorService:
|
||||
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||
|
||||
This mirrors the modal translator API shape but uses text translation only.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||
model_name = self._resolve_model_name(source_language, target_language)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||
|
||||
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||
# Minimal mapping; extend as needed
|
||||
pair = (src.lower(), tgt.lower())
|
||||
mapping = {
|
||||
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||
}
|
||||
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||
|
||||
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load(source_language, target_language)
|
||||
with self._lock:
|
||||
results = self._pipeline(
|
||||
text, src_lang=source_language, tgt_lang=target_language
|
||||
)
|
||||
translated = results[0]["translation_text"] if results else ""
|
||||
return {"text": {source_language: text, target_language: translated}}
|
||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Mapping
|
||||
from urllib.parse import urlparse
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
|
||||
def ensure_dirs():
|
||||
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path: Path = UPLOADS_PATH / unique_filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
return file_path, audio_suffix
|
||||
|
||||
|
||||
@contextmanager
|
||||
def download_audio_file(audio_file_url: str):
|
||||
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||
|
||||
Yields (file_path: Path, audio_suffix: str).
|
||||
"""
|
||||
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||
try:
|
||||
yield file_path, audio_suffix
|
||||
finally:
|
||||
try:
|
||||
file_path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||
"""Ensure provided file paths are removed after use.
|
||||
|
||||
The provided list can be populated inside the context; all present entries
|
||||
at exit will be deleted.
|
||||
"""
|
||||
try:
|
||||
yield file_paths
|
||||
finally:
|
||||
for path in list(file_paths):
|
||||
try:
|
||||
path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
services:
|
||||
reflector_gpu:
|
||||
build:
|
||||
context: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./cache:/root/.cache
|
||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from app.factory import create_app
|
||||
|
||||
app = create_app()
|
||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[project]
|
||||
name = "reflector-gpu"
|
||||
version = "0.1.0"
|
||||
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"fastapi[standard]>=0.116.1",
|
||||
"uvicorn[standard]>=0.30.0",
|
||||
"torch>=2.3.0",
|
||||
"faster-whisper>=1.1.0",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
"transformers>=4.35.0",
|
||||
"sentencepiece",
|
||||
"pyannote.audio==3.1.0",
|
||||
"torchaudio>=2.3.0",
|
||||
]
|
||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/sh
|
||||
set -e
|
||||
|
||||
export PATH="/root/.local/bin:$PATH"
|
||||
cd /app
|
||||
|
||||
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||
echo "[startup] Installing Python dependencies with uv..."
|
||||
uv sync --compile-bytecode --locked
|
||||
else
|
||||
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||
fi
|
||||
|
||||
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
|
||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,3 +1,29 @@
|
||||
## API Key Management
|
||||
|
||||
### Finding Your User ID
|
||||
|
||||
```bash
|
||||
# Get your OAuth sub (user ID) - requires authentication
|
||||
curl -H "Authorization: Bearer <your_jwt>" http://localhost:1250/v1/me
|
||||
# Returns: {"sub": "your-oauth-sub-here", "email": "...", ...}
|
||||
```
|
||||
|
||||
### Creating API Keys
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:1250/v1/user/api-keys \
|
||||
-H "Authorization: Bearer <your_jwt>" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"name": "My API Key"}'
|
||||
```
|
||||
|
||||
### Using API Keys
|
||||
|
||||
```bash
|
||||
# Use X-API-Key header instead of Authorization
|
||||
curl -H "X-API-Key: <your_api_key>" http://localhost:1250/v1/transcripts
|
||||
```
|
||||
|
||||
## AWS S3/SQS usage clarification
|
||||
|
||||
Whereby.com uploads recordings directly to our S3 bucket when meetings end.
|
||||
|
||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||
```
|
||||
236
server/docs/video-platforms/README.md
Normal file
236
server/docs/video-platforms/README.md
Normal file
@@ -0,0 +1,236 @@
|
||||
# Reflector Architecture: Whereby + Daily.co Recording Storage
|
||||
|
||||
## System Overview
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
subgraph "Actors"
|
||||
APP[Our App<br/>Reflector]
|
||||
WHEREBY[Whereby Service<br/>External]
|
||||
DAILY[Daily.co Service<br/>External]
|
||||
end
|
||||
|
||||
subgraph "AWS S3 Buckets"
|
||||
TRANSCRIPT_BUCKET[Transcript Bucket<br/>reflector-transcripts<br/>Output: Processed MP3s]
|
||||
WHEREBY_BUCKET[Whereby Bucket<br/>reflector-whereby-recordings<br/>Input: Raw MP4s]
|
||||
DAILY_BUCKET[Daily.co Bucket<br/>reflector-dailyco-recordings<br/>Input: Raw WebM tracks]
|
||||
end
|
||||
|
||||
subgraph "AWS Infrastructure"
|
||||
SQS[SQS Queue<br/>Whereby notifications]
|
||||
end
|
||||
|
||||
subgraph "Database"
|
||||
DB[(PostgreSQL<br/>Recordings, Transcripts, Meetings)]
|
||||
end
|
||||
|
||||
APP -->|Write processed| TRANSCRIPT_BUCKET
|
||||
APP -->|Read/Delete| WHEREBY_BUCKET
|
||||
APP -->|Read/Delete| DAILY_BUCKET
|
||||
APP -->|Poll| SQS
|
||||
APP -->|Store metadata| DB
|
||||
|
||||
WHEREBY -->|Write recordings| WHEREBY_BUCKET
|
||||
WHEREBY_BUCKET -->|S3 Event| SQS
|
||||
WHEREBY -->|Participant webhooks<br/>room.client.joined/left| APP
|
||||
|
||||
DAILY -->|Write recordings| DAILY_BUCKET
|
||||
DAILY -->|Recording webhook<br/>recording.ready-to-download| APP
|
||||
```
|
||||
|
||||
**Note on Webhook vs S3 Event for Recording Processing:**
|
||||
- **Whereby**: Uses S3 Events → SQS for recording availability (S3 as source of truth, no race conditions)
|
||||
- **Daily.co**: Uses webhooks for recording availability (more immediate, built-in reliability)
|
||||
- **Both**: Use webhooks for participant tracking (real-time updates)
|
||||
|
||||
## Credentials & Permissions
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
subgraph "Master Credentials"
|
||||
MASTER[TRANSCRIPT_STORAGE_AWS_*<br/>Access Key ID + Secret]
|
||||
end
|
||||
|
||||
subgraph "Whereby Upload Credentials"
|
||||
WHEREBY_CREDS[AWS_WHEREBY_ACCESS_KEY_*<br/>Access Key ID + Secret]
|
||||
end
|
||||
|
||||
subgraph "Daily.co Upload Role"
|
||||
DAILY_ROLE[DAILY_STORAGE_AWS_ROLE_ARN<br/>IAM Role ARN]
|
||||
end
|
||||
|
||||
subgraph "Our App Uses"
|
||||
MASTER -->|Read/Write/Delete| TRANSCRIPT_BUCKET[Transcript Bucket]
|
||||
MASTER -->|Read/Delete| WHEREBY_BUCKET[Whereby Bucket]
|
||||
MASTER -->|Read/Delete| DAILY_BUCKET[Daily.co Bucket]
|
||||
MASTER -->|Poll/Delete| SQS[SQS Queue]
|
||||
end
|
||||
|
||||
subgraph "We Give To Services"
|
||||
WHEREBY_CREDS -->|Passed in API call| WHEREBY_SERVICE[Whereby Service]
|
||||
WHEREBY_SERVICE -->|Write Only| WHEREBY_BUCKET
|
||||
|
||||
DAILY_ROLE -->|Passed in API call| DAILY_SERVICE[Daily.co Service]
|
||||
DAILY_SERVICE -->|Assume Role| DAILY_ROLE
|
||||
DAILY_SERVICE -->|Write Only| DAILY_BUCKET
|
||||
end
|
||||
```
|
||||
|
||||
# Video Platform Recording Integration
|
||||
|
||||
This document explains how Reflector receives and identifies multitrack audio recordings from different video platforms.
|
||||
|
||||
## Platform Comparison
|
||||
|
||||
| Platform | Delivery Method | Track Identification |
|
||||
|----------|----------------|---------------------|
|
||||
| **Daily.co** | Webhook | Explicit track list in payload |
|
||||
| **Whereby** | SQS (S3 notifications) | Single file per notification |
|
||||
|
||||
---
|
||||
|
||||
## Daily.co
|
||||
|
||||
**Note:** Primary discovery via polling (`poll_daily_recordings`), webhooks as backup.
|
||||
|
||||
Daily.co uses **webhooks** to notify Reflector when recordings are ready.
|
||||
|
||||
### How It Works
|
||||
|
||||
1. **Daily.co sends webhook** when recording is ready
|
||||
- Event type: `recording.ready-to-download`
|
||||
- Endpoint: `/v1/daily/webhook` (`reflector/views/daily.py:46-102`)
|
||||
|
||||
2. **Webhook payload explicitly includes track list**:
|
||||
```json
|
||||
{
|
||||
"recording_id": "7443ee0a-dab1-40eb-b316-33d6c0d5ff88",
|
||||
"room_name": "daily-20251020193458",
|
||||
"tracks": [
|
||||
{
|
||||
"type": "audio",
|
||||
"s3Key": "monadical/daily-20251020193458/1760988935484-52f7f48b-fbab-431f-9a50-87b9abfc8255-cam-audio-1760988935922",
|
||||
"size": 831843
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"s3Key": "monadical/daily-20251020193458/1760988935484-a37c35e3-6f8e-4274-a482-e9d0f102a732-cam-audio-1760988943823",
|
||||
"size": 408438
|
||||
},
|
||||
{
|
||||
"type": "video",
|
||||
"s3Key": "monadical/daily-20251020193458/...-video.webm",
|
||||
"size": 30000000
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
3. **System extracts audio tracks** (`daily.py:211`):
|
||||
```python
|
||||
track_keys = [t.s3Key for t in tracks if t.type == "audio"]
|
||||
```
|
||||
|
||||
4. **Triggers multitrack processing** (`daily.py:213-218`):
|
||||
```python
|
||||
process_multitrack_recording.delay(
|
||||
bucket_name=bucket_name, # reflector-dailyco-local
|
||||
room_name=room_name, # daily-20251020193458
|
||||
recording_id=recording_id, # 7443ee0a-dab1-40eb-b316-33d6c0d5ff88
|
||||
track_keys=track_keys # Only audio s3Keys
|
||||
)
|
||||
```
|
||||
|
||||
### Key Advantage: No Ambiguity
|
||||
|
||||
Even though multiple meetings may share the same S3 bucket/folder (`monadical/`), **there's no ambiguity** because:
|
||||
- Each webhook payload contains the exact `s3Key` list for that specific `recording_id`
|
||||
- No need to scan folders or guess which files belong together
|
||||
- Each track's s3Key includes the room timestamp subfolder (e.g., `daily-20251020193458/`)
|
||||
|
||||
The room name includes timestamp (`daily-20251020193458`) to keep recordings organized, but **the webhook's explicit track list is what prevents mixing files from different meetings**.
|
||||
|
||||
### Track Timeline Extraction
|
||||
|
||||
Daily.co provides timing information in two places:
|
||||
|
||||
**1. PyAV WebM Metadata (current approach)**:
|
||||
```python
|
||||
# Read from WebM container stream metadata
|
||||
stream.start_time = 8.130s # Meeting-relative timing
|
||||
```
|
||||
|
||||
**2. Filename Timestamps (alternative approach, commit 3bae9076)**:
|
||||
```
|
||||
Filename format: {recording_start_ts}-{uuid}-cam-audio-{track_start_ts}.webm
|
||||
Example: 1760988935484-52f7f48b-fbab-431f-9a50-87b9abfc8255-cam-audio-1760988935922.webm
|
||||
|
||||
Parse timestamps:
|
||||
- recording_start_ts: 1760988935484 (Unix ms)
|
||||
- track_start_ts: 1760988935922 (Unix ms)
|
||||
- offset: (1760988935922 - 1760988935484) / 1000 = 0.438s
|
||||
```
|
||||
|
||||
**Time Difference (PyAV vs Filename)**:
|
||||
```
|
||||
Track 0:
|
||||
Filename offset: 438ms
|
||||
PyAV metadata: 229ms
|
||||
Difference: 209ms
|
||||
|
||||
Track 1:
|
||||
Filename offset: 8339ms
|
||||
PyAV metadata: 8130ms
|
||||
Difference: 209ms
|
||||
```
|
||||
|
||||
**Consistent 209ms delta** suggests network/encoding delay between file upload initiation (filename) and actual audio stream start (metadata).
|
||||
|
||||
**Current implementation uses PyAV metadata** because:
|
||||
- More accurate (represents when audio actually started)
|
||||
- Padding BEFORE transcription produces correct Whisper timestamps automatically
|
||||
- No manual offset adjustment needed during transcript merge
|
||||
|
||||
### Why Re-encoding During Padding
|
||||
|
||||
Padding coincidentally involves re-encoding, which is important for Daily.co + Whisper:
|
||||
|
||||
**Problem:** Daily.co skips frames in recordings when microphone is muted or paused
|
||||
- WebM containers have gaps where audio frames should be
|
||||
- Whisper doesn't understand these gaps and produces incorrect timestamps
|
||||
- Example: 5s of audio with 2s muted → file has frames only for 3s, Whisper thinks duration is 3s
|
||||
|
||||
**Solution:** Re-encoding via PyAV filter graph (`adelay` + `aresample`)
|
||||
- Restores missing frames as silence
|
||||
- Produces continuous audio stream without gaps
|
||||
- Whisper now sees correct duration and produces accurate timestamps
|
||||
|
||||
**Why combined with padding:**
|
||||
- Already re-encoding for padding (adding initial silence)
|
||||
- More performant to do both operations in single PyAV pipeline
|
||||
- Padded values needed for mixdown anyway (creating final MP3)
|
||||
|
||||
Implementation: `main_multitrack_pipeline.py:_apply_audio_padding_streaming()`
|
||||
|
||||
---
|
||||
|
||||
## Whereby (SQS-based)
|
||||
|
||||
Whereby uses **AWS SQS** (via S3 notifications) to notify Reflector when files are uploaded.
|
||||
|
||||
### How It Works
|
||||
|
||||
1. **Whereby uploads recording** to S3
|
||||
2. **S3 sends notification** to SQS queue (one notification per file)
|
||||
3. **Reflector polls SQS queue** (`worker/process.py:process_messages()`)
|
||||
4. **System processes single file** (`worker/process.py:process_recording()`)
|
||||
|
||||
### Key Difference from Daily.co
|
||||
|
||||
**Whereby (SQS):** System receives S3 notification "file X was created" - only knows about one file at a time, would need to scan folder to find related files
|
||||
|
||||
**Daily.co (Webhook):** Daily explicitly tells system which files belong together in the webhook payload
|
||||
|
||||
---
|
||||
|
||||
|
||||
233
server/docs/webhook.md
Normal file
233
server/docs/webhook.md
Normal file
@@ -0,0 +1,233 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, topic detection and calendar event integration.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
},
|
||||
"calendar_event": {
|
||||
"id": "calendar-event-123",
|
||||
"ics_uid": "event-123",
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"start_time": "2025-08-27T12:00:00Z",
|
||||
"end_time": "2025-08-27T12:30:00Z",
|
||||
"description": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"location": "Conference Room 1",
|
||||
"attendees": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -27,7 +27,7 @@ AUTH_JWT_AUDIENCE=
|
||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=
|
||||
|
||||
## =======================================================
|
||||
@@ -71,3 +71,30 @@ DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
|
||||
|
||||
## Sentry DSN configuration
|
||||
#SENTRY_DSN=
|
||||
|
||||
## =======================================================
|
||||
## Video Platform Configuration
|
||||
## =======================================================
|
||||
|
||||
## Whereby
|
||||
#WHEREBY_API_KEY=your-whereby-api-key
|
||||
#WHEREBY_WEBHOOK_SECRET=your-whereby-webhook-secret
|
||||
#WHEREBY_STORAGE_AWS_ACCESS_KEY_ID=your-aws-key
|
||||
#WHEREBY_STORAGE_AWS_SECRET_ACCESS_KEY=your-aws-secret
|
||||
#AWS_PROCESS_RECORDING_QUEUE_URL=https://sqs.us-west-2.amazonaws.com/...
|
||||
|
||||
## Daily.co
|
||||
#DAILY_API_KEY=your-daily-api-key
|
||||
#DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
|
||||
#DAILY_SUBDOMAIN=your-subdomain
|
||||
#DAILY_WEBHOOK_UUID= # Auto-populated by recreate_daily_webhook.py script
|
||||
#DAILYCO_STORAGE_AWS_ROLE_ARN=... # IAM role ARN for Daily.co S3 access
|
||||
#DAILYCO_STORAGE_AWS_BUCKET_NAME=reflector-dailyco
|
||||
#DAILYCO_STORAGE_AWS_REGION=us-west-2
|
||||
|
||||
## Whereby (optional separate bucket)
|
||||
#WHEREBY_STORAGE_AWS_BUCKET_NAME=reflector-whereby
|
||||
#WHEREBY_STORAGE_AWS_REGION=us-east-1
|
||||
|
||||
## Platform Configuration
|
||||
#DEFAULT_VIDEO_PLATFORM=whereby # Default platform for new rooms
|
||||
|
||||
@@ -1,161 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
|
||||
volume.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,36 @@
|
||||
"""remove user_id from meeting table
|
||||
|
||||
Revision ID: 0ce521cda2ee
|
||||
Revises: 6dec9fb5b46c
|
||||
Create Date: 2025-09-10 12:40:55.688899
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ce521cda2ee"
|
||||
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("user_id")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add_platform_support
|
||||
|
||||
Revision ID: 1e49625677e4
|
||||
Revises: 9e3f7b2a4c8e
|
||||
Create Date: 2025-10-08 13:17:29.943612
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "1e49625677e4"
|
||||
down_revision: Union[str, None] = "9e3f7b2a4c8e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Add platform field with default 'whereby' for backward compatibility."""
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String(),
|
||||
nullable=True,
|
||||
server_default=None,
|
||||
)
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String(),
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Remove platform field."""
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("platform")
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("platform")
|
||||
@@ -0,0 +1,32 @@
|
||||
"""clean up orphaned room_id references in meeting table
|
||||
|
||||
Revision ID: 2ae3db106d4e
|
||||
Revises: def1b5867d4c
|
||||
Create Date: 2025-09-11 10:35:15.759967
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2ae3db106d4e"
|
||||
down_revision: Union[str, None] = "def1b5867d4c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||
op.execute("""
|
||||
UPDATE meeting
|
||||
SET room_id = NULL
|
||||
WHERE room_id IS NOT NULL
|
||||
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||
""")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore orphaned references - no operation needed
|
||||
pass
|
||||
@@ -0,0 +1,79 @@
|
||||
"""add daily participant session table with immutable left_at
|
||||
|
||||
Revision ID: 2b92a1b03caa
|
||||
Revises: f8294b31f022
|
||||
Create Date: 2025-11-13 20:29:30.486577
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2b92a1b03caa"
|
||||
down_revision: Union[str, None] = "f8294b31f022"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Create table
|
||||
op.create_table(
|
||||
"daily_participant_session",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("meeting_id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("session_id", sa.String(), nullable=False),
|
||||
sa.Column("user_id", sa.String(), nullable=True),
|
||||
sa.Column("user_name", sa.String(), nullable=False),
|
||||
sa.Column("joined_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("left_at", sa.DateTime(timezone=True), nullable=True),
|
||||
sa.ForeignKeyConstraint(["meeting_id"], ["meeting.id"], ondelete="CASCADE"),
|
||||
sa.ForeignKeyConstraint(["room_id"], ["room.id"], ondelete="CASCADE"),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
with op.batch_alter_table("daily_participant_session", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_daily_session_meeting_left", ["meeting_id", "left_at"], unique=False
|
||||
)
|
||||
batch_op.create_index("idx_daily_session_room", ["room_id"], unique=False)
|
||||
|
||||
# Create trigger function to prevent left_at from being updated once set
|
||||
op.execute("""
|
||||
CREATE OR REPLACE FUNCTION prevent_left_at_update()
|
||||
RETURNS TRIGGER AS $$
|
||||
BEGIN
|
||||
IF OLD.left_at IS NOT NULL THEN
|
||||
RAISE EXCEPTION 'left_at is immutable once set';
|
||||
END IF;
|
||||
RETURN NEW;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
""")
|
||||
|
||||
# Create trigger
|
||||
op.execute("""
|
||||
CREATE TRIGGER prevent_left_at_update_trigger
|
||||
BEFORE UPDATE ON daily_participant_session
|
||||
FOR EACH ROW
|
||||
EXECUTE FUNCTION prevent_left_at_update();
|
||||
""")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop trigger
|
||||
op.execute(
|
||||
"DROP TRIGGER IF EXISTS prevent_left_at_update_trigger ON daily_participant_session;"
|
||||
)
|
||||
|
||||
# Drop trigger function
|
||||
op.execute("DROP FUNCTION IF EXISTS prevent_left_at_update();")
|
||||
|
||||
# Drop indexes and table
|
||||
with op.batch_alter_table("daily_participant_session", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_daily_session_room")
|
||||
batch_op.drop_index("idx_daily_session_meeting_left")
|
||||
|
||||
op.drop_table("daily_participant_session")
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,30 @@
|
||||
"""Make room platform non-nullable with dynamic default
|
||||
|
||||
Revision ID: 5d6b9df9b045
|
||||
Revises: 2b92a1b03caa
|
||||
Create Date: 2025-11-21 13:22:25.756584
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5d6b9df9b045"
|
||||
down_revision: Union[str, None] = "2b92a1b03caa"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute("UPDATE room SET platform = 'whereby' WHERE platform IS NULL")
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column("platform", existing_type=sa.String(), nullable=False)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column("platform", existing_type=sa.String(), nullable=True)
|
||||
@@ -0,0 +1,53 @@
|
||||
"""remove_one_active_meeting_per_room_constraint
|
||||
|
||||
Revision ID: 6025e9b2bef2
|
||||
Revises: 2ae3db106d4e
|
||||
Create Date: 2025-08-18 18:45:44.418392
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6025e9b2bef2"
|
||||
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove the unique constraint that prevents multiple active meetings per room
|
||||
# This is needed to support calendar integration with overlapping meetings
|
||||
# Check if index exists before trying to drop it
|
||||
from alembic import context
|
||||
|
||||
if context.get_context().dialect.name == "postgresql":
|
||||
conn = op.get_bind()
|
||||
result = conn.execute(
|
||||
sa.text(
|
||||
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||
)
|
||||
)
|
||||
if result.fetchone():
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
else:
|
||||
# For SQLite, just try to drop it
|
||||
try:
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the unique constraint
|
||||
op.create_index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"meeting",
|
||||
["room_id"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,35 @@
|
||||
"""make meeting room_id required and add foreign key
|
||||
|
||||
Revision ID: 6dec9fb5b46c
|
||||
Revises: 61882a919591
|
||||
Create Date: 2025-09-10 10:47:06.006819
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6dec9fb5b46c"
|
||||
down_revision: Union[str, None] = "61882a919591"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_foreign_key(
|
||||
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
38
server/migrations/versions/9e3f7b2a4c8e_add_user_api_keys.py
Normal file
38
server/migrations/versions/9e3f7b2a4c8e_add_user_api_keys.py
Normal file
@@ -0,0 +1,38 @@
|
||||
"""add user api keys
|
||||
|
||||
Revision ID: 9e3f7b2a4c8e
|
||||
Revises: dc035ff72fd5
|
||||
Create Date: 2025-10-17 00:00:00.000000
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "9e3f7b2a4c8e"
|
||||
down_revision: Union[str, None] = "dc035ff72fd5"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"user_api_key",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("user_id", sa.String(), nullable=False),
|
||||
sa.Column("key_hash", sa.String(), nullable=False),
|
||||
sa.Column("name", sa.String(), nullable=True),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
with op.batch_alter_table("user_api_key", schema=None) as batch_op:
|
||||
batch_op.create_index("idx_user_api_key_hash", ["key_hash"], unique=True)
|
||||
batch_op.create_index("idx_user_api_key_user_id", ["user_id"], unique=False)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("user_api_key")
|
||||
38
server/migrations/versions/bbafedfa510c_add_user_table.py
Normal file
38
server/migrations/versions/bbafedfa510c_add_user_table.py
Normal file
@@ -0,0 +1,38 @@
|
||||
"""add user table
|
||||
|
||||
Revision ID: bbafedfa510c
|
||||
Revises: 5d6b9df9b045
|
||||
Create Date: 2025-11-19 21:06:30.543262
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "bbafedfa510c"
|
||||
down_revision: Union[str, None] = "5d6b9df9b045"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"user",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("email", sa.String(), nullable=False),
|
||||
sa.Column("authentik_uid", sa.String(), nullable=False),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
with op.batch_alter_table("user", schema=None) as batch_op:
|
||||
batch_op.create_index("idx_user_authentik_uid", ["authentik_uid"], unique=True)
|
||||
batch_op.create_index("idx_user_email", ["email"], unique=False)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("user")
|
||||
@@ -0,0 +1,34 @@
|
||||
"""add_grace_period_fields_to_meeting
|
||||
|
||||
Revision ID: d4a1c446458c
|
||||
Revises: 6025e9b2bef2
|
||||
Create Date: 2025-08-18 18:50:37.768052
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d4a1c446458c"
|
||||
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add fields to track when participants left for grace period logic
|
||||
op.add_column(
|
||||
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""add calendar
|
||||
|
||||
Revision ID: d8e204bbf615
|
||||
Revises: d4a1c446458c
|
||||
Create Date: 2025-09-10 19:56:22.295756
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d8e204bbf615"
|
||||
down_revision: Union[str, None] = "d4a1c446458c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table(
|
||||
"calendar_event",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||
sa.Column("title", sa.Text(), nullable=True),
|
||||
sa.Column("description", sa.Text(), nullable=True),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.Column("location", sa.Text(), nullable=True),
|
||||
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["room_id"],
|
||||
["room.id"],
|
||||
name="fk_calendar_event_room_id",
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
)
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_deleted",
|
||||
["is_deleted"],
|
||||
unique=False,
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"calendar_metadata",
|
||||
postgresql.JSONB(astext_type=sa.Text()),
|
||||
nullable=True,
|
||||
)
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
"fk_meeting_calendar_event_id",
|
||||
"calendar_event",
|
||||
["calendar_event_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_enabled",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_room_ics_enabled")
|
||||
batch_op.drop_column("ics_last_etag")
|
||||
batch_op.drop_column("ics_last_sync")
|
||||
batch_op.drop_column("ics_enabled")
|
||||
batch_op.drop_column("ics_fetch_interval")
|
||||
batch_op.drop_column("ics_url")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||
batch_op.drop_index("idx_meeting_calendar_event")
|
||||
batch_op.drop_column("calendar_metadata")
|
||||
batch_op.drop_column("calendar_event_id")
|
||||
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_calendar_event_room_start")
|
||||
batch_op.drop_index(
|
||||
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||
)
|
||||
|
||||
op.drop_table("calendar_event")
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,43 @@
|
||||
"""remove_grace_period_fields
|
||||
|
||||
Revision ID: dc035ff72fd5
|
||||
Revises: d8e204bbf615
|
||||
Create Date: 2025-09-11 10:36:45.197588
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "dc035ff72fd5"
|
||||
down_revision: Union[str, None] = "d8e204bbf615"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove grace period columns from meeting table
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Add back grace period columns to meeting table
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"grace_period_minutes",
|
||||
sa.Integer(),
|
||||
server_default=sa.text("15"),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""make meeting room_id nullable but keep foreign key
|
||||
|
||||
Revision ID: def1b5867d4c
|
||||
Revises: 0ce521cda2ee
|
||||
Create Date: 2025-09-11 09:42:18.697264
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "def1b5867d4c"
|
||||
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
28
server/migrations/versions/f8294b31f022_add_track_keys.py
Normal file
28
server/migrations/versions/f8294b31f022_add_track_keys.py
Normal file
@@ -0,0 +1,28 @@
|
||||
"""add_track_keys
|
||||
|
||||
Revision ID: f8294b31f022
|
||||
Revises: 1e49625677e4
|
||||
Create Date: 2025-10-27 18:52:17.589167
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "f8294b31f022"
|
||||
down_revision: Union[str, None] = "1e49625677e4"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("track_keys", sa.JSON(), nullable=True))
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.drop_column("track_keys")
|
||||
@@ -12,7 +12,6 @@ dependencies = [
|
||||
"requests>=2.31.0",
|
||||
"aiortc>=1.5.0",
|
||||
"sortedcontainers>=2.4.0",
|
||||
"loguru>=0.7.0",
|
||||
"pydantic-settings>=2.0.2",
|
||||
"structlog>=23.1.0",
|
||||
"uvicorn[standard]>=0.23.1",
|
||||
@@ -27,7 +26,6 @@ dependencies = [
|
||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||
"sentencepiece>=0.1.99",
|
||||
"protobuf>=4.24.3",
|
||||
"profanityfilter>=2.0.6",
|
||||
"celery>=5.3.4",
|
||||
"redis>=5.0.1",
|
||||
"python-jose[cryptography]>=3.3.0",
|
||||
@@ -40,6 +38,7 @@ dependencies = [
|
||||
"llama-index-llms-openai-like>=0.4.0",
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -113,13 +112,14 @@ source = ["reflector"]
|
||||
[tool.pytest_env]
|
||||
ENVIRONMENT = "pytest"
|
||||
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
|
||||
AUTH_BACKEND = "jwt"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||
testpaths = ["tests"]
|
||||
asyncio_mode = "auto"
|
||||
markers = [
|
||||
"gpu_modal: mark test to run only with GPU Modal endpoints (deselect with '-m \"not gpu_modal\"')",
|
||||
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||
]
|
||||
|
||||
[tool.ruff.lint]
|
||||
@@ -131,7 +131,7 @@ select = [
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||
"gpu/**.py" = ["PLC0415"]
|
||||
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||
"reflector/tools/**.py" = ["PLC0415"]
|
||||
"migrations/versions/**.py" = ["PLC0415"]
|
||||
"tests/**.py" = ["PLC0415"]
|
||||
|
||||
@@ -12,6 +12,7 @@ from reflector.events import subscribers_shutdown, subscribers_startup
|
||||
from reflector.logger import logger
|
||||
from reflector.metrics import metrics_init
|
||||
from reflector.settings import settings
|
||||
from reflector.views.daily import router as daily_router
|
||||
from reflector.views.meetings import router as meetings_router
|
||||
from reflector.views.rooms import router as rooms_router
|
||||
from reflector.views.rtc_offer import router as rtc_offer_router
|
||||
@@ -26,6 +27,8 @@ from reflector.views.transcripts_upload import router as transcripts_upload_rout
|
||||
from reflector.views.transcripts_webrtc import router as transcripts_webrtc_router
|
||||
from reflector.views.transcripts_websocket import router as transcripts_websocket_router
|
||||
from reflector.views.user import router as user_router
|
||||
from reflector.views.user_api_keys import router as user_api_keys_router
|
||||
from reflector.views.user_websocket import router as user_ws_router
|
||||
from reflector.views.whereby import router as whereby_router
|
||||
from reflector.views.zulip import router as zulip_router
|
||||
|
||||
@@ -65,6 +68,12 @@ app.add_middleware(
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
# metrics
|
||||
instrumentator = Instrumentator(
|
||||
excluded_handlers=["/docs", "/metrics"],
|
||||
@@ -84,8 +93,11 @@ app.include_router(transcripts_websocket_router, prefix="/v1")
|
||||
app.include_router(transcripts_webrtc_router, prefix="/v1")
|
||||
app.include_router(transcripts_process_router, prefix="/v1")
|
||||
app.include_router(user_router, prefix="/v1")
|
||||
app.include_router(user_api_keys_router, prefix="/v1")
|
||||
app.include_router(user_ws_router, prefix="/v1")
|
||||
app.include_router(zulip_router, prefix="/v1")
|
||||
app.include_router(whereby_router, prefix="/v1")
|
||||
app.include_router(daily_router, prefix="/v1/daily")
|
||||
add_pagination(app)
|
||||
|
||||
# prepare celery
|
||||
|
||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import asyncio
|
||||
import functools
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
@@ -1,14 +1,18 @@
|
||||
from typing import Annotated, Optional
|
||||
from typing import Annotated, List, Optional
|
||||
|
||||
from fastapi import Depends, HTTPException
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer
|
||||
from jose import JWTError, jwt
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.db.user_api_keys import user_api_keys_controller
|
||||
from reflector.db.users import user_controller
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token", auto_error=False)
|
||||
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||||
|
||||
jwt_public_key = open(f"reflector/auth/jwt/keys/{settings.AUTH_JWT_PUBLIC_KEY}").read()
|
||||
jwt_algorithm = settings.AUTH_JWT_ALGORITHM
|
||||
@@ -26,7 +30,7 @@ class JWTException(Exception):
|
||||
|
||||
class UserInfo(BaseModel):
|
||||
sub: str
|
||||
email: str
|
||||
email: Optional[str] = None
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
@@ -58,33 +62,65 @@ def authenticated(token: Annotated[str, Depends(oauth2_scheme)]):
|
||||
return None
|
||||
|
||||
|
||||
def current_user(
|
||||
token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
if token is None:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
return UserInfo(sub=sub)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
async def _authenticate_user(
|
||||
jwt_token: Optional[str],
|
||||
api_key: Optional[str],
|
||||
jwtauth: JWTAuth,
|
||||
) -> UserInfo | None:
|
||||
user_infos: List[UserInfo] = []
|
||||
if api_key:
|
||||
user_api_key = await user_api_keys_controller.verify_key(api_key)
|
||||
if user_api_key:
|
||||
user_infos.append(UserInfo(sub=user_api_key.user_id, email=None))
|
||||
|
||||
if jwt_token:
|
||||
try:
|
||||
payload = jwtauth.verify_token(jwt_token)
|
||||
authentik_uid = payload["sub"]
|
||||
email = payload["email"]
|
||||
|
||||
def current_user_optional(
|
||||
token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
# we accept no token, but if one is provided, it must be a valid one.
|
||||
if token is None:
|
||||
user = await user_controller.get_by_authentik_uid(authentik_uid)
|
||||
if not user:
|
||||
logger.info(
|
||||
f"Creating new user on first login: {authentik_uid} ({email})"
|
||||
)
|
||||
user = await user_controller.create_or_update(
|
||||
id=generate_uuid4(),
|
||||
authentik_uid=authentik_uid,
|
||||
email=email,
|
||||
)
|
||||
|
||||
user_infos.append(UserInfo(sub=user.id, email=email))
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
if len(user_infos) == 0:
|
||||
return None
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
email = payload["email"]
|
||||
return UserInfo(sub=sub, email=email)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
if len(set([x.sub for x in user_infos])) > 1:
|
||||
raise JWTException(
|
||||
status_code=401,
|
||||
detail="Invalid authentication: more than one user provided",
|
||||
)
|
||||
|
||||
return user_infos[0]
|
||||
|
||||
|
||||
async def current_user(
|
||||
jwt_token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
api_key: Annotated[Optional[str], Depends(api_key_header)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
user = await _authenticate_user(jwt_token, api_key, jwtauth)
|
||||
if user is None:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
return user
|
||||
|
||||
|
||||
async def current_user_optional(
|
||||
jwt_token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
api_key: Annotated[Optional[str], Depends(api_key_header)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
return await _authenticate_user(jwt_token, api_key, jwtauth)
|
||||
|
||||
6
server/reflector/dailyco_api/README.md
Normal file
6
server/reflector/dailyco_api/README.md
Normal file
@@ -0,0 +1,6 @@
|
||||
anything about Daily.co api interaction
|
||||
|
||||
- webhook event shapes
|
||||
- REST api client
|
||||
|
||||
No REST api client existing found in the wild; the official lib is about working with videocall as a bot
|
||||
108
server/reflector/dailyco_api/__init__.py
Normal file
108
server/reflector/dailyco_api/__init__.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""
|
||||
Daily.co API Module
|
||||
"""
|
||||
|
||||
# Client
|
||||
from .client import DailyApiClient, DailyApiError
|
||||
|
||||
# Request models
|
||||
from .requests import (
|
||||
CreateMeetingTokenRequest,
|
||||
CreateRoomRequest,
|
||||
CreateWebhookRequest,
|
||||
MeetingTokenProperties,
|
||||
RecordingsBucketConfig,
|
||||
RoomProperties,
|
||||
UpdateWebhookRequest,
|
||||
)
|
||||
|
||||
# Response models
|
||||
from .responses import (
|
||||
MeetingParticipant,
|
||||
MeetingParticipantsResponse,
|
||||
MeetingResponse,
|
||||
MeetingTokenResponse,
|
||||
RecordingResponse,
|
||||
RecordingS3Info,
|
||||
RoomPresenceParticipant,
|
||||
RoomPresenceResponse,
|
||||
RoomResponse,
|
||||
WebhookResponse,
|
||||
)
|
||||
|
||||
# Webhook utilities
|
||||
from .webhook_utils import (
|
||||
extract_room_name,
|
||||
parse_participant_joined,
|
||||
parse_participant_left,
|
||||
parse_recording_error,
|
||||
parse_recording_ready,
|
||||
parse_recording_started,
|
||||
parse_webhook_payload,
|
||||
verify_webhook_signature,
|
||||
)
|
||||
|
||||
# Webhook models
|
||||
from .webhooks import (
|
||||
DailyTrack,
|
||||
DailyWebhookEvent,
|
||||
DailyWebhookEventUnion,
|
||||
ParticipantJoinedEvent,
|
||||
ParticipantJoinedPayload,
|
||||
ParticipantLeftEvent,
|
||||
ParticipantLeftPayload,
|
||||
RecordingErrorEvent,
|
||||
RecordingErrorPayload,
|
||||
RecordingReadyEvent,
|
||||
RecordingReadyToDownloadPayload,
|
||||
RecordingStartedEvent,
|
||||
RecordingStartedPayload,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Client
|
||||
"DailyApiClient",
|
||||
"DailyApiError",
|
||||
# Requests
|
||||
"CreateRoomRequest",
|
||||
"RoomProperties",
|
||||
"RecordingsBucketConfig",
|
||||
"CreateMeetingTokenRequest",
|
||||
"MeetingTokenProperties",
|
||||
"CreateWebhookRequest",
|
||||
"UpdateWebhookRequest",
|
||||
# Responses
|
||||
"RoomResponse",
|
||||
"RoomPresenceResponse",
|
||||
"RoomPresenceParticipant",
|
||||
"MeetingParticipantsResponse",
|
||||
"MeetingParticipant",
|
||||
"MeetingResponse",
|
||||
"RecordingResponse",
|
||||
"RecordingS3Info",
|
||||
"MeetingTokenResponse",
|
||||
"WebhookResponse",
|
||||
# Webhooks
|
||||
"DailyWebhookEvent",
|
||||
"DailyWebhookEventUnion",
|
||||
"DailyTrack",
|
||||
"ParticipantJoinedEvent",
|
||||
"ParticipantJoinedPayload",
|
||||
"ParticipantLeftEvent",
|
||||
"ParticipantLeftPayload",
|
||||
"RecordingStartedEvent",
|
||||
"RecordingStartedPayload",
|
||||
"RecordingReadyEvent",
|
||||
"RecordingReadyToDownloadPayload",
|
||||
"RecordingErrorEvent",
|
||||
"RecordingErrorPayload",
|
||||
# Webhook utilities
|
||||
"verify_webhook_signature",
|
||||
"extract_room_name",
|
||||
"parse_webhook_payload",
|
||||
"parse_participant_joined",
|
||||
"parse_participant_left",
|
||||
"parse_recording_started",
|
||||
"parse_recording_ready",
|
||||
"parse_recording_error",
|
||||
]
|
||||
573
server/reflector/dailyco_api/client.py
Normal file
573
server/reflector/dailyco_api/client.py
Normal file
@@ -0,0 +1,573 @@
|
||||
"""
|
||||
Daily.co API Client
|
||||
|
||||
Complete async client for Daily.co REST API with Pydantic models.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api
|
||||
"""
|
||||
|
||||
from http import HTTPStatus
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
import structlog
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
from .requests import (
|
||||
CreateMeetingTokenRequest,
|
||||
CreateRoomRequest,
|
||||
CreateWebhookRequest,
|
||||
UpdateWebhookRequest,
|
||||
)
|
||||
from .responses import (
|
||||
MeetingParticipantsResponse,
|
||||
MeetingResponse,
|
||||
MeetingTokenResponse,
|
||||
RecordingResponse,
|
||||
RoomPresenceResponse,
|
||||
RoomResponse,
|
||||
WebhookResponse,
|
||||
)
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
class DailyApiError(Exception):
|
||||
"""Daily.co API error with full request/response context."""
|
||||
|
||||
def __init__(self, operation: str, response: httpx.Response):
|
||||
self.operation = operation
|
||||
self.response = response
|
||||
self.status_code = response.status_code
|
||||
self.response_body = response.text
|
||||
self.url = str(response.url)
|
||||
self.request_body = (
|
||||
response.request.content.decode() if response.request.content else None
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
f"Daily.co API error: {operation} failed with status {self.status_code}"
|
||||
)
|
||||
|
||||
|
||||
class DailyApiClient:
|
||||
"""
|
||||
Complete async client for Daily.co REST API.
|
||||
|
||||
Usage:
|
||||
# Direct usage
|
||||
client = DailyApiClient(api_key="your_api_key")
|
||||
room = await client.create_room(CreateRoomRequest(name="my-room"))
|
||||
await client.close() # Clean up when done
|
||||
|
||||
# Context manager (recommended)
|
||||
async with DailyApiClient(api_key="your_api_key") as client:
|
||||
room = await client.create_room(CreateRoomRequest(name="my-room"))
|
||||
"""
|
||||
|
||||
BASE_URL = "https://api.daily.co/v1"
|
||||
DEFAULT_TIMEOUT = 10.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: NonEmptyString,
|
||||
webhook_secret: NonEmptyString | None = None,
|
||||
timeout: float = DEFAULT_TIMEOUT,
|
||||
base_url: NonEmptyString | None = None,
|
||||
):
|
||||
"""
|
||||
Initialize Daily.co API client.
|
||||
|
||||
Args:
|
||||
api_key: Daily.co API key (Bearer token)
|
||||
webhook_secret: Base64-encoded HMAC secret for webhook verification.
|
||||
Must match the 'hmac' value provided when creating webhooks.
|
||||
Generate with: base64.b64encode(os.urandom(32)).decode()
|
||||
timeout: Default request timeout in seconds
|
||||
base_url: Override base URL (for testing)
|
||||
"""
|
||||
self.api_key = api_key
|
||||
self.webhook_secret = webhook_secret
|
||||
self.timeout = timeout
|
||||
self.base_url = base_url or self.BASE_URL
|
||||
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
self._client: httpx.AsyncClient | None = None
|
||||
|
||||
async def __aenter__(self):
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
||||
await self.close()
|
||||
|
||||
async def _get_client(self) -> httpx.AsyncClient:
|
||||
if self._client is None:
|
||||
self._client = httpx.AsyncClient(timeout=self.timeout)
|
||||
return self._client
|
||||
|
||||
async def close(self):
|
||||
if self._client is not None:
|
||||
await self._client.aclose()
|
||||
self._client = None
|
||||
|
||||
async def _handle_response(
|
||||
self, response: httpx.Response, operation: str
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Handle API response with error logging.
|
||||
|
||||
Args:
|
||||
response: HTTP response
|
||||
operation: Operation name for logging (e.g., "create_room")
|
||||
|
||||
Returns:
|
||||
Parsed JSON response
|
||||
|
||||
Raises:
|
||||
DailyApiError: If request failed with full context
|
||||
"""
|
||||
if response.status_code >= 400:
|
||||
logger.error(
|
||||
f"Daily.co API error: {operation}",
|
||||
status_code=response.status_code,
|
||||
response_body=response.text,
|
||||
request_body=response.request.content.decode()
|
||||
if response.request.content
|
||||
else None,
|
||||
url=str(response.url),
|
||||
)
|
||||
raise DailyApiError(operation, response)
|
||||
|
||||
return response.json()
|
||||
|
||||
# ============================================================================
|
||||
# ROOMS
|
||||
# ============================================================================
|
||||
|
||||
async def create_room(self, request: CreateRoomRequest) -> RoomResponse:
|
||||
"""
|
||||
Create a new Daily.co room.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/create-room
|
||||
|
||||
Args:
|
||||
request: Room creation request with name, privacy, and properties
|
||||
|
||||
Returns:
|
||||
Created room data including URL and ID
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.post(
|
||||
f"{self.base_url}/rooms",
|
||||
headers=self.headers,
|
||||
json=request.model_dump(exclude_none=True),
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "create_room")
|
||||
return RoomResponse(**data)
|
||||
|
||||
async def get_room(self, room_name: NonEmptyString) -> RoomResponse:
|
||||
"""
|
||||
Get room configuration.
|
||||
|
||||
Args:
|
||||
room_name: Daily.co room name
|
||||
|
||||
Returns:
|
||||
Room configuration data
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/rooms/{room_name}",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "get_room")
|
||||
return RoomResponse(**data)
|
||||
|
||||
async def get_room_presence(
|
||||
self, room_name: NonEmptyString
|
||||
) -> RoomPresenceResponse:
|
||||
"""
|
||||
Get current participants in a room (real-time presence).
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/get-room-presence
|
||||
|
||||
Args:
|
||||
room_name: Daily.co room name
|
||||
|
||||
Returns:
|
||||
List of currently present participants with join time and duration
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/rooms/{room_name}/presence",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "get_room_presence")
|
||||
return RoomPresenceResponse(**data)
|
||||
|
||||
async def delete_room(self, room_name: NonEmptyString) -> None:
|
||||
"""
|
||||
Delete a room (idempotent - succeeds even if room doesn't exist).
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/delete-room
|
||||
|
||||
Args:
|
||||
room_name: Daily.co room name
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails (except 404)
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.delete(
|
||||
f"{self.base_url}/rooms/{room_name}",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
# Idempotent delete - 404 means already deleted
|
||||
if response.status_code == HTTPStatus.NOT_FOUND:
|
||||
logger.debug("Room not found (already deleted)", room_name=room_name)
|
||||
return
|
||||
|
||||
await self._handle_response(response, "delete_room")
|
||||
|
||||
# ============================================================================
|
||||
# MEETINGS
|
||||
# ============================================================================
|
||||
|
||||
async def get_meeting(self, meeting_id: NonEmptyString) -> MeetingResponse:
|
||||
"""
|
||||
Get full meeting information including participants.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meetings/get-meeting-information
|
||||
|
||||
Args:
|
||||
meeting_id: Daily.co meeting/session ID
|
||||
|
||||
Returns:
|
||||
Meeting metadata including room, duration, participants, and status
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/meetings/{meeting_id}",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "get_meeting")
|
||||
return MeetingResponse(**data)
|
||||
|
||||
async def get_meeting_participants(
|
||||
self,
|
||||
meeting_id: NonEmptyString,
|
||||
limit: int | None = None,
|
||||
joined_after: NonEmptyString | None = None,
|
||||
joined_before: NonEmptyString | None = None,
|
||||
) -> MeetingParticipantsResponse:
|
||||
"""
|
||||
Get historical participant data from a completed meeting (paginated).
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meetings/get-meeting-participants
|
||||
|
||||
Args:
|
||||
meeting_id: Daily.co meeting/session ID
|
||||
limit: Maximum number of participant records to return
|
||||
joined_after: Return participants who joined after this participant_id
|
||||
joined_before: Return participants who joined before this participant_id
|
||||
|
||||
Returns:
|
||||
List of participants with join times and duration
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails (404 when no more participants)
|
||||
|
||||
Note:
|
||||
For pagination, use joined_after with the last participant_id from previous response.
|
||||
Returns 404 when no more participants remain.
|
||||
"""
|
||||
params = {}
|
||||
if limit is not None:
|
||||
params["limit"] = limit
|
||||
if joined_after is not None:
|
||||
params["joined_after"] = joined_after
|
||||
if joined_before is not None:
|
||||
params["joined_before"] = joined_before
|
||||
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/meetings/{meeting_id}/participants",
|
||||
headers=self.headers,
|
||||
params=params,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "get_meeting_participants")
|
||||
return MeetingParticipantsResponse(**data)
|
||||
|
||||
# ============================================================================
|
||||
# RECORDINGS
|
||||
# ============================================================================
|
||||
|
||||
async def get_recording(self, recording_id: NonEmptyString) -> RecordingResponse:
|
||||
"""
|
||||
https://docs.daily.co/reference/rest-api/recordings/get-recording-information
|
||||
Get recording metadata and status.
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/recordings/{recording_id}",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "get_recording")
|
||||
return RecordingResponse(**data)
|
||||
|
||||
async def list_recordings(
|
||||
self,
|
||||
room_name: NonEmptyString | None = None,
|
||||
starting_after: str | None = None,
|
||||
ending_before: str | None = None,
|
||||
limit: int = 100,
|
||||
) -> list[RecordingResponse]:
|
||||
"""
|
||||
List recordings with optional filters.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/recordings
|
||||
|
||||
Args:
|
||||
room_name: Filter by room name
|
||||
starting_after: Pagination cursor - recording ID to start after
|
||||
ending_before: Pagination cursor - recording ID to end before
|
||||
limit: Max results per page (default 100, max 100)
|
||||
|
||||
Note: starting_after/ending_before are pagination cursors (recording IDs),
|
||||
NOT time filters. API returns recordings in reverse chronological order.
|
||||
"""
|
||||
client = await self._get_client()
|
||||
|
||||
params = {"limit": limit}
|
||||
if room_name:
|
||||
params["room_name"] = room_name
|
||||
if starting_after:
|
||||
params["starting_after"] = starting_after
|
||||
if ending_before:
|
||||
params["ending_before"] = ending_before
|
||||
|
||||
response = await client.get(
|
||||
f"{self.base_url}/recordings",
|
||||
headers=self.headers,
|
||||
params=params,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "list_recordings")
|
||||
|
||||
if not isinstance(data, dict) or "data" not in data:
|
||||
logger.error(
|
||||
"Daily.co API returned unexpected format for list_recordings",
|
||||
data_type=type(data).__name__,
|
||||
data_keys=list(data.keys()) if isinstance(data, dict) else None,
|
||||
data_sample=str(data)[:500],
|
||||
room_name=room_name,
|
||||
operation="list_recordings",
|
||||
)
|
||||
raise httpx.HTTPStatusError(
|
||||
message=f"Unexpected response format from list_recordings: {type(data).__name__}",
|
||||
request=response.request,
|
||||
response=response,
|
||||
)
|
||||
|
||||
return [RecordingResponse(**r) for r in data["data"]]
|
||||
|
||||
# ============================================================================
|
||||
# MEETING TOKENS
|
||||
# ============================================================================
|
||||
|
||||
async def create_meeting_token(
|
||||
self, request: CreateMeetingTokenRequest
|
||||
) -> MeetingTokenResponse:
|
||||
"""
|
||||
Create a meeting token for participant authentication.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meeting-tokens/create-meeting-token
|
||||
|
||||
Args:
|
||||
request: Token properties including room name, user_id, permissions
|
||||
|
||||
Returns:
|
||||
JWT meeting token
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.post(
|
||||
f"{self.base_url}/meeting-tokens",
|
||||
headers=self.headers,
|
||||
json=request.model_dump(exclude_none=True),
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "create_meeting_token")
|
||||
return MeetingTokenResponse(**data)
|
||||
|
||||
# ============================================================================
|
||||
# WEBHOOKS
|
||||
# ============================================================================
|
||||
|
||||
async def list_webhooks(self) -> list[WebhookResponse]:
|
||||
"""
|
||||
List all configured webhooks for this account.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
|
||||
Returns:
|
||||
List of webhook configurations
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.get(
|
||||
f"{self.base_url}/webhooks",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "list_webhooks")
|
||||
|
||||
# Daily.co returns array directly (not paginated)
|
||||
if isinstance(data, list):
|
||||
return [WebhookResponse(**wh) for wh in data]
|
||||
|
||||
# Future-proof: handle potential pagination envelope
|
||||
if isinstance(data, dict) and "data" in data:
|
||||
return [WebhookResponse(**wh) for wh in data["data"]]
|
||||
|
||||
logger.warning("Unexpected webhook list response format", data=data)
|
||||
return []
|
||||
|
||||
async def create_webhook(self, request: CreateWebhookRequest) -> WebhookResponse:
|
||||
"""
|
||||
Create a new webhook subscription.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
|
||||
Args:
|
||||
request: Webhook configuration with URL, event types, and HMAC secret
|
||||
|
||||
Returns:
|
||||
Created webhook with UUID and state
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.post(
|
||||
f"{self.base_url}/webhooks",
|
||||
headers=self.headers,
|
||||
json=request.model_dump(exclude_none=True),
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "create_webhook")
|
||||
return WebhookResponse(**data)
|
||||
|
||||
async def update_webhook(
|
||||
self, webhook_uuid: NonEmptyString, request: UpdateWebhookRequest
|
||||
) -> WebhookResponse:
|
||||
"""
|
||||
Update webhook configuration.
|
||||
|
||||
Note: Daily.co may not support PATCH for all fields.
|
||||
Common pattern is delete + recreate.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
|
||||
Args:
|
||||
webhook_uuid: Webhook UUID to update
|
||||
request: Updated webhook configuration
|
||||
|
||||
Returns:
|
||||
Updated webhook configuration
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If API request fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.patch(
|
||||
f"{self.base_url}/webhooks/{webhook_uuid}",
|
||||
headers=self.headers,
|
||||
json=request.model_dump(exclude_none=True),
|
||||
)
|
||||
|
||||
data = await self._handle_response(response, "update_webhook")
|
||||
return WebhookResponse(**data)
|
||||
|
||||
async def delete_webhook(self, webhook_uuid: NonEmptyString) -> None:
|
||||
"""
|
||||
Delete a webhook.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
|
||||
Args:
|
||||
webhook_uuid: Webhook UUID to delete
|
||||
|
||||
Raises:
|
||||
httpx.HTTPStatusError: If webhook not found or deletion fails
|
||||
"""
|
||||
client = await self._get_client()
|
||||
response = await client.delete(
|
||||
f"{self.base_url}/webhooks/{webhook_uuid}",
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
await self._handle_response(response, "delete_webhook")
|
||||
|
||||
# ============================================================================
|
||||
# HELPER METHODS
|
||||
# ============================================================================
|
||||
|
||||
async def find_webhook_by_url(self, url: NonEmptyString) -> WebhookResponse | None:
|
||||
"""
|
||||
Find a webhook by its URL.
|
||||
|
||||
Args:
|
||||
url: Webhook endpoint URL to search for
|
||||
|
||||
Returns:
|
||||
Webhook if found, None otherwise
|
||||
"""
|
||||
webhooks = await self.list_webhooks()
|
||||
for webhook in webhooks:
|
||||
if webhook.url == url:
|
||||
return webhook
|
||||
return None
|
||||
|
||||
async def find_webhooks_by_pattern(
|
||||
self, pattern: NonEmptyString
|
||||
) -> list[WebhookResponse]:
|
||||
"""
|
||||
Find webhooks matching a URL pattern (e.g., 'ngrok').
|
||||
|
||||
Args:
|
||||
pattern: String to match in webhook URLs
|
||||
|
||||
Returns:
|
||||
List of matching webhooks
|
||||
"""
|
||||
webhooks = await self.list_webhooks()
|
||||
return [wh for wh in webhooks if pattern in wh.url]
|
||||
162
server/reflector/dailyco_api/requests.py
Normal file
162
server/reflector/dailyco_api/requests.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""
|
||||
Daily.co API Request Models
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api
|
||||
"""
|
||||
|
||||
from typing import List, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
class RecordingsBucketConfig(BaseModel):
|
||||
"""
|
||||
S3 bucket configuration for raw-tracks recordings.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/create-room
|
||||
"""
|
||||
|
||||
bucket_name: NonEmptyString = Field(description="S3 bucket name")
|
||||
bucket_region: NonEmptyString = Field(description="AWS region (e.g., 'us-east-1')")
|
||||
assume_role_arn: NonEmptyString = Field(
|
||||
description="AWS IAM role ARN that Daily.co will assume to write recordings"
|
||||
)
|
||||
allow_api_access: bool = Field(
|
||||
default=True,
|
||||
description="Whether to allow API access to recording metadata",
|
||||
)
|
||||
|
||||
|
||||
class RoomProperties(BaseModel):
|
||||
"""
|
||||
Room configuration properties.
|
||||
"""
|
||||
|
||||
enable_recording: Literal["cloud", "local", "raw-tracks"] | None = Field(
|
||||
default=None,
|
||||
description="Recording mode: 'cloud' for mixed, 'local' for local recording, 'raw-tracks' for multitrack, None to disable",
|
||||
)
|
||||
enable_chat: bool = Field(default=True, description="Enable in-meeting chat")
|
||||
enable_screenshare: bool = Field(default=True, description="Enable screen sharing")
|
||||
enable_knocking: bool = Field(
|
||||
default=False,
|
||||
description="Enable knocking for private rooms (allows participants to request access)",
|
||||
)
|
||||
start_video_off: bool = Field(
|
||||
default=False, description="Start with video off for all participants"
|
||||
)
|
||||
start_audio_off: bool = Field(
|
||||
default=False, description="Start with audio muted for all participants"
|
||||
)
|
||||
exp: int | None = Field(
|
||||
None, description="Room expiration timestamp (Unix epoch seconds)"
|
||||
)
|
||||
recordings_bucket: RecordingsBucketConfig | None = Field(
|
||||
None, description="S3 bucket configuration for raw-tracks recordings"
|
||||
)
|
||||
|
||||
|
||||
class CreateRoomRequest(BaseModel):
|
||||
"""
|
||||
Request to create a new Daily.co room.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/create-room
|
||||
"""
|
||||
|
||||
name: NonEmptyString = Field(description="Room name (must be unique within domain)")
|
||||
privacy: Literal["public", "private"] = Field(
|
||||
default="public", description="Room privacy setting"
|
||||
)
|
||||
properties: RoomProperties = Field(
|
||||
default_factory=RoomProperties, description="Room configuration properties"
|
||||
)
|
||||
|
||||
|
||||
class MeetingTokenProperties(BaseModel):
|
||||
"""
|
||||
Properties for meeting token creation.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meeting-tokens/create-meeting-token
|
||||
"""
|
||||
|
||||
room_name: NonEmptyString = Field(description="Room name this token is valid for")
|
||||
user_id: NonEmptyString | None = Field(
|
||||
None, description="User identifier to associate with token"
|
||||
)
|
||||
is_owner: bool = Field(
|
||||
default=False, description="Grant owner privileges to token holder"
|
||||
)
|
||||
start_cloud_recording: bool = Field(
|
||||
default=False, description="Automatically start cloud recording on join"
|
||||
)
|
||||
enable_recording_ui: bool = Field(
|
||||
default=True, description="Show recording controls in UI"
|
||||
)
|
||||
eject_at_token_exp: bool = Field(
|
||||
default=False, description="Eject participant when token expires"
|
||||
)
|
||||
nbf: int | None = Field(
|
||||
None, description="Not-before timestamp (Unix epoch seconds)"
|
||||
)
|
||||
exp: int | None = Field(
|
||||
None, description="Expiration timestamp (Unix epoch seconds)"
|
||||
)
|
||||
|
||||
|
||||
class CreateMeetingTokenRequest(BaseModel):
|
||||
"""
|
||||
Request to create a meeting token for participant authentication.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meeting-tokens/create-meeting-token
|
||||
"""
|
||||
|
||||
properties: MeetingTokenProperties = Field(description="Token properties")
|
||||
|
||||
|
||||
class CreateWebhookRequest(BaseModel):
|
||||
"""
|
||||
Request to create a webhook subscription.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
url: NonEmptyString = Field(description="Webhook endpoint URL (must be HTTPS)")
|
||||
eventTypes: List[
|
||||
Literal[
|
||||
"participant.joined",
|
||||
"participant.left",
|
||||
"recording.started",
|
||||
"recording.ready-to-download",
|
||||
"recording.error",
|
||||
]
|
||||
] = Field(
|
||||
description="Array of event types to subscribe to (only events we handle)"
|
||||
)
|
||||
hmac: NonEmptyString = Field(
|
||||
description="Base64-encoded HMAC secret for webhook signature verification"
|
||||
)
|
||||
basicAuth: NonEmptyString | None = Field(
|
||||
None, description="Optional basic auth credentials for webhook endpoint"
|
||||
)
|
||||
|
||||
|
||||
class UpdateWebhookRequest(BaseModel):
|
||||
"""
|
||||
Request to update an existing webhook.
|
||||
|
||||
Note: Daily.co API may not support PATCH for webhooks.
|
||||
Common pattern is to delete and recreate.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
url: NonEmptyString | None = Field(None, description="New webhook endpoint URL")
|
||||
eventTypes: List[NonEmptyString] | None = Field(
|
||||
None, description="New array of event types"
|
||||
)
|
||||
hmac: NonEmptyString | None = Field(None, description="New HMAC secret")
|
||||
basicAuth: NonEmptyString | None = Field(
|
||||
None, description="New basic auth credentials"
|
||||
)
|
||||
193
server/reflector/dailyco_api/responses.py
Normal file
193
server/reflector/dailyco_api/responses.py
Normal file
@@ -0,0 +1,193 @@
|
||||
"""
|
||||
Daily.co API Response Models
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, List, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.dailyco_api.webhooks import DailyTrack
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
# not documented in daily; we fill it according to observations
|
||||
RecordingStatus = Literal["in-progress", "finished"]
|
||||
|
||||
|
||||
class RoomResponse(BaseModel):
|
||||
"""
|
||||
Response from room creation or retrieval.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/create-room
|
||||
"""
|
||||
|
||||
id: NonEmptyString = Field(description="Unique room identifier (UUID)")
|
||||
name: NonEmptyString = Field(description="Room name used in URLs")
|
||||
api_created: bool = Field(description="Whether room was created via API")
|
||||
privacy: Literal["public", "private"] = Field(description="Room privacy setting")
|
||||
url: NonEmptyString = Field(description="Full room URL")
|
||||
created_at: NonEmptyString = Field(description="ISO 8601 creation timestamp")
|
||||
config: Dict[NonEmptyString, Any] = Field(
|
||||
default_factory=dict, description="Room configuration properties"
|
||||
)
|
||||
|
||||
|
||||
class RoomPresenceParticipant(BaseModel):
|
||||
"""
|
||||
Participant presence information in a room.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/get-room-presence
|
||||
"""
|
||||
|
||||
room: NonEmptyString = Field(description="Room name")
|
||||
id: NonEmptyString = Field(description="Participant session ID")
|
||||
userId: NonEmptyString | None = Field(None, description="User ID if provided")
|
||||
userName: NonEmptyString | None = Field(None, description="User display name")
|
||||
joinTime: NonEmptyString = Field(description="ISO 8601 join timestamp")
|
||||
duration: int = Field(description="Duration in room (seconds)")
|
||||
|
||||
|
||||
class RoomPresenceResponse(BaseModel):
|
||||
"""
|
||||
Response from room presence endpoint.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/rooms/get-room-presence
|
||||
"""
|
||||
|
||||
total_count: int = Field(
|
||||
description="Total number of participants currently in room"
|
||||
)
|
||||
data: List[RoomPresenceParticipant] = Field(
|
||||
default_factory=list, description="Array of participant presence data"
|
||||
)
|
||||
|
||||
|
||||
class MeetingParticipant(BaseModel):
|
||||
"""
|
||||
Historical participant data from a meeting.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meetings/get-meeting-participants
|
||||
"""
|
||||
|
||||
user_id: NonEmptyString | None = Field(None, description="User identifier")
|
||||
participant_id: NonEmptyString = Field(description="Participant session identifier")
|
||||
user_name: NonEmptyString | None = Field(None, description="User display name")
|
||||
join_time: int = Field(description="Join timestamp (Unix epoch seconds)")
|
||||
duration: int = Field(description="Duration in meeting (seconds)")
|
||||
|
||||
|
||||
class MeetingParticipantsResponse(BaseModel):
|
||||
"""
|
||||
Response from meeting participants endpoint.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meetings/get-meeting-participants
|
||||
"""
|
||||
|
||||
data: List[MeetingParticipant] = Field(
|
||||
default_factory=list, description="Array of participant data"
|
||||
)
|
||||
|
||||
|
||||
class MeetingResponse(BaseModel):
|
||||
"""
|
||||
Response from meeting information endpoint.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meetings/get-meeting-information
|
||||
"""
|
||||
|
||||
id: NonEmptyString = Field(description="Meeting session identifier (UUID)")
|
||||
room: NonEmptyString = Field(description="Room name where meeting occurred")
|
||||
start_time: int = Field(
|
||||
description="Meeting start Unix timestamp (~15s granularity)"
|
||||
)
|
||||
duration: int = Field(description="Total meeting duration in seconds")
|
||||
ongoing: bool = Field(description="Whether meeting is currently active")
|
||||
max_participants: int = Field(description="Peak concurrent participant count")
|
||||
participants: List[MeetingParticipant] = Field(
|
||||
default_factory=list, description="Array of participant session data"
|
||||
)
|
||||
|
||||
|
||||
class RecordingS3Info(BaseModel):
|
||||
"""
|
||||
S3 bucket information for a recording.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/recordings
|
||||
"""
|
||||
|
||||
bucket_name: NonEmptyString
|
||||
bucket_region: NonEmptyString
|
||||
endpoint: NonEmptyString | None = None
|
||||
|
||||
|
||||
class RecordingResponse(BaseModel):
|
||||
"""
|
||||
Response from recording retrieval endpoint.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/recordings
|
||||
"""
|
||||
|
||||
id: NonEmptyString = Field(description="Recording identifier")
|
||||
room_name: NonEmptyString = Field(description="Room where recording occurred")
|
||||
start_ts: int = Field(description="Recording start timestamp (Unix epoch seconds)")
|
||||
status: RecordingStatus = Field(
|
||||
description="Recording status ('in-progress' or 'finished')"
|
||||
)
|
||||
max_participants: int | None = Field(
|
||||
None, description="Maximum participants during recording (may be missing)"
|
||||
)
|
||||
duration: int = Field(description="Recording duration in seconds")
|
||||
share_token: NonEmptyString | None = Field(
|
||||
None, description="Token for sharing recording"
|
||||
)
|
||||
s3: RecordingS3Info | None = Field(None, description="S3 bucket information")
|
||||
tracks: list[DailyTrack] = Field(
|
||||
default_factory=list,
|
||||
description="Track list for raw-tracks recordings (always array, never null)",
|
||||
)
|
||||
# this is not a mistake but a deliberate Daily.co naming decision
|
||||
mtgSessionId: NonEmptyString | None = Field(
|
||||
None, description="Meeting session identifier (may be missing)"
|
||||
)
|
||||
|
||||
|
||||
class MeetingTokenResponse(BaseModel):
|
||||
"""
|
||||
Response from meeting token creation.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/meeting-tokens/create-meeting-token
|
||||
"""
|
||||
|
||||
token: NonEmptyString = Field(
|
||||
description="JWT meeting token for participant authentication"
|
||||
)
|
||||
|
||||
|
||||
class WebhookResponse(BaseModel):
|
||||
"""
|
||||
Response from webhook creation or retrieval.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
uuid: NonEmptyString = Field(description="Unique webhook identifier")
|
||||
url: NonEmptyString = Field(description="Webhook endpoint URL")
|
||||
hmac: NonEmptyString | None = Field(
|
||||
None, description="Base64-encoded HMAC secret for signature verification"
|
||||
)
|
||||
basicAuth: NonEmptyString | None = Field(
|
||||
None, description="Basic auth credentials if configured"
|
||||
)
|
||||
eventTypes: List[NonEmptyString] = Field(
|
||||
default_factory=list,
|
||||
description="Array of event types (e.g., ['recording.started', 'participant.joined'])",
|
||||
)
|
||||
state: Literal["ACTIVE", "FAILED"] = Field(
|
||||
description="Webhook state - FAILED after 3+ consecutive failures"
|
||||
)
|
||||
failedCount: int = Field(default=0, description="Number of consecutive failures")
|
||||
lastMomentPushed: NonEmptyString | None = Field(
|
||||
None, description="ISO 8601 timestamp of last successful push"
|
||||
)
|
||||
domainId: NonEmptyString = Field(description="Daily.co domain/account identifier")
|
||||
createdAt: NonEmptyString = Field(description="ISO 8601 creation timestamp")
|
||||
updatedAt: NonEmptyString = Field(description="ISO 8601 last update timestamp")
|
||||
228
server/reflector/dailyco_api/webhook_utils.py
Normal file
228
server/reflector/dailyco_api/webhook_utils.py
Normal file
@@ -0,0 +1,228 @@
|
||||
"""
|
||||
Daily.co Webhook Utilities
|
||||
|
||||
Utilities for verifying and parsing Daily.co webhook events.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
import base64
|
||||
import hmac
|
||||
from hashlib import sha256
|
||||
|
||||
import structlog
|
||||
|
||||
from .webhooks import (
|
||||
DailyWebhookEvent,
|
||||
ParticipantJoinedPayload,
|
||||
ParticipantLeftPayload,
|
||||
RecordingErrorPayload,
|
||||
RecordingReadyToDownloadPayload,
|
||||
RecordingStartedPayload,
|
||||
)
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
def verify_webhook_signature(
|
||||
body: bytes,
|
||||
signature: str,
|
||||
timestamp: str,
|
||||
webhook_secret: str,
|
||||
) -> bool:
|
||||
"""
|
||||
Verify Daily.co webhook signature using HMAC-SHA256.
|
||||
|
||||
Daily.co signature verification:
|
||||
1. Base64-decode the webhook secret
|
||||
2. Create signed content: timestamp + '.' + body
|
||||
3. Compute HMAC-SHA256(secret, signed_content)
|
||||
4. Base64-encode the result
|
||||
5. Compare with provided signature using constant-time comparison
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
|
||||
Args:
|
||||
body: Raw request body bytes
|
||||
signature: X-Webhook-Signature header value
|
||||
timestamp: X-Webhook-Timestamp header value
|
||||
webhook_secret: Base64-encoded HMAC secret
|
||||
|
||||
Returns:
|
||||
True if signature is valid, False otherwise
|
||||
|
||||
Example:
|
||||
>>> body = b'{"version":"1.0.0","type":"participant.joined",...}'
|
||||
>>> signature = "abc123..."
|
||||
>>> timestamp = "1234567890"
|
||||
>>> secret = "your-base64-secret"
|
||||
>>> is_valid = verify_webhook_signature(body, signature, timestamp, secret)
|
||||
"""
|
||||
if not signature or not timestamp or not webhook_secret:
|
||||
logger.warning(
|
||||
"Missing required data for webhook verification",
|
||||
has_signature=bool(signature),
|
||||
has_timestamp=bool(timestamp),
|
||||
has_secret=bool(webhook_secret),
|
||||
)
|
||||
return False
|
||||
|
||||
try:
|
||||
secret_bytes = base64.b64decode(webhook_secret)
|
||||
signed_content = timestamp.encode() + b"." + body
|
||||
expected = hmac.new(secret_bytes, signed_content, sha256).digest()
|
||||
expected_b64 = base64.b64encode(expected).decode()
|
||||
|
||||
# Constant-time comparison to prevent timing attacks
|
||||
return hmac.compare_digest(expected_b64, signature)
|
||||
|
||||
except (base64.binascii.Error, ValueError, TypeError, UnicodeDecodeError) as e:
|
||||
logger.error(
|
||||
"Webhook signature verification failed",
|
||||
error=str(e),
|
||||
error_type=type(e).__name__,
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
def extract_room_name(event: DailyWebhookEvent) -> str | None:
|
||||
"""
|
||||
Extract room name from Daily.co webhook event payload.
|
||||
|
||||
Args:
|
||||
event: Parsed webhook event
|
||||
|
||||
Returns:
|
||||
Room name if present and is a string, None otherwise
|
||||
|
||||
Example:
|
||||
>>> event = DailyWebhookEvent(**webhook_payload)
|
||||
>>> room_name = extract_room_name(event)
|
||||
"""
|
||||
room = event.payload.get("room_name")
|
||||
# Ensure we return a string, not any falsy value that might be in payload
|
||||
return room if isinstance(room, str) else None
|
||||
|
||||
|
||||
def parse_participant_joined(event: DailyWebhookEvent) -> ParticipantJoinedPayload:
|
||||
"""
|
||||
Parse participant.joined webhook event payload.
|
||||
|
||||
Args:
|
||||
event: Webhook event with type "participant.joined"
|
||||
|
||||
Returns:
|
||||
Parsed participant joined payload
|
||||
|
||||
Raises:
|
||||
pydantic.ValidationError: If payload doesn't match expected schema
|
||||
"""
|
||||
return ParticipantJoinedPayload(**event.payload)
|
||||
|
||||
|
||||
def parse_participant_left(event: DailyWebhookEvent) -> ParticipantLeftPayload:
|
||||
"""
|
||||
Parse participant.left webhook event payload.
|
||||
|
||||
Args:
|
||||
event: Webhook event with type "participant.left"
|
||||
|
||||
Returns:
|
||||
Parsed participant left payload
|
||||
|
||||
Raises:
|
||||
pydantic.ValidationError: If payload doesn't match expected schema
|
||||
"""
|
||||
return ParticipantLeftPayload(**event.payload)
|
||||
|
||||
|
||||
def parse_recording_started(event: DailyWebhookEvent) -> RecordingStartedPayload:
|
||||
"""
|
||||
Parse recording.started webhook event payload.
|
||||
|
||||
Args:
|
||||
event: Webhook event with type "recording.started"
|
||||
|
||||
Returns:
|
||||
Parsed recording started payload
|
||||
|
||||
Raises:
|
||||
pydantic.ValidationError: If payload doesn't match expected schema
|
||||
"""
|
||||
return RecordingStartedPayload(**event.payload)
|
||||
|
||||
|
||||
def parse_recording_ready(
|
||||
event: DailyWebhookEvent,
|
||||
) -> RecordingReadyToDownloadPayload:
|
||||
"""
|
||||
Parse recording.ready-to-download webhook event payload.
|
||||
|
||||
This event is sent when raw-tracks recordings are complete and uploaded to S3.
|
||||
The payload includes a 'tracks' array with individual audio/video files.
|
||||
|
||||
Args:
|
||||
event: Webhook event with type "recording.ready-to-download"
|
||||
|
||||
Returns:
|
||||
Parsed recording ready payload with tracks array
|
||||
|
||||
Raises:
|
||||
pydantic.ValidationError: If payload doesn't match expected schema
|
||||
|
||||
Example:
|
||||
>>> event = DailyWebhookEvent(**webhook_payload)
|
||||
>>> if event.type == "recording.ready-to-download":
|
||||
... payload = parse_recording_ready(event)
|
||||
... audio_tracks = [t for t in payload.tracks if t.type == "audio"]
|
||||
"""
|
||||
return RecordingReadyToDownloadPayload(**event.payload)
|
||||
|
||||
|
||||
def parse_recording_error(event: DailyWebhookEvent) -> RecordingErrorPayload:
|
||||
"""
|
||||
Parse recording.error webhook event payload.
|
||||
|
||||
Args:
|
||||
event: Webhook event with type "recording.error"
|
||||
|
||||
Returns:
|
||||
Parsed recording error payload
|
||||
|
||||
Raises:
|
||||
pydantic.ValidationError: If payload doesn't match expected schema
|
||||
"""
|
||||
return RecordingErrorPayload(**event.payload)
|
||||
|
||||
|
||||
WEBHOOK_PARSERS = {
|
||||
"participant.joined": parse_participant_joined,
|
||||
"participant.left": parse_participant_left,
|
||||
"recording.started": parse_recording_started,
|
||||
"recording.ready-to-download": parse_recording_ready,
|
||||
"recording.error": parse_recording_error,
|
||||
}
|
||||
|
||||
|
||||
def parse_webhook_payload(event: DailyWebhookEvent):
|
||||
"""
|
||||
Parse webhook event payload based on event type.
|
||||
|
||||
Args:
|
||||
event: Webhook event
|
||||
|
||||
Returns:
|
||||
Typed payload model based on event type, or raw dict if unknown
|
||||
|
||||
Example:
|
||||
>>> event = DailyWebhookEvent(**webhook_payload)
|
||||
>>> payload = parse_webhook_payload(event)
|
||||
>>> if isinstance(payload, ParticipantJoinedPayload):
|
||||
... print(f"User {payload.user_name} joined")
|
||||
"""
|
||||
parser = WEBHOOK_PARSERS.get(event.type)
|
||||
if parser:
|
||||
return parser(event)
|
||||
else:
|
||||
logger.warning("Unknown webhook event type", event_type=event.type)
|
||||
return event.payload
|
||||
271
server/reflector/dailyco_api/webhooks.py
Normal file
271
server/reflector/dailyco_api/webhooks.py
Normal file
@@ -0,0 +1,271 @@
|
||||
"""
|
||||
Daily.co Webhook Event Models
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
from typing import Annotated, Any, Dict, Literal, Union
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
def normalize_timestamp_to_int(v):
|
||||
"""
|
||||
Normalize float timestamps to int by truncating decimal part.
|
||||
|
||||
Daily.co sometimes sends timestamps as floats (e.g., 1708972279.96).
|
||||
Pydantic expects int for fields typed as `int`.
|
||||
"""
|
||||
if v is None:
|
||||
return v
|
||||
if isinstance(v, float):
|
||||
return int(v)
|
||||
return v
|
||||
|
||||
|
||||
WebhookEventType = Literal[
|
||||
"participant.joined",
|
||||
"participant.left",
|
||||
"recording.started",
|
||||
"recording.ready-to-download",
|
||||
"recording.error",
|
||||
]
|
||||
|
||||
|
||||
class DailyTrack(BaseModel):
|
||||
"""
|
||||
Individual audio or video track from a multitrack recording.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/recordings
|
||||
"""
|
||||
|
||||
type: Literal["audio", "video"]
|
||||
s3Key: NonEmptyString = Field(description="S3 object key for the track file")
|
||||
size: int = Field(description="File size in bytes")
|
||||
|
||||
|
||||
class DailyWebhookEvent(BaseModel):
|
||||
"""
|
||||
Base structure for all Daily.co webhook events.
|
||||
All events share five common fields documented below.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks
|
||||
"""
|
||||
|
||||
version: NonEmptyString = Field(
|
||||
description="Represents the version of the event. This uses semantic versioning to inform a consumer if the payload has introduced any breaking changes"
|
||||
)
|
||||
type: WebhookEventType = Field(
|
||||
description="Represents the type of the event described in the payload"
|
||||
)
|
||||
id: NonEmptyString = Field(
|
||||
description="An identifier representing this specific event"
|
||||
)
|
||||
payload: Dict[NonEmptyString, Any] = Field(
|
||||
description="An object representing the event, whose fields are described in the corresponding payload class"
|
||||
)
|
||||
event_ts: int = Field(
|
||||
description="Documenting when the webhook itself was sent. This timestamp is different than the time of the event the webhook describes. For example, a recording.started event will contain a start_ts timestamp of when the actual recording started, and a slightly later event_ts timestamp indicating when the webhook event was sent"
|
||||
)
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class ParticipantJoinedPayload(BaseModel):
|
||||
"""
|
||||
Payload for participant.joined webhook event.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks/events/participant-joined
|
||||
"""
|
||||
|
||||
room_name: NonEmptyString | None = Field(None, description="Daily.co room name")
|
||||
session_id: NonEmptyString = Field(description="Daily.co session identifier")
|
||||
user_id: NonEmptyString = Field(description="User identifier (may be encoded)")
|
||||
user_name: NonEmptyString | None = Field(None, description="User display name")
|
||||
joined_at: int = Field(description="Join timestamp in Unix epoch seconds")
|
||||
|
||||
_normalize_joined_at = field_validator("joined_at", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class ParticipantLeftPayload(BaseModel):
|
||||
"""
|
||||
Payload for participant.left webhook event.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks/events/participant-left
|
||||
"""
|
||||
|
||||
room_name: NonEmptyString | None = Field(None, description="Daily.co room name")
|
||||
session_id: NonEmptyString = Field(description="Daily.co session identifier")
|
||||
user_id: NonEmptyString = Field(description="User identifier (may be encoded)")
|
||||
user_name: NonEmptyString | None = Field(None, description="User display name")
|
||||
joined_at: int = Field(description="Join timestamp in Unix epoch seconds")
|
||||
duration: int | None = Field(
|
||||
None, description="Duration of participation in seconds"
|
||||
)
|
||||
|
||||
_normalize_joined_at = field_validator("joined_at", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingStartedPayload(BaseModel):
|
||||
"""
|
||||
Payload for recording.started webhook event.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks/events/recording-started
|
||||
"""
|
||||
|
||||
room_name: NonEmptyString | None = Field(None, description="Daily.co room name")
|
||||
recording_id: NonEmptyString = Field(description="Recording identifier")
|
||||
start_ts: int | None = Field(None, description="Recording start timestamp")
|
||||
|
||||
_normalize_start_ts = field_validator("start_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingReadyToDownloadPayload(BaseModel):
|
||||
"""
|
||||
Payload for recording.ready-to-download webhook event.
|
||||
This is sent when raw-tracks recordings are complete and uploaded to S3.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks/events/recording-ready-to-download
|
||||
"""
|
||||
|
||||
type: Literal["cloud", "raw-tracks"] = Field(
|
||||
description="The type of recording that was generated"
|
||||
)
|
||||
recording_id: NonEmptyString = Field(
|
||||
description="An ID identifying the recording that was generated"
|
||||
)
|
||||
room_name: NonEmptyString = Field(
|
||||
description="The name of the room where the recording was made"
|
||||
)
|
||||
start_ts: int = Field(
|
||||
description="The Unix epoch time in seconds representing when the recording started"
|
||||
)
|
||||
status: Literal["finished"] = Field(
|
||||
description="The status of the given recording (always 'finished' in ready-to-download webhook, see RecordingStatus in responses.py for full API statuses)"
|
||||
)
|
||||
max_participants: int = Field(
|
||||
description="The number of participants on the call that were recorded"
|
||||
)
|
||||
duration: int = Field(description="The duration in seconds of the call")
|
||||
s3_key: NonEmptyString = Field(
|
||||
description="The location of the recording in the provided S3 bucket"
|
||||
)
|
||||
share_token: NonEmptyString | None = Field(
|
||||
None, description="undocumented documented secret field"
|
||||
)
|
||||
tracks: list[DailyTrack] | None = Field(
|
||||
None,
|
||||
description="If the recording is a raw-tracks recording, a tracks field will be provided. If role permissions have been removed, the tracks field may be null",
|
||||
)
|
||||
|
||||
_normalize_start_ts = field_validator("start_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingErrorPayload(BaseModel):
|
||||
"""
|
||||
Payload for recording.error webhook event.
|
||||
|
||||
Reference: https://docs.daily.co/reference/rest-api/webhooks/events/recording-error
|
||||
"""
|
||||
|
||||
action: Literal["clourd-recording-err", "cloud-recording-error"] = Field(
|
||||
description="A string describing the event that was emitted (both variants are documented)"
|
||||
)
|
||||
error_msg: NonEmptyString = Field(description="The error message returned")
|
||||
instance_id: NonEmptyString = Field(
|
||||
description="The recording instance ID that was passed into the start recording command"
|
||||
)
|
||||
room_name: NonEmptyString = Field(
|
||||
description="The name of the room where the recording was made"
|
||||
)
|
||||
timestamp: int = Field(
|
||||
description="The Unix epoch time in seconds representing when the error was emitted"
|
||||
)
|
||||
|
||||
_normalize_timestamp = field_validator("timestamp", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class ParticipantJoinedEvent(BaseModel):
|
||||
version: NonEmptyString
|
||||
type: Literal["participant.joined"]
|
||||
id: NonEmptyString
|
||||
payload: ParticipantJoinedPayload
|
||||
event_ts: int
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class ParticipantLeftEvent(BaseModel):
|
||||
version: NonEmptyString
|
||||
type: Literal["participant.left"]
|
||||
id: NonEmptyString
|
||||
payload: ParticipantLeftPayload
|
||||
event_ts: int
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingStartedEvent(BaseModel):
|
||||
version: NonEmptyString
|
||||
type: Literal["recording.started"]
|
||||
id: NonEmptyString
|
||||
payload: RecordingStartedPayload
|
||||
event_ts: int
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingReadyEvent(BaseModel):
|
||||
version: NonEmptyString
|
||||
type: Literal["recording.ready-to-download"]
|
||||
id: NonEmptyString
|
||||
payload: RecordingReadyToDownloadPayload
|
||||
event_ts: int
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
class RecordingErrorEvent(BaseModel):
|
||||
version: NonEmptyString
|
||||
type: Literal["recording.error"]
|
||||
id: NonEmptyString
|
||||
payload: RecordingErrorPayload
|
||||
event_ts: int
|
||||
|
||||
_normalize_event_ts = field_validator("event_ts", mode="before")(
|
||||
normalize_timestamp_to_int
|
||||
)
|
||||
|
||||
|
||||
DailyWebhookEventUnion = Annotated[
|
||||
Union[
|
||||
ParticipantJoinedEvent,
|
||||
ParticipantLeftEvent,
|
||||
RecordingStartedEvent,
|
||||
RecordingReadyEvent,
|
||||
RecordingErrorEvent,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
@@ -24,10 +24,14 @@ def get_database() -> databases.Database:
|
||||
|
||||
|
||||
# import models
|
||||
import reflector.db.calendar_events # noqa
|
||||
import reflector.db.daily_participant_sessions # noqa
|
||||
import reflector.db.meetings # noqa
|
||||
import reflector.db.recordings # noqa
|
||||
import reflector.db.rooms # noqa
|
||||
import reflector.db.transcripts # noqa
|
||||
import reflector.db.user_api_keys # noqa
|
||||
import reflector.db.users # noqa
|
||||
|
||||
kwargs = {}
|
||||
if "postgres" not in settings.DATABASE_URL:
|
||||
|
||||
187
server/reflector/db/calendar_events.py
Normal file
187
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,187 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
calendar_events = sa.Table(
|
||||
"calendar_event",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("ics_uid", sa.Text, nullable=False),
|
||||
sa.Column("title", sa.Text),
|
||||
sa.Column("description", sa.Text),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", JSONB),
|
||||
sa.Column("location", sa.Text),
|
||||
sa.Column("ics_raw_data", sa.Text),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||
sa.Index(
|
||||
"idx_calendar_event_deleted",
|
||||
"is_deleted",
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class CalendarEvent(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: str | None = None
|
||||
description: str | None = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[dict[str, Any]] | None = None
|
||||
location: str | None = None
|
||||
ics_raw_data: str | None = None
|
||||
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
is_deleted: bool = False
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class CalendarEventController:
|
||||
async def get_by_room(
|
||||
self,
|
||||
room_id: str,
|
||||
include_deleted: bool = False,
|
||||
start_after: datetime | None = None,
|
||||
end_before: datetime | None = None,
|
||||
) -> list[CalendarEvent]:
|
||||
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(calendar_events.c.is_deleted == False)
|
||||
|
||||
if start_after:
|
||||
query = query.where(calendar_events.c.start_time >= start_after)
|
||||
|
||||
if end_before:
|
||||
query = query.where(calendar_events.c.end_time <= end_before)
|
||||
|
||||
query = query.order_by(calendar_events.c.start_time.asc())
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_upcoming(
|
||||
self, room_id: str, minutes_ahead: int = 120
|
||||
) -> list[CalendarEvent]:
|
||||
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
|
||||
now = datetime.now(timezone.utc)
|
||||
future_time = now + timedelta(minutes=minutes_ahead)
|
||||
|
||||
query = (
|
||||
calendar_events.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.start_time <= future_time,
|
||||
calendar_events.c.end_time >= now,
|
||||
)
|
||||
)
|
||||
.order_by(calendar_events.c.start_time.asc())
|
||||
)
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_by_id(self, event_id: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(calendar_events.c.id == event_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.ics_uid == ics_uid,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
|
||||
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
|
||||
|
||||
if existing:
|
||||
event.id = existing.id
|
||||
event.created_at = existing.created_at
|
||||
event.updated_at = datetime.now(timezone.utc)
|
||||
|
||||
query = (
|
||||
calendar_events.update()
|
||||
.where(calendar_events.c.id == existing.id)
|
||||
.values(**event.model_dump())
|
||||
)
|
||||
else:
|
||||
query = calendar_events.insert().values(**event.model_dump())
|
||||
|
||||
await get_database().execute(query)
|
||||
return event
|
||||
|
||||
async def soft_delete_missing(
|
||||
self, room_id: str, current_ics_uids: list[str]
|
||||
) -> int:
|
||||
"""Soft delete future events that are no longer in the calendar."""
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
select_query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
|
||||
to_delete = await get_database().fetch_all(select_query)
|
||||
delete_count = len(to_delete)
|
||||
|
||||
if delete_count > 0:
|
||||
update_query = (
|
||||
calendar_events.update()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
.values(is_deleted=True, updated_at=now)
|
||||
)
|
||||
|
||||
await get_database().execute(update_query)
|
||||
|
||||
return delete_count
|
||||
|
||||
async def delete_by_room(self, room_id: str) -> int:
|
||||
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
|
||||
result = await get_database().execute(query)
|
||||
return result.rowcount
|
||||
|
||||
|
||||
calendar_events_controller = CalendarEventController()
|
||||
229
server/reflector/db/daily_participant_sessions.py
Normal file
229
server/reflector/db/daily_participant_sessions.py
Normal file
@@ -0,0 +1,229 @@
|
||||
"""Daily.co participant session tracking.
|
||||
|
||||
Stores webhook data for participant.joined and participant.left events to provide
|
||||
historical session information (Daily.co API only returns current participants).
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy.dialects.postgresql import insert
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
daily_participant_sessions = sa.Table(
|
||||
"daily_participant_session",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("session_id", sa.String, nullable=False),
|
||||
sa.Column("user_id", sa.String, nullable=True),
|
||||
sa.Column("user_name", sa.String, nullable=False),
|
||||
sa.Column("joined_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("left_at", sa.DateTime(timezone=True), nullable=True),
|
||||
sa.Index("idx_daily_session_meeting_left", "meeting_id", "left_at"),
|
||||
sa.Index("idx_daily_session_room", "room_id"),
|
||||
)
|
||||
|
||||
|
||||
class DailyParticipantSession(BaseModel):
|
||||
"""Daily.co participant session record.
|
||||
|
||||
Tracks when a participant joined and left a meeting. Populated from webhooks:
|
||||
- participant.joined: Creates record with left_at=None
|
||||
- participant.left: Updates record with left_at
|
||||
|
||||
ID format: {meeting_id}:{user_id}:{joined_at_ms}
|
||||
- Ensures idempotency (duplicate webhooks don't create duplicates)
|
||||
- Allows same user to rejoin (different joined_at = different session)
|
||||
|
||||
Duration is calculated as: left_at - joined_at (not stored)
|
||||
"""
|
||||
|
||||
id: NonEmptyString
|
||||
meeting_id: NonEmptyString
|
||||
room_id: NonEmptyString
|
||||
session_id: NonEmptyString # Daily.co's session_id (identifies room session)
|
||||
user_id: NonEmptyString | None = None
|
||||
user_name: str
|
||||
joined_at: datetime
|
||||
left_at: datetime | None = None
|
||||
|
||||
|
||||
class DailyParticipantSessionController:
|
||||
"""Controller for Daily.co participant session persistence."""
|
||||
|
||||
async def get_by_id(self, id: str) -> DailyParticipantSession | None:
|
||||
"""Get a session by its ID."""
|
||||
query = daily_participant_sessions.select().where(
|
||||
daily_participant_sessions.c.id == id
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return DailyParticipantSession(**result) if result else None
|
||||
|
||||
async def get_open_session(
|
||||
self, meeting_id: NonEmptyString, session_id: NonEmptyString
|
||||
) -> DailyParticipantSession | None:
|
||||
"""Get the open (not left) session for a user in a meeting."""
|
||||
query = daily_participant_sessions.select().where(
|
||||
sa.and_(
|
||||
daily_participant_sessions.c.meeting_id == meeting_id,
|
||||
daily_participant_sessions.c.session_id == session_id,
|
||||
daily_participant_sessions.c.left_at.is_(None),
|
||||
)
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
|
||||
if len(results) > 1:
|
||||
raise ValueError(
|
||||
f"Multiple open sessions for daily session {session_id} in meeting {meeting_id}: "
|
||||
f"found {len(results)} sessions"
|
||||
)
|
||||
|
||||
return DailyParticipantSession(**results[0]) if results else None
|
||||
|
||||
async def upsert_joined(self, session: DailyParticipantSession) -> None:
|
||||
"""Insert or update when participant.joined webhook arrives.
|
||||
|
||||
Idempotent: Duplicate webhooks with same ID are safely ignored.
|
||||
Out-of-order: If left webhook arrived first, preserves left_at.
|
||||
"""
|
||||
query = insert(daily_participant_sessions).values(**session.model_dump())
|
||||
query = query.on_conflict_do_update(
|
||||
index_elements=["id"],
|
||||
set_={"user_name": session.user_name},
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def upsert_left(self, session: DailyParticipantSession) -> None:
|
||||
"""Update session when participant.left webhook arrives.
|
||||
|
||||
Finds the open session for this user in this meeting and updates left_at.
|
||||
Works around Daily.co webhook timestamp inconsistency (joined_at differs by ~4ms between webhooks).
|
||||
|
||||
Handles three cases:
|
||||
1. Normal flow: open session exists → updates left_at
|
||||
2. Out-of-order: left arrives first → creates new record with left data
|
||||
3. Duplicate: left arrives again → idempotent (DB trigger prevents left_at modification)
|
||||
"""
|
||||
if session.left_at is None:
|
||||
raise ValueError("left_at is required for upsert_left")
|
||||
|
||||
if session.left_at <= session.joined_at:
|
||||
raise ValueError(
|
||||
f"left_at ({session.left_at}) must be after joined_at ({session.joined_at})"
|
||||
)
|
||||
|
||||
# Find existing open session (works around timestamp mismatch in webhooks)
|
||||
existing = await self.get_open_session(session.meeting_id, session.session_id)
|
||||
|
||||
if existing:
|
||||
# Update existing open session
|
||||
query = (
|
||||
daily_participant_sessions.update()
|
||||
.where(daily_participant_sessions.c.id == existing.id)
|
||||
.values(left_at=session.left_at)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
else:
|
||||
# Out-of-order or first webhook: insert new record
|
||||
query = insert(daily_participant_sessions).values(**session.model_dump())
|
||||
query = query.on_conflict_do_nothing(index_elements=["id"])
|
||||
await get_database().execute(query)
|
||||
|
||||
async def get_by_meeting(self, meeting_id: str) -> list[DailyParticipantSession]:
|
||||
"""Get all participant sessions for a meeting (active and ended)."""
|
||||
query = daily_participant_sessions.select().where(
|
||||
daily_participant_sessions.c.meeting_id == meeting_id
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [DailyParticipantSession(**result) for result in results]
|
||||
|
||||
async def get_active_by_meeting(
|
||||
self, meeting_id: str
|
||||
) -> list[DailyParticipantSession]:
|
||||
"""Get only active (not left) participant sessions for a meeting."""
|
||||
query = daily_participant_sessions.select().where(
|
||||
sa.and_(
|
||||
daily_participant_sessions.c.meeting_id == meeting_id,
|
||||
daily_participant_sessions.c.left_at.is_(None),
|
||||
)
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [DailyParticipantSession(**result) for result in results]
|
||||
|
||||
async def get_all_sessions_for_meeting(
|
||||
self, meeting_id: NonEmptyString
|
||||
) -> dict[NonEmptyString, DailyParticipantSession]:
|
||||
query = daily_participant_sessions.select().where(
|
||||
daily_participant_sessions.c.meeting_id == meeting_id
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
# TODO DailySessionId custom type
|
||||
return {row["session_id"]: DailyParticipantSession(**row) for row in results}
|
||||
|
||||
async def batch_upsert_sessions(
|
||||
self, sessions: list[DailyParticipantSession]
|
||||
) -> None:
|
||||
"""Upsert multiple sessions in single query.
|
||||
|
||||
Uses ON CONFLICT for idempotency. Updates user_name on conflict since they may change it during a meeting.
|
||||
|
||||
"""
|
||||
if not sessions:
|
||||
return
|
||||
|
||||
values = [session.model_dump() for session in sessions]
|
||||
query = insert(daily_participant_sessions).values(values)
|
||||
query = query.on_conflict_do_update(
|
||||
index_elements=["id"],
|
||||
set_={
|
||||
# Preserve existing left_at to prevent race conditions
|
||||
"left_at": sa.func.coalesce(
|
||||
daily_participant_sessions.c.left_at,
|
||||
query.excluded.left_at,
|
||||
),
|
||||
"user_name": query.excluded.user_name,
|
||||
},
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def batch_close_sessions(
|
||||
self, session_ids: list[NonEmptyString], left_at: datetime
|
||||
) -> None:
|
||||
"""Mark multiple sessions as left in single query.
|
||||
|
||||
Only updates sessions where left_at is NULL (protects already-closed sessions).
|
||||
|
||||
Left_at mismatch for existing sessions is ignored, assumed to be not important issue if ever happens.
|
||||
"""
|
||||
if not session_ids:
|
||||
return
|
||||
|
||||
query = (
|
||||
daily_participant_sessions.update()
|
||||
.where(
|
||||
sa.and_(
|
||||
daily_participant_sessions.c.id.in_(session_ids),
|
||||
daily_participant_sessions.c.left_at.is_(None),
|
||||
)
|
||||
)
|
||||
.values(left_at=left_at)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
daily_participant_sessions_controller = DailyParticipantSessionController()
|
||||
@@ -1,13 +1,15 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy as sa
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.schemas.platform import WHEREBY_PLATFORM, Platform
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.string import assert_equal
|
||||
|
||||
meetings = sa.Table(
|
||||
"meeting",
|
||||
@@ -18,8 +20,12 @@ meetings = sa.Table(
|
||||
sa.Column("host_room_url", sa.String),
|
||||
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("room_id", sa.String),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||
@@ -41,20 +47,36 @@ meetings = sa.Table(
|
||||
nullable=False,
|
||||
server_default=sa.true(),
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"room_id",
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sa.Column(
|
||||
"calendar_event_id",
|
||||
sa.String,
|
||||
sa.ForeignKey(
|
||||
"calendar_event.id",
|
||||
ondelete="SET NULL",
|
||||
name="fk_meeting_calendar_event_id",
|
||||
),
|
||||
),
|
||||
sa.Column("calendar_metadata", JSONB),
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String,
|
||||
nullable=False,
|
||||
server_default=assert_equal(WHEREBY_PLATFORM, "whereby"),
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||
)
|
||||
|
||||
meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||
@@ -76,15 +98,18 @@ class Meeting(BaseModel):
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_id: str | None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
recording_trigger: Literal[
|
||||
recording_trigger: Literal[ # whereby-specific
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
platform: Platform = WHEREBY_PLATFORM
|
||||
|
||||
|
||||
class MeetingController:
|
||||
@@ -96,12 +121,10 @@ class MeetingController:
|
||||
host_room_url: str,
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
user_id: str,
|
||||
room: Room,
|
||||
calendar_event_id: str | None = None,
|
||||
calendar_metadata: dict[str, Any] | None = None,
|
||||
):
|
||||
"""
|
||||
Create a new meeting
|
||||
"""
|
||||
meeting = Meeting(
|
||||
id=id,
|
||||
room_name=room_name,
|
||||
@@ -109,41 +132,49 @@ class MeetingController:
|
||||
host_room_url=host_room_url,
|
||||
start_date=start_date,
|
||||
end_date=end_date,
|
||||
user_id=user_id,
|
||||
room_id=room.id,
|
||||
is_locked=room.is_locked,
|
||||
room_mode=room.room_mode,
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
calendar_event_id=calendar_event_id,
|
||||
calendar_metadata=calendar_metadata,
|
||||
platform=room.platform,
|
||||
)
|
||||
query = meetings.insert().values(**meeting.model_dump())
|
||||
await get_database().execute(query)
|
||||
return meeting
|
||||
|
||||
async def get_all_active(self) -> list[Meeting]:
|
||||
"""
|
||||
Get active meetings.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.is_active)
|
||||
return await get_database().fetch_all(query)
|
||||
async def get_all_active(self, platform: str | None = None) -> list[Meeting]:
|
||||
conditions = [meetings.c.is_active]
|
||||
if platform is not None:
|
||||
conditions.append(meetings.c.platform == platform)
|
||||
query = meetings.select().where(sa.and_(*conditions))
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Meeting(**result) for result in results]
|
||||
|
||||
async def get_by_room_name(
|
||||
self,
|
||||
room_name: str,
|
||||
) -> Meeting:
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by room name.
|
||||
For backward compatibility, returns the most recent meeting.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(meetings.c.room_name == room_name)
|
||||
.order_by(meetings.c.end_date.desc())
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
|
||||
"""
|
||||
Get latest active meeting for a room.
|
||||
For backward compatibility, returns the most recent active meeting.
|
||||
"""
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
@@ -160,40 +191,97 @@ class MeetingController:
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||
async def get_all_active_for_room(
|
||||
self, room: Room, current_time: datetime
|
||||
) -> list[Meeting]:
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Meeting(**result) for result in results]
|
||||
|
||||
async def get_active_by_calendar_event(
|
||||
self, room: Room, calendar_event_id: str, current_time: datetime
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by id
|
||||
Get active meeting for a specific calendar event.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
query = meetings.select().where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.calendar_event_id == calendar_event_id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
||||
"""
|
||||
Get a meeting by ID for HTTP request.
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
async def get_by_id(
|
||||
self, meeting_id: str, room: Room | None = None
|
||||
) -> Meeting | None:
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
|
||||
if room:
|
||||
query = query.where(meetings.c.room_id == room.id)
|
||||
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
meeting = Meeting(**result)
|
||||
if result["user_id"] != user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
async def get_by_calendar_event(
|
||||
self, calendar_event_id: str, room: Room
|
||||
) -> Meeting | None:
|
||||
query = meetings.select().where(
|
||||
meetings.c.calendar_event_id == calendar_event_id
|
||||
)
|
||||
if room:
|
||||
query = query.where(meetings.c.room_id == room.id)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def increment_num_clients(self, meeting_id: str) -> None:
|
||||
"""Atomically increment participant count."""
|
||||
query = (
|
||||
meetings.update()
|
||||
.where(meetings.c.id == meeting_id)
|
||||
.values(num_clients=meetings.c.num_clients + 1)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def decrement_num_clients(self, meeting_id: str) -> None:
|
||||
"""Atomically decrement participant count (min 0)."""
|
||||
query = (
|
||||
meetings.update()
|
||||
.where(meetings.c.id == meeting_id)
|
||||
.values(
|
||||
num_clients=sa.case(
|
||||
(meetings.c.num_clients > 0, meetings.c.num_clients - 1), else_=0
|
||||
)
|
||||
)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
class MeetingConsentController:
|
||||
async def get_by_meeting_id(self, meeting_id: str) -> list[MeetingConsent]:
|
||||
@@ -214,10 +302,9 @@ class MeetingConsentController:
|
||||
result = await get_database().fetch_one(query)
|
||||
if result is None:
|
||||
return None
|
||||
return MeetingConsent(**result) if result else None
|
||||
return MeetingConsent(**result)
|
||||
|
||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||
"""Create new consent or update existing one for authenticated users"""
|
||||
if consent.user_id:
|
||||
# For authenticated users, check if consent already exists
|
||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||
|
||||
@@ -21,6 +21,7 @@ recordings = sa.Table(
|
||||
server_default="pending",
|
||||
),
|
||||
sa.Column("meeting_id", sa.String),
|
||||
sa.Column("track_keys", sa.JSON, nullable=True),
|
||||
sa.Index("idx_recording_meeting_id", "meeting_id"),
|
||||
)
|
||||
|
||||
@@ -28,10 +29,20 @@ recordings = sa.Table(
|
||||
class Recording(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
bucket_name: str
|
||||
# for single-track
|
||||
object_key: str
|
||||
recorded_at: datetime
|
||||
status: Literal["pending", "processing", "completed", "failed"] = "pending"
|
||||
meeting_id: str | None = None
|
||||
# for multitrack reprocessing
|
||||
# track_keys can be empty list [] if recording finished but no audio was captured (silence/muted)
|
||||
# None means not a multitrack recording, [] means multitrack with no tracks
|
||||
track_keys: list[str] | None = None
|
||||
|
||||
@property
|
||||
def is_multitrack(self) -> bool:
|
||||
"""True if recording has separate audio tracks (1+ tracks counts as multitrack)."""
|
||||
return self.track_keys is not None and len(self.track_keys) > 0
|
||||
|
||||
|
||||
class RecordingController:
|
||||
@@ -40,12 +51,14 @@ class RecordingController:
|
||||
await get_database().execute(query)
|
||||
return recording
|
||||
|
||||
async def get_by_id(self, id: str) -> Recording:
|
||||
async def get_by_id(self, id: str) -> Recording | None:
|
||||
query = recordings.select().where(recordings.c.id == id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return Recording(**result) if result else None
|
||||
|
||||
async def get_by_object_key(self, bucket_name: str, object_key: str) -> Recording:
|
||||
async def get_by_object_key(
|
||||
self, bucket_name: str, object_key: str
|
||||
) -> Recording | None:
|
||||
query = recordings.select().where(
|
||||
recordings.c.bucket_name == bucket_name,
|
||||
recordings.c.object_key == object_key,
|
||||
@@ -57,5 +70,14 @@ class RecordingController:
|
||||
query = recordings.delete().where(recordings.c.id == id)
|
||||
await get_database().execute(query)
|
||||
|
||||
# no check for existence
|
||||
async def get_by_ids(self, recording_ids: list[str]) -> list[Recording]:
|
||||
if not recording_ids:
|
||||
return []
|
||||
|
||||
query = recordings.select().where(recordings.c.id.in_(recording_ids))
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Recording(**row) for row in results]
|
||||
|
||||
|
||||
recordings_controller = RecordingController()
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
@@ -8,6 +9,8 @@ from pydantic import BaseModel, Field
|
||||
from sqlalchemy.sql import false, or_
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.schemas.platform import Platform
|
||||
from reflector.settings import settings
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
rooms = sqlalchemy.Table(
|
||||
@@ -40,7 +43,22 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("ics_url", sqlalchemy.Text),
|
||||
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
|
||||
sqlalchemy.Column(
|
||||
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
|
||||
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
|
||||
sqlalchemy.Column(
|
||||
"platform",
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
|
||||
|
||||
@@ -55,10 +73,18 @@ class Room(BaseModel):
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
recording_trigger: Literal[
|
||||
recording_trigger: Literal[ # whereby-specific
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
ics_url: str | None = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
platform: Platform = Field(default_factory=lambda: settings.DEFAULT_VIDEO_PLATFORM)
|
||||
|
||||
|
||||
class RoomController:
|
||||
@@ -107,22 +133,39 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
ics_url: str | None = None,
|
||||
ics_fetch_interval: int = 300,
|
||||
ics_enabled: bool = False,
|
||||
platform: Platform = settings.DEFAULT_VIDEO_PLATFORM,
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
zulip_auto_post=zulip_auto_post,
|
||||
zulip_stream=zulip_stream,
|
||||
zulip_topic=zulip_topic,
|
||||
is_locked=is_locked,
|
||||
room_mode=room_mode,
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
)
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room_data = {
|
||||
"name": name,
|
||||
"user_id": user_id,
|
||||
"zulip_auto_post": zulip_auto_post,
|
||||
"zulip_stream": zulip_stream,
|
||||
"zulip_topic": zulip_topic,
|
||||
"is_locked": is_locked,
|
||||
"room_mode": room_mode,
|
||||
"recording_type": recording_type,
|
||||
"recording_trigger": recording_trigger,
|
||||
"is_shared": is_shared,
|
||||
"webhook_url": webhook_url,
|
||||
"webhook_secret": webhook_secret,
|
||||
"ics_url": ics_url,
|
||||
"ics_fetch_interval": ics_fetch_interval,
|
||||
"ics_enabled": ics_enabled,
|
||||
"platform": platform,
|
||||
}
|
||||
|
||||
room = Room(**room_data)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
try:
|
||||
await get_database().execute(query)
|
||||
@@ -134,6 +177,9 @@ class RoomController:
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
try:
|
||||
await get_database().execute(query)
|
||||
@@ -183,6 +229,13 @@ class RoomController:
|
||||
|
||||
return room
|
||||
|
||||
async def get_ics_enabled(self) -> list[Room]:
|
||||
query = rooms.select().where(
|
||||
rooms.c.ics_enabled == True, rooms.c.ics_url != None
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Room(**result) for result in results]
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
room_id: str,
|
||||
|
||||
@@ -8,12 +8,14 @@ from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from databases.interfaces import Record as DbRecord
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
@@ -21,9 +23,10 @@ from pydantic import (
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.db.rooms import rooms
|
||||
from reflector.db.transcripts import SourceKind, transcripts
|
||||
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
@@ -31,12 +34,13 @@ DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=0, strip_whitespace=True)
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
@@ -88,7 +92,7 @@ class WebVTTProcessor:
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
@@ -125,12 +129,14 @@ class SnippetCandidate:
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
source_kind: SourceKind | None = None
|
||||
from_datetime: datetime | None = None
|
||||
to_datetime: datetime | None = None
|
||||
|
||||
|
||||
class SearchResultDB(BaseModel):
|
||||
@@ -157,7 +163,7 @@ class SearchResult(BaseModel):
|
||||
room_name: str | None = None
|
||||
source_kind: SourceKind
|
||||
created_at: datetime
|
||||
status: str = Field(..., min_length=1)
|
||||
status: TranscriptStatus = Field(..., min_length=1)
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||
search_snippets: list[str] = Field(
|
||||
@@ -199,15 +205,13 @@ class SnippetGenerator:
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def count_matches(text: str, query: str) -> NonNegativeInt:
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
@@ -243,13 +247,14 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from text."""
|
||||
if not text or not query:
|
||||
logger.warning("Empty text or query for generate_snippets")
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
candidates = (
|
||||
@@ -270,7 +275,7 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
@@ -278,9 +283,9 @@ class SnippetGenerator:
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: str | None,
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
@@ -289,6 +294,11 @@ class SnippetGenerator:
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
@@ -355,8 +365,8 @@ class SearchController:
|
||||
else_=rooms.c.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
|
||||
if params.query_text:
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
@@ -373,7 +383,9 @@ class SearchController:
|
||||
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
@@ -392,8 +404,16 @@ class SearchController:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.source_kind == params.source_kind
|
||||
)
|
||||
if params.from_datetime:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.created_at >= params.from_datetime
|
||||
)
|
||||
if params.to_datetime:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.created_at <= params.to_datetime
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||
@@ -407,19 +427,29 @@ class SearchController:
|
||||
)
|
||||
total = await get_database().fetch_val(count_query)
|
||||
|
||||
def _process_result(r) -> SearchResult:
|
||||
def _process_result(r: DbRecord) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
long_summary: str | None = r_dict.pop("long_summary", None)
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
snippets, total_match_count = SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(
|
||||
|
||||
@@ -21,7 +21,7 @@ from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.processors.types import Word as ProcessorWord
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_recordings_storage, get_transcripts_storage
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.webvtt import topics_to_webvtt
|
||||
|
||||
@@ -122,6 +122,15 @@ def generate_transcript_name() -> str:
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -177,6 +186,7 @@ class TranscriptParticipant(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
speaker: int | None
|
||||
name: str
|
||||
user_id: str | None = None
|
||||
|
||||
|
||||
class Transcript(BaseModel):
|
||||
@@ -185,7 +195,7 @@ class Transcript(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
@@ -614,7 +624,9 @@ class TranscriptController:
|
||||
)
|
||||
if recording:
|
||||
try:
|
||||
await get_recordings_storage().delete_file(recording.object_key)
|
||||
await get_transcripts_storage().delete_file(
|
||||
recording.object_key, bucket=recording.bucket_name
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete recording object from S3",
|
||||
@@ -638,6 +650,19 @@ class TranscriptController:
|
||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||
await get_database().execute(query)
|
||||
|
||||
@staticmethod
|
||||
def user_can_mutate(transcript: Transcript, user_id: str | None) -> bool:
|
||||
"""
|
||||
Returns True if the given user is allowed to modify the transcript.
|
||||
|
||||
Policy:
|
||||
- Anonymous transcripts (user_id is None) cannot be modified via API
|
||||
- Only the owner (matching user_id) can modify their transcript
|
||||
"""
|
||||
if transcript.user_id is None:
|
||||
return False
|
||||
return user_id and transcript.user_id == user_id
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
"""
|
||||
@@ -703,11 +728,13 @@ class TranscriptController:
|
||||
"""
|
||||
Download audio from storage
|
||||
"""
|
||||
transcript.audio_mp3_filename.write_bytes(
|
||||
await get_transcripts_storage().get_file(
|
||||
transcript.storage_audio_path,
|
||||
)
|
||||
)
|
||||
storage = get_transcripts_storage()
|
||||
try:
|
||||
with open(transcript.audio_mp3_filename, "wb") as f:
|
||||
await storage.stream_to_fileobj(transcript.storage_audio_path, f)
|
||||
except Exception:
|
||||
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
||||
raise
|
||||
|
||||
async def upsert_participant(
|
||||
self,
|
||||
@@ -732,5 +759,27 @@ class TranscriptController:
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
|
||||
async def set_status(
|
||||
self, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
async with self.transaction():
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await self.update(transcript, {"status": status})
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
91
server/reflector/db/user_api_keys.py
Normal file
91
server/reflector/db/user_api_keys.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import hmac
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from hashlib import sha256
|
||||
|
||||
import sqlalchemy
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.settings import settings
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
user_api_keys = sqlalchemy.Table(
|
||||
"user_api_key",
|
||||
metadata,
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("key_hash", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("name", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||
sqlalchemy.Index("idx_user_api_key_hash", "key_hash", unique=True),
|
||||
sqlalchemy.Index("idx_user_api_key_user_id", "user_id"),
|
||||
)
|
||||
|
||||
|
||||
class UserApiKey(BaseModel):
|
||||
id: NonEmptyString = Field(default_factory=generate_uuid4)
|
||||
user_id: NonEmptyString
|
||||
key_hash: NonEmptyString
|
||||
name: NonEmptyString | None = None
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class UserApiKeyController:
|
||||
@staticmethod
|
||||
def generate_key() -> NonEmptyString:
|
||||
return secrets.token_urlsafe(48)
|
||||
|
||||
@staticmethod
|
||||
def hash_key(key: NonEmptyString) -> str:
|
||||
return hmac.new(
|
||||
settings.SECRET_KEY.encode(), key.encode(), digestmod=sha256
|
||||
).hexdigest()
|
||||
|
||||
@classmethod
|
||||
async def create_key(
|
||||
cls,
|
||||
user_id: NonEmptyString,
|
||||
name: NonEmptyString | None = None,
|
||||
) -> tuple[UserApiKey, NonEmptyString]:
|
||||
plaintext = cls.generate_key()
|
||||
api_key = UserApiKey(
|
||||
user_id=user_id,
|
||||
key_hash=cls.hash_key(plaintext),
|
||||
name=name,
|
||||
)
|
||||
query = user_api_keys.insert().values(**api_key.model_dump())
|
||||
await get_database().execute(query)
|
||||
return api_key, plaintext
|
||||
|
||||
@classmethod
|
||||
async def verify_key(cls, plaintext_key: NonEmptyString) -> UserApiKey | None:
|
||||
key_hash = cls.hash_key(plaintext_key)
|
||||
query = user_api_keys.select().where(
|
||||
user_api_keys.c.key_hash == key_hash,
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return UserApiKey(**result) if result else None
|
||||
|
||||
@staticmethod
|
||||
async def list_by_user_id(user_id: NonEmptyString) -> list[UserApiKey]:
|
||||
query = (
|
||||
user_api_keys.select()
|
||||
.where(user_api_keys.c.user_id == user_id)
|
||||
.order_by(user_api_keys.c.created_at.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [UserApiKey(**r) for r in results]
|
||||
|
||||
@staticmethod
|
||||
async def delete_key(key_id: NonEmptyString, user_id: NonEmptyString) -> bool:
|
||||
query = user_api_keys.delete().where(
|
||||
(user_api_keys.c.id == key_id) & (user_api_keys.c.user_id == user_id)
|
||||
)
|
||||
result = await get_database().execute(query)
|
||||
# asyncpg returns None for DELETE, consider it success if no exception
|
||||
return result is None or result > 0
|
||||
|
||||
|
||||
user_api_keys_controller = UserApiKeyController()
|
||||
92
server/reflector/db/users.py
Normal file
92
server/reflector/db/users.py
Normal file
@@ -0,0 +1,92 @@
|
||||
"""User table for storing Authentik user information."""
|
||||
|
||||
from datetime import datetime, timezone
|
||||
|
||||
import sqlalchemy
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
users = sqlalchemy.Table(
|
||||
"user",
|
||||
metadata,
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("email", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("authentik_uid", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||
sqlalchemy.Column("updated_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||
sqlalchemy.Index("idx_user_authentik_uid", "authentik_uid", unique=True),
|
||||
sqlalchemy.Index("idx_user_email", "email", unique=False),
|
||||
)
|
||||
|
||||
|
||||
class User(BaseModel):
|
||||
id: NonEmptyString = Field(default_factory=generate_uuid4)
|
||||
email: NonEmptyString
|
||||
authentik_uid: NonEmptyString
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class UserController:
|
||||
@staticmethod
|
||||
async def get_by_id(user_id: NonEmptyString) -> User | None:
|
||||
query = users.select().where(users.c.id == user_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return User(**result) if result else None
|
||||
|
||||
@staticmethod
|
||||
async def get_by_authentik_uid(authentik_uid: NonEmptyString) -> User | None:
|
||||
query = users.select().where(users.c.authentik_uid == authentik_uid)
|
||||
result = await get_database().fetch_one(query)
|
||||
return User(**result) if result else None
|
||||
|
||||
@staticmethod
|
||||
async def get_by_email(email: NonEmptyString) -> User | None:
|
||||
query = users.select().where(users.c.email == email)
|
||||
result = await get_database().fetch_one(query)
|
||||
return User(**result) if result else None
|
||||
|
||||
@staticmethod
|
||||
async def create_or_update(
|
||||
id: NonEmptyString, authentik_uid: NonEmptyString, email: NonEmptyString
|
||||
) -> User:
|
||||
existing = await UserController.get_by_authentik_uid(authentik_uid)
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
if existing:
|
||||
query = (
|
||||
users.update()
|
||||
.where(users.c.authentik_uid == authentik_uid)
|
||||
.values(email=email, updated_at=now)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
return User(
|
||||
id=existing.id,
|
||||
authentik_uid=authentik_uid,
|
||||
email=email,
|
||||
created_at=existing.created_at,
|
||||
updated_at=now,
|
||||
)
|
||||
else:
|
||||
user = User(
|
||||
id=id,
|
||||
authentik_uid=authentik_uid,
|
||||
email=email,
|
||||
created_at=now,
|
||||
updated_at=now,
|
||||
)
|
||||
query = users.insert().values(**user.model_dump())
|
||||
await get_database().execute(query)
|
||||
return user
|
||||
|
||||
@staticmethod
|
||||
async def list_all() -> list[User]:
|
||||
query = users.select().order_by(users.c.created_at.desc())
|
||||
results = await get_database().fetch_all(query)
|
||||
return [User(**r) for r in results]
|
||||
|
||||
|
||||
user_controller = UserController()
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from typing import Type, TypeVar
|
||||
|
||||
from llama_index.core import Settings
|
||||
@@ -5,7 +6,7 @@ from llama_index.core.output_parsers import PydanticOutputParser
|
||||
from llama_index.core.program import LLMTextCompletionProgram
|
||||
from llama_index.core.response_synthesizers import TreeSummarize
|
||||
from llama_index.llms.openai_like import OpenAILike
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
@@ -61,6 +62,8 @@ class LLM:
|
||||
tone_name: str | None = None,
|
||||
) -> T:
|
||||
"""Get structured output from LLM for non-function-calling models"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
summarizer = TreeSummarize(verbose=True)
|
||||
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
|
||||
|
||||
@@ -76,8 +79,25 @@ class LLM:
|
||||
"Please structure the above information in the following JSON format:"
|
||||
)
|
||||
|
||||
output = await program.acall(
|
||||
analysis=str(response), format_instructions=format_instructions
|
||||
)
|
||||
try:
|
||||
output = await program.acall(
|
||||
analysis=str(response), format_instructions=format_instructions
|
||||
)
|
||||
except ValidationError as e:
|
||||
# Extract the raw JSON from the error details
|
||||
errors = e.errors()
|
||||
if errors and "input" in errors[0]:
|
||||
raw_json = errors[0]["input"]
|
||||
logger.error(
|
||||
f"JSON validation failed for {output_cls.__name__}. "
|
||||
f"Full raw JSON output:\n{raw_json}\n"
|
||||
f"Validation errors: {errors}"
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"JSON validation failed for {output_cls.__name__}. "
|
||||
f"Validation errors: {errors}"
|
||||
)
|
||||
raise
|
||||
|
||||
return output
|
||||
|
||||
1
server/reflector/pipelines/__init__.py
Normal file
1
server/reflector/pipelines/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
"""Pipeline modules for audio processing."""
|
||||
@@ -7,29 +7,34 @@ Uses parallel processing for transcription, diarization, and waveform generation
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import PipelineMainBase, asynctask
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
from reflector.pipelines import topic_processing
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.pipelines.transcription_helpers import transcribe_file_with_processor
|
||||
from reflector.processors import AudioFileWriterProcessor
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_diarization import FileDiarizationInput
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerInput,
|
||||
TranscriptDiarizationAssemblerProcessor,
|
||||
@@ -43,19 +48,7 @@ from reflector.processors.types import (
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
"""Empty pipeline for processors that need a pipeline reference"""
|
||||
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
from reflector.worker.webhook import send_transcript_webhook
|
||||
|
||||
|
||||
class PipelineMainFile(PipelineMainBase):
|
||||
@@ -70,7 +63,7 @@ class PipelineMainFile(PipelineMainBase):
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
self.empty_pipeline = topic_processing.EmptyPipeline(logger=self.logger)
|
||||
|
||||
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||
@@ -83,12 +76,27 @@ class PipelineMainFile(PipelineMainBase):
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
@@ -105,6 +113,8 @@ class PipelineMainFile(PipelineMainBase):
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
@@ -234,24 +244,7 @@ class PipelineMainFile(PipelineMainBase):
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
"""Transcribe complete file"""
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
# Store result for retrieval
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
return await transcribe_file_with_processor(audio_url, language)
|
||||
|
||||
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||
"""Get diarization for file"""
|
||||
@@ -294,63 +287,53 @@ class PipelineMainFile(PipelineMainBase):
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
"""Detect topics from complete transcript"""
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
return await topic_processing.detect_topics(
|
||||
transcript,
|
||||
target_language,
|
||||
on_topic_callback=self.on_topic,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
)
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
"""Generate title from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
return await topic_processing.generate_title(
|
||||
topics,
|
||||
on_title_callback=self.on_title,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
"""Generate long and short summaries from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
return await topic_processing.generate_summaries(
|
||||
topics,
|
||||
transcript,
|
||||
on_long_summary_callback=self.on_long_summary,
|
||||
on_short_summary_callback=self.on_short_summary,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
logger=self.logger,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||
"""Send webhook if this is a room recording with webhook configured"""
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
send_transcript_webhook.delay(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@@ -362,14 +345,33 @@ async def task_pipeline_file_process(*, transcript_id: str):
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
# Run file pipeline
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process(audio_file)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(audio_file)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"File pipeline failed for transcript {transcript_id}: {type(e).__name__}: {str(e)}",
|
||||
exc_info=True,
|
||||
transcript_id=transcript_id,
|
||||
)
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
# Run post-processing chain: consent cleanup -> zulip -> webhook
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
|
||||
@@ -17,12 +17,11 @@ from contextlib import asynccontextmanager
|
||||
from typing import Generic
|
||||
|
||||
import av
|
||||
import boto3
|
||||
from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -32,6 +31,7 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
@@ -40,8 +40,9 @@ from reflector.db.transcripts import (
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -68,29 +69,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -106,6 +84,20 @@ def broadcast_to_sockets(func):
|
||||
message=resp.model_dump(mode="json"),
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(self.transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
# Emit only relevant events to the user room to avoid noisy updates.
|
||||
# Allowed: STATUS, FINAL_TITLE, DURATION. All are prefixed with TRANSCRIPT_
|
||||
allowed_user_events = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
if resp.event in allowed_user_events:
|
||||
await self.ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{resp.event}",
|
||||
"data": {"id": self.transcript_id, **resp.data},
|
||||
},
|
||||
)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@@ -187,8 +179,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async with self.lock_transaction():
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
|
||||
@@ -197,14 +196,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -220,22 +219,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
@@ -365,7 +350,8 @@ class PipelineMainLive(PipelineMainBase):
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
@@ -597,6 +583,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
|
||||
consent_denied = False
|
||||
recording = None
|
||||
meeting = None
|
||||
try:
|
||||
if transcript.recording_id:
|
||||
recording = await recordings_controller.get_by_id(transcript.recording_id)
|
||||
@@ -607,8 +594,8 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
meeting.id
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get fetch consent: {e}", exc_info=e)
|
||||
consent_denied = True
|
||||
logger.error(f"Failed to fetch consent: {e}", exc_info=e)
|
||||
raise
|
||||
|
||||
if not consent_denied:
|
||||
logger.info("Consent approved, keeping all files")
|
||||
@@ -616,25 +603,24 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
|
||||
logger.info("Consent denied, cleaning up all related audio files")
|
||||
|
||||
if recording and recording.bucket_name and recording.object_key:
|
||||
s3_whereby = boto3.client(
|
||||
"s3",
|
||||
aws_access_key_id=settings.AWS_WHEREBY_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.AWS_WHEREBY_ACCESS_KEY_SECRET,
|
||||
)
|
||||
try:
|
||||
s3_whereby.delete_object(
|
||||
Bucket=recording.bucket_name, Key=recording.object_key
|
||||
)
|
||||
logger.info(
|
||||
f"Deleted original Whereby recording: {recording.bucket_name}/{recording.object_key}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete Whereby recording: {e}", exc_info=e)
|
||||
deletion_errors = []
|
||||
if recording and recording.bucket_name:
|
||||
keys_to_delete = []
|
||||
if recording.track_keys:
|
||||
keys_to_delete = recording.track_keys
|
||||
elif recording.object_key:
|
||||
keys_to_delete = [recording.object_key]
|
||||
|
||||
master_storage = get_transcripts_storage()
|
||||
for key in keys_to_delete:
|
||||
try:
|
||||
await master_storage.delete_file(key, bucket=recording.bucket_name)
|
||||
logger.info(f"Deleted recording file: {recording.bucket_name}/{key}")
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to delete {key}: {e}"
|
||||
logger.error(error_msg, exc_info=e)
|
||||
deletion_errors.append(error_msg)
|
||||
|
||||
# non-transactional, files marked for deletion not actually deleted is possible
|
||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||
# 2. Delete processed audio from transcript storage S3 bucket
|
||||
if transcript.audio_location == "storage":
|
||||
storage = get_transcripts_storage()
|
||||
try:
|
||||
@@ -643,18 +629,28 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
f"Deleted processed audio from storage: {transcript.storage_audio_path}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete processed audio: {e}", exc_info=e)
|
||||
error_msg = f"Failed to delete processed audio: {e}"
|
||||
logger.error(error_msg, exc_info=e)
|
||||
deletion_errors.append(error_msg)
|
||||
|
||||
# 3. Delete local audio files
|
||||
try:
|
||||
if hasattr(transcript, "audio_mp3_filename") and transcript.audio_mp3_filename:
|
||||
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
||||
if hasattr(transcript, "audio_wav_filename") and transcript.audio_wav_filename:
|
||||
transcript.audio_wav_filename.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete local audio files: {e}", exc_info=e)
|
||||
error_msg = f"Failed to delete local audio files: {e}"
|
||||
logger.error(error_msg, exc_info=e)
|
||||
deletion_errors.append(error_msg)
|
||||
|
||||
logger.info("Consent cleanup done")
|
||||
if deletion_errors:
|
||||
logger.warning(
|
||||
f"Consent cleanup completed with {len(deletion_errors)} errors",
|
||||
errors=deletion_errors,
|
||||
)
|
||||
else:
|
||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||
logger.info("Consent cleanup done - all audio deleted")
|
||||
|
||||
|
||||
@get_transcript
|
||||
@@ -792,7 +788,7 @@ def pipeline_post(*, transcript_id: str):
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
return chain.delay()
|
||||
|
||||
|
||||
@get_transcript
|
||||
|
||||
803
server/reflector/pipelines/main_multitrack_pipeline.py
Normal file
803
server/reflector/pipelines/main_multitrack_pipeline.py
Normal file
@@ -0,0 +1,803 @@
|
||||
import asyncio
|
||||
import math
|
||||
import tempfile
|
||||
from fractions import Fraction
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.dailyco_api import MeetingParticipantsResponse
|
||||
from reflector.db.transcripts import (
|
||||
Transcript,
|
||||
TranscriptParticipant,
|
||||
TranscriptStatus,
|
||||
TranscriptWaveform,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines import topic_processing
|
||||
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.pipelines.transcription_helpers import transcribe_file_with_processor
|
||||
from reflector.processors import AudioFileWriterProcessor
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import Transcript as TranscriptType
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import Storage, get_transcripts_storage
|
||||
from reflector.utils.daily import (
|
||||
filter_cam_audio_tracks,
|
||||
parse_daily_recording_filename,
|
||||
)
|
||||
from reflector.utils.string import NonEmptyString
|
||||
from reflector.video_platforms.factory import create_platform_client
|
||||
|
||||
# Audio encoding constants
|
||||
OPUS_STANDARD_SAMPLE_RATE = 48000
|
||||
OPUS_DEFAULT_BIT_RATE = 128000
|
||||
|
||||
# Storage operation constants
|
||||
PRESIGNED_URL_EXPIRATION_SECONDS = 7200 # 2 hours
|
||||
|
||||
|
||||
class PipelineMainMultitrack(PipelineMainBase):
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = topic_processing.EmptyPipeline(logger=self.logger)
|
||||
|
||||
async def pad_track_for_transcription(
|
||||
self,
|
||||
track_url: NonEmptyString,
|
||||
track_idx: int,
|
||||
storage: Storage,
|
||||
) -> NonEmptyString:
|
||||
"""
|
||||
Pad a single track with silence based on stream metadata start_time.
|
||||
Downloads from S3 presigned URL, processes via PyAV using tempfile, uploads to S3.
|
||||
Returns presigned URL of padded track (or original URL if no padding needed).
|
||||
|
||||
Memory usage:
|
||||
- Pattern: fixed_overhead(2-5MB) for PyAV codec/filters
|
||||
- PyAV streams input efficiently (no full download, verified)
|
||||
- Output written to tempfile (disk-based, not memory)
|
||||
- Upload streams from file handle (boto3 chunks, typically 5-10MB)
|
||||
|
||||
Daily.co raw-tracks timing - Two approaches:
|
||||
|
||||
CURRENT APPROACH (PyAV metadata):
|
||||
The WebM stream.start_time field encodes MEETING-RELATIVE timing:
|
||||
- t=0: When Daily.co recording started (first participant joined)
|
||||
- start_time=8.13s: This participant's track began 8.13s after recording started
|
||||
- Purpose: Enables track alignment without external manifest files
|
||||
|
||||
This is NOT:
|
||||
- Stream-internal offset (first packet timestamp relative to stream start)
|
||||
- Absolute/wall-clock time
|
||||
- Recording duration
|
||||
|
||||
ALTERNATIVE APPROACH (filename parsing):
|
||||
Daily.co filenames contain Unix timestamps (milliseconds):
|
||||
Format: {recording_start_ts}-{participant_id}-cam-audio-{track_start_ts}.webm
|
||||
Example: 1760988935484-52f7f48b-fbab-431f-9a50-87b9abfc8255-cam-audio-1760988935922.webm
|
||||
|
||||
Can calculate offset: (track_start_ts - recording_start_ts) / 1000
|
||||
- Track 0: (1760988935922 - 1760988935484) / 1000 = 0.438s
|
||||
- Track 1: (1760988943823 - 1760988935484) / 1000 = 8.339s
|
||||
|
||||
TIME DIFFERENCE: PyAV metadata vs filename timestamps differ by ~209ms:
|
||||
- Track 0: filename=438ms, metadata=229ms (diff: 209ms)
|
||||
- Track 1: filename=8339ms, metadata=8130ms (diff: 209ms)
|
||||
|
||||
Consistent delta suggests network/encoding delay. PyAV metadata is ground truth
|
||||
(represents when audio stream actually started vs when file upload initiated).
|
||||
|
||||
Example with 2 participants:
|
||||
Track A: start_time=0.2s → Joined 200ms after recording began
|
||||
Track B: start_time=8.1s → Joined 8.1 seconds later
|
||||
|
||||
After padding:
|
||||
Track A: [0.2s silence] + [speech...]
|
||||
Track B: [8.1s silence] + [speech...]
|
||||
|
||||
Whisper transcription timestamps are now synchronized:
|
||||
Track A word at 5.0s → happened at meeting t=5.0s
|
||||
Track B word at 10.0s → happened at meeting t=10.0s
|
||||
|
||||
Merging just sorts by timestamp - no offset calculation needed.
|
||||
|
||||
Padding coincidentally involves re-encoding. It's important when we work with Daily.co + Whisper.
|
||||
This is because Daily.co returns recordings with skipped frames e.g. when microphone muted.
|
||||
Daily.co doesn't understand those frames and ignores them, causing timestamp issues in transcription.
|
||||
Re-encoding restores those frames. We do padding and re-encoding together just because it's convenient and more performant:
|
||||
we need padded values for mix mp3 anyways
|
||||
"""
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
try:
|
||||
# PyAV streams input from S3 URL efficiently (2-5MB fixed overhead for codec/filters)
|
||||
with av.open(track_url) as in_container:
|
||||
start_time_seconds = self._extract_stream_start_time_from_container(
|
||||
in_container, track_idx
|
||||
)
|
||||
|
||||
if start_time_seconds <= 0:
|
||||
self.logger.info(
|
||||
f"Track {track_idx} requires no padding (start_time={start_time_seconds}s)",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
return track_url
|
||||
|
||||
# Use tempfile instead of BytesIO for better memory efficiency
|
||||
# Reduces peak memory usage during encoding/upload
|
||||
with tempfile.NamedTemporaryFile(
|
||||
suffix=".webm", delete=False
|
||||
) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
self._apply_audio_padding_to_file(
|
||||
in_container, temp_path, start_time_seconds, track_idx
|
||||
)
|
||||
|
||||
storage_path = (
|
||||
f"file_pipeline/{transcript.id}/tracks/padded_{track_idx}.webm"
|
||||
)
|
||||
|
||||
# Upload using file handle for streaming
|
||||
with open(temp_path, "rb") as padded_file:
|
||||
await storage.put_file(storage_path, padded_file)
|
||||
finally:
|
||||
# Clean up temp file
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
|
||||
padded_url = await storage.get_file_url(
|
||||
storage_path,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"Successfully padded track {track_idx}",
|
||||
track_idx=track_idx,
|
||||
start_time_seconds=start_time_seconds,
|
||||
padded_url=padded_url,
|
||||
)
|
||||
|
||||
return padded_url
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
f"Failed to process track {track_idx}",
|
||||
track_idx=track_idx,
|
||||
url=track_url,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise Exception(
|
||||
f"Track {track_idx} padding failed - transcript would have incorrect timestamps"
|
||||
) from e
|
||||
|
||||
def _extract_stream_start_time_from_container(
|
||||
self, container, track_idx: int
|
||||
) -> float:
|
||||
"""
|
||||
Extract meeting-relative start time from WebM stream metadata.
|
||||
Uses PyAV to read stream.start_time from WebM container.
|
||||
More accurate than filename timestamps by ~209ms due to network/encoding delays.
|
||||
"""
|
||||
start_time_seconds = 0.0
|
||||
try:
|
||||
audio_streams = [s for s in container.streams if s.type == "audio"]
|
||||
stream = audio_streams[0] if audio_streams else container.streams[0]
|
||||
|
||||
# 1) Try stream-level start_time (most reliable for Daily.co tracks)
|
||||
if stream.start_time is not None and stream.time_base is not None:
|
||||
start_time_seconds = float(stream.start_time * stream.time_base)
|
||||
|
||||
# 2) Fallback to container-level start_time (in av.time_base units)
|
||||
if (start_time_seconds <= 0) and (container.start_time is not None):
|
||||
start_time_seconds = float(container.start_time * av.time_base)
|
||||
|
||||
# 3) Fallback to first packet DTS in stream.time_base
|
||||
if start_time_seconds <= 0:
|
||||
for packet in container.demux(stream):
|
||||
if packet.dts is not None:
|
||||
start_time_seconds = float(packet.dts * stream.time_base)
|
||||
break
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"PyAV metadata read failed; assuming 0 start_time",
|
||||
track_idx=track_idx,
|
||||
error=str(e),
|
||||
)
|
||||
start_time_seconds = 0.0
|
||||
|
||||
self.logger.info(
|
||||
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
return start_time_seconds
|
||||
|
||||
def _apply_audio_padding_to_file(
|
||||
self,
|
||||
in_container,
|
||||
output_path: str,
|
||||
start_time_seconds: float,
|
||||
track_idx: int,
|
||||
) -> None:
|
||||
"""Apply silence padding to audio track using PyAV filter graph, writing to file"""
|
||||
delay_ms = math.floor(start_time_seconds * 1000)
|
||||
|
||||
self.logger.info(
|
||||
f"Padding track {track_idx} with {delay_ms}ms delay using PyAV",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
)
|
||||
|
||||
try:
|
||||
with av.open(output_path, "w", format="webm") as out_container:
|
||||
in_stream = next(
|
||||
(s for s in in_container.streams if s.type == "audio"), None
|
||||
)
|
||||
if in_stream is None:
|
||||
raise Exception("No audio stream in input")
|
||||
|
||||
out_stream = out_container.add_stream(
|
||||
"libopus", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
|
||||
graph = av.filter.Graph()
|
||||
|
||||
abuf_args = (
|
||||
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_fmt=s16:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
src = graph.add("abuffer", args=abuf_args, name="src")
|
||||
aresample_f = graph.add("aresample", args="async=1", name="ares")
|
||||
# adelay requires one delay value per channel separated by '|'
|
||||
delays_arg = f"{delay_ms}|{delay_ms}"
|
||||
adelay_f = graph.add(
|
||||
"adelay", args=f"delays={delays_arg}:all=1", name="delay"
|
||||
)
|
||||
sink = graph.add("abuffersink", name="sink")
|
||||
|
||||
src.link_to(aresample_f)
|
||||
aresample_f.link_to(adelay_f)
|
||||
adelay_f.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
resampler = AudioResampler(
|
||||
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
# Decode -> resample -> push through graph -> encode Opus
|
||||
for frame in in_container.decode(in_stream):
|
||||
out_frames = resampler.resample(frame) or []
|
||||
for rframe in out_frames:
|
||||
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
src.push(rframe)
|
||||
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
src.push(None)
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"PyAV padding failed for track",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
async def mixdown_tracks(
|
||||
self,
|
||||
track_urls: list[str],
|
||||
writer: AudioFileWriterProcessor,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
) -> None:
|
||||
"""Multi-track mixdown using PyAV filter graph (amix), reading from S3 presigned URLs"""
|
||||
|
||||
target_sample_rate: int | None = None
|
||||
for url in track_urls:
|
||||
if not url:
|
||||
continue
|
||||
container = None
|
||||
try:
|
||||
container = av.open(url)
|
||||
for frame in container.decode(audio=0):
|
||||
target_sample_rate = frame.sample_rate
|
||||
break
|
||||
except Exception:
|
||||
continue
|
||||
finally:
|
||||
if container is not None:
|
||||
container.close()
|
||||
if target_sample_rate:
|
||||
break
|
||||
|
||||
if not target_sample_rate:
|
||||
self.logger.error("Mixdown failed - no decodable audio frames found")
|
||||
raise Exception("Mixdown failed: No decodable audio frames in any track")
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
valid_track_urls = [url for url in track_urls if url]
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, url in enumerate(track_urls) if url
|
||||
]
|
||||
for idx, url in enumerate(valid_track_urls):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
self.logger.error("Mixdown failed - no valid inputs for graph")
|
||||
raise Exception("Mixdown failed: No valid inputs for filter graph")
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=(
|
||||
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
|
||||
),
|
||||
name="fmt",
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
containers = []
|
||||
try:
|
||||
# Open all containers with cleanup guaranteed
|
||||
for i, url in enumerate(valid_track_urls):
|
||||
try:
|
||||
c = av.open(url)
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Mixdown: failed to open container from URL",
|
||||
input=i,
|
||||
url=url,
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
if not containers:
|
||||
self.logger.error("Mixdown failed - no valid containers opened")
|
||||
raise Exception("Mixdown failed: Could not open any track containers")
|
||||
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
continue
|
||||
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
for in_ctx in inputs:
|
||||
in_ctx.push(None)
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
finally:
|
||||
# Cleanup all containers, even if processing failed
|
||||
for c in containers:
|
||||
if c is not None:
|
||||
try:
|
||||
c.close()
|
||||
except Exception:
|
||||
pass # Best effort cleanup
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def on_waveform(self, data):
|
||||
async with self.transaction():
|
||||
waveform = TranscriptWaveform(waveform=data)
|
||||
transcript = await self.get_transcript()
|
||||
return await transcripts_controller.append_event(
|
||||
transcript=transcript, event="WAVEFORM", data=waveform
|
||||
)
|
||||
|
||||
async def update_participants_from_daily(
|
||||
self, transcript: Transcript, track_keys: list[str]
|
||||
) -> None:
|
||||
"""Update transcript participants with user_id and names from Daily.co API."""
|
||||
if not transcript.recording_id:
|
||||
return
|
||||
|
||||
try:
|
||||
async with create_platform_client("daily") as daily_client:
|
||||
id_to_name = {}
|
||||
id_to_user_id = {}
|
||||
|
||||
try:
|
||||
rec_details = await daily_client.get_recording(
|
||||
transcript.recording_id
|
||||
)
|
||||
mtg_session_id = rec_details.mtgSessionId
|
||||
if mtg_session_id:
|
||||
try:
|
||||
payload: MeetingParticipantsResponse = (
|
||||
await daily_client.get_meeting_participants(
|
||||
mtg_session_id
|
||||
)
|
||||
)
|
||||
for p in payload.data:
|
||||
pid = p.participant_id
|
||||
name = p.user_name
|
||||
user_id = p.user_id
|
||||
if name:
|
||||
id_to_name[pid] = name
|
||||
if user_id:
|
||||
id_to_user_id[pid] = user_id
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Failed to fetch Daily meeting participants",
|
||||
error=str(e),
|
||||
mtg_session_id=mtg_session_id,
|
||||
exc_info=True,
|
||||
)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"No mtgSessionId found for recording; participant names may be generic",
|
||||
recording_id=transcript.recording_id,
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Failed to fetch Daily recording details",
|
||||
error=str(e),
|
||||
recording_id=transcript.recording_id,
|
||||
exc_info=True,
|
||||
)
|
||||
return
|
||||
|
||||
cam_audio_keys = filter_cam_audio_tracks(track_keys)
|
||||
|
||||
for idx, key in enumerate(cam_audio_keys):
|
||||
try:
|
||||
parsed = parse_daily_recording_filename(key)
|
||||
participant_id = parsed.participant_id
|
||||
except ValueError as e:
|
||||
self.logger.error(
|
||||
"Failed to parse Daily recording filename",
|
||||
error=str(e),
|
||||
key=key,
|
||||
exc_info=True,
|
||||
)
|
||||
continue
|
||||
|
||||
default_name = f"Speaker {idx}"
|
||||
name = id_to_name.get(participant_id, default_name)
|
||||
user_id = id_to_user_id.get(participant_id)
|
||||
|
||||
participant = TranscriptParticipant(
|
||||
id=participant_id, speaker=idx, name=name, user_id=user_id
|
||||
)
|
||||
await transcripts_controller.upsert_participant(
|
||||
transcript, participant
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Failed to map participant names", error=str(e), exc_info=True
|
||||
)
|
||||
|
||||
async def process(self, bucket_name: str, track_keys: list[str]):
|
||||
transcript = await self.get_transcript()
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
"participants": [],
|
||||
},
|
||||
)
|
||||
|
||||
await self.update_participants_from_daily(transcript, track_keys)
|
||||
|
||||
source_storage = get_transcripts_storage()
|
||||
transcript_storage = source_storage
|
||||
|
||||
track_urls: list[str] = []
|
||||
for key in track_keys:
|
||||
url = await source_storage.get_file_url(
|
||||
key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=bucket_name,
|
||||
)
|
||||
track_urls.append(url)
|
||||
self.logger.info(
|
||||
f"Generated presigned URL for track from {bucket_name}",
|
||||
key=key,
|
||||
)
|
||||
|
||||
created_padded_files = set()
|
||||
padded_track_urls: list[str] = []
|
||||
for idx, url in enumerate(track_urls):
|
||||
padded_url = await self.pad_track_for_transcription(
|
||||
url, idx, transcript_storage
|
||||
)
|
||||
padded_track_urls.append(padded_url)
|
||||
if padded_url != url:
|
||||
storage_path = f"file_pipeline/{transcript.id}/tracks/padded_{idx}.webm"
|
||||
created_padded_files.add(storage_path)
|
||||
self.logger.info(f"Track {idx} processed, padded URL: {padded_url}")
|
||||
|
||||
transcript.data_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if settings.SKIP_MIXDOWN:
|
||||
self.logger.warning(
|
||||
"SKIP_MIXDOWN enabled: Skipping mixdown and waveform generation. "
|
||||
"UI will have no audio playback or waveform.",
|
||||
num_tracks=len(padded_track_urls),
|
||||
transcript_id=transcript.id,
|
||||
)
|
||||
else:
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=str(transcript.audio_mp3_filename),
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
await self.mixdown_tracks(
|
||||
padded_track_urls, mp3_writer, offsets_seconds=None
|
||||
)
|
||||
await mp3_writer.flush()
|
||||
|
||||
if not transcript.audio_mp3_filename.exists():
|
||||
raise Exception(
|
||||
"Mixdown failed - no MP3 file generated. Cannot proceed without playable audio."
|
||||
)
|
||||
|
||||
storage_path = f"{transcript.id}/audio.mp3"
|
||||
# Use file handle streaming to avoid loading entire MP3 into memory
|
||||
mp3_size = transcript.audio_mp3_filename.stat().st_size
|
||||
with open(transcript.audio_mp3_filename, "rb") as mp3_file:
|
||||
await transcript_storage.put_file(storage_path, mp3_file)
|
||||
mp3_url = await transcript_storage.get_file_url(storage_path)
|
||||
|
||||
await transcripts_controller.update(
|
||||
transcript, {"audio_location": "storage"}
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"Uploaded mixed audio to storage",
|
||||
storage_path=storage_path,
|
||||
size=mp3_size,
|
||||
url=mp3_url,
|
||||
)
|
||||
|
||||
self.logger.info("Generating waveform from mixed audio")
|
||||
waveform_processor = AudioWaveformProcessor(
|
||||
audio_path=transcript.audio_mp3_filename,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
waveform_processor.set_pipeline(self.empty_pipeline)
|
||||
await waveform_processor.flush()
|
||||
self.logger.info("Waveform generated successfully")
|
||||
|
||||
speaker_transcripts: list[TranscriptType] = []
|
||||
for idx, padded_url in enumerate(padded_track_urls):
|
||||
if not padded_url:
|
||||
continue
|
||||
|
||||
t = await self.transcribe_file(padded_url, transcript.source_language)
|
||||
|
||||
if not t.words:
|
||||
self.logger.debug(f"no words in track {idx}")
|
||||
# not skipping, it may be silence or indistinguishable mumbling
|
||||
|
||||
for w in t.words:
|
||||
w.speaker = idx
|
||||
|
||||
speaker_transcripts.append(t)
|
||||
self.logger.info(
|
||||
f"Track {idx} transcribed successfully with {len(t.words)} words",
|
||||
track_idx=idx,
|
||||
)
|
||||
|
||||
valid_track_count = len([url for url in padded_track_urls if url])
|
||||
if valid_track_count > 0 and len(speaker_transcripts) != valid_track_count:
|
||||
raise Exception(
|
||||
f"Only {len(speaker_transcripts)}/{valid_track_count} tracks transcribed successfully. "
|
||||
f"All tracks must succeed to avoid incomplete transcripts."
|
||||
)
|
||||
|
||||
if not speaker_transcripts:
|
||||
raise Exception("No valid track transcriptions")
|
||||
|
||||
self.logger.info(f"Cleaning up {len(created_padded_files)} temporary S3 files")
|
||||
cleanup_tasks = []
|
||||
for storage_path in created_padded_files:
|
||||
cleanup_tasks.append(transcript_storage.delete_file(storage_path))
|
||||
|
||||
if cleanup_tasks:
|
||||
cleanup_results = await asyncio.gather(
|
||||
*cleanup_tasks, return_exceptions=True
|
||||
)
|
||||
for storage_path, result in zip(created_padded_files, cleanup_results):
|
||||
if isinstance(result, Exception):
|
||||
self.logger.warning(
|
||||
"Failed to cleanup temporary padded track",
|
||||
storage_path=storage_path,
|
||||
error=str(result),
|
||||
)
|
||||
|
||||
merged_words = []
|
||||
for t in speaker_transcripts:
|
||||
merged_words.extend(t.words)
|
||||
merged_words.sort(
|
||||
key=lambda w: w.start if hasattr(w, "start") and w.start is not None else 0
|
||||
)
|
||||
|
||||
merged_transcript = TranscriptType(words=merged_words, translation=None)
|
||||
|
||||
await self.on_transcript(merged_transcript)
|
||||
|
||||
topics = await self.detect_topics(merged_transcript, transcript.target_language)
|
||||
await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=False,
|
||||
)
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
return await transcribe_file_with_processor(audio_url, language)
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
return await topic_processing.detect_topics(
|
||||
transcript,
|
||||
target_language,
|
||||
on_topic_callback=self.on_topic,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
)
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
return await topic_processing.generate_title(
|
||||
topics,
|
||||
on_title_callback=self.on_title,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
transcript = await self.get_transcript()
|
||||
return await topic_processing.generate_summaries(
|
||||
topics,
|
||||
transcript,
|
||||
on_long_summary_callback=self.on_long_summary,
|
||||
on_short_summary_callback=self.on_short_summary,
|
||||
empty_pipeline=self.empty_pipeline,
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_multitrack_process(
|
||||
*, transcript_id: str, bucket_name: str, track_keys: list[str]
|
||||
):
|
||||
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
await pipeline.process(bucket_name, track_keys)
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
109
server/reflector/pipelines/topic_processing.py
Normal file
109
server/reflector/pipelines/topic_processing.py
Normal file
@@ -0,0 +1,109 @@
|
||||
"""
|
||||
Topic processing utilities
|
||||
==========================
|
||||
|
||||
Shared topic detection, title generation, and summarization logic
|
||||
used across file and multitrack pipelines.
|
||||
"""
|
||||
|
||||
from typing import Callable
|
||||
|
||||
import structlog
|
||||
|
||||
from reflector.db.transcripts import Transcript
|
||||
from reflector.processors import (
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import Transcript as TranscriptType
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
async def detect_topics(
|
||||
transcript: TranscriptType,
|
||||
target_language: str,
|
||||
*,
|
||||
on_topic_callback: Callable,
|
||||
empty_pipeline: EmptyPipeline,
|
||||
) -> list[TitleSummary]:
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await on_topic_callback(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
|
||||
async def generate_title(
|
||||
topics: list[TitleSummary],
|
||||
*,
|
||||
on_title_callback: Callable,
|
||||
empty_pipeline: EmptyPipeline,
|
||||
logger: structlog.BoundLogger,
|
||||
):
|
||||
if not topics:
|
||||
logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=on_title_callback)
|
||||
processor.set_pipeline(empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
async def generate_summaries(
|
||||
topics: list[TitleSummary],
|
||||
transcript: Transcript,
|
||||
*,
|
||||
on_long_summary_callback: Callable,
|
||||
on_short_summary_callback: Callable,
|
||||
empty_pipeline: EmptyPipeline,
|
||||
logger: structlog.BoundLogger,
|
||||
):
|
||||
if not topics:
|
||||
logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=on_long_summary_callback,
|
||||
on_short_summary=on_short_summary_callback,
|
||||
)
|
||||
processor.set_pipeline(empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
34
server/reflector/pipelines/transcription_helpers.py
Normal file
34
server/reflector/pipelines/transcription_helpers.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.types import Transcript as TranscriptType
|
||||
|
||||
|
||||
async def transcribe_file_with_processor(
|
||||
audio_url: str,
|
||||
language: str,
|
||||
processor_name: str | None = None,
|
||||
) -> TranscriptType:
|
||||
processor = (
|
||||
FileTranscriptAutoProcessor(name=processor_name)
|
||||
if processor_name
|
||||
else FileTranscriptAutoProcessor()
|
||||
)
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
processor_label = processor_name or "default"
|
||||
raise ValueError(
|
||||
f"No transcript captured from {processor_label} processor for audio: {audio_url}"
|
||||
)
|
||||
|
||||
return result
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
|
||||
@@ -1,340 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
vad_threshold=0.5,
|
||||
use_onnx=False,
|
||||
min_frames=2,
|
||||
):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.vad_threshold = vad_threshold
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
# print("timestamp", data.pts * data.time_base * 1000)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
async def _process_block(self):
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return
|
||||
|
||||
# Processing block with current buffer size
|
||||
# print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
first_frame = frames[0]
|
||||
original_sample_rate = first_frame.sample_rate
|
||||
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
# Handle stereo -> mono conversion
|
||||
if len(frame_array.shape) == 2 and frame_array.shape[0] > 1:
|
||||
frame_array = np.mean(frame_array, axis=0)
|
||||
elif len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Resample from 48kHz to 16kHz if needed
|
||||
if original_sample_rate != 16000:
|
||||
combined_audio = self._resample_audio(
|
||||
combined_audio, original_sample_rate, 16000
|
||||
)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _resample_audio(
|
||||
self, audio: np.ndarray, from_sr: int, to_sr: int
|
||||
) -> np.ndarray:
|
||||
"""Simple linear resampling from from_sr to to_sr"""
|
||||
if from_sr == to_sr:
|
||||
return audio
|
||||
|
||||
try:
|
||||
# Simple linear interpolation resampling
|
||||
ratio = to_sr / from_sr
|
||||
new_length = int(len(audio) * ratio)
|
||||
|
||||
# Create indices for interpolation
|
||||
old_indices = np.linspace(0, len(audio) - 1, new_length)
|
||||
resampled = np.interp(old_indices, np.arange(len(audio)), audio)
|
||||
|
||||
return resampled.astype(np.float32)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error("Resampling error", exc_info=e)
|
||||
# Fallback: simple decimation/repetition
|
||||
if from_sr > to_sr:
|
||||
# Downsample by taking every nth sample
|
||||
step = from_sr // to_sr
|
||||
return audio[::step]
|
||||
else:
|
||||
# Upsample by repeating samples
|
||||
repeat = to_sr // from_sr
|
||||
return np.repeat(audio, repeat)
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
# Account for resampling: we process at 16kHz but frames might be 48kHz
|
||||
resample_ratio = 48000 / 16000 # 3x
|
||||
actual_sample_pos = int(speech_end * resample_ratio)
|
||||
frame_index = actual_sample_pos // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
use_onnx=True,
|
||||
min_frames=2,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""Process audio frame and return chunk when ready"""
|
||||
self.frames.append(data)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
return await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return None
|
||||
|
||||
# Processing block with current buffer size
|
||||
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return None
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return None
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
if len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
frame_index = speech_end // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioDownscaleProcessor(Processor):
|
||||
"""
|
||||
Downscale audio frames to 16kHz mono format
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = av.AudioFrame
|
||||
|
||||
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.target_rate = target_rate
|
||||
self.target_layout = target_layout
|
||||
self.resampler: Optional[AudioResampler] = None
|
||||
self.needs_resampling: Optional[bool] = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
if self.needs_resampling is None:
|
||||
self.needs_resampling = (
|
||||
data.sample_rate != self.target_rate
|
||||
or data.layout.name != self.target_layout
|
||||
)
|
||||
|
||||
if self.needs_resampling:
|
||||
self.resampler = AudioResampler(
|
||||
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||
)
|
||||
|
||||
if not self.needs_resampling or not self.resampler:
|
||||
await self.emit(data)
|
||||
return
|
||||
|
||||
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||
for resampled_frame in resampled_frames:
|
||||
await self.emit(resampled_frame)
|
||||
|
||||
async def _flush(self):
|
||||
if self.needs_resampling and self.resampler:
|
||||
final_frames = self.resampler.resample(None)
|
||||
for frame in final_frames:
|
||||
await self.emit(frame)
|
||||
@@ -3,24 +3,11 @@ from time import monotonic_ns
|
||||
from uuid import uuid4
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import AudioFile
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioMergeProcessor(Processor):
|
||||
"""
|
||||
Merge audio frame into a single file
|
||||
@@ -29,9 +16,8 @@ class AudioMergeProcessor(Processor):
|
||||
INPUT_TYPE = list[av.AudioFrame]
|
||||
OUTPUT_TYPE = AudioFile
|
||||
|
||||
def __init__(self, downsample_to_16k_mono: bool = True, **kwargs):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.downsample_to_16k_mono = downsample_to_16k_mono
|
||||
|
||||
async def _push(self, data: list[av.AudioFrame]):
|
||||
if not data:
|
||||
@@ -39,72 +25,27 @@ class AudioMergeProcessor(Processor):
|
||||
|
||||
# get audio information from first frame
|
||||
frame = data[0]
|
||||
original_channels = len(frame.layout.channels)
|
||||
original_sample_rate = frame.sample_rate
|
||||
original_sample_width = frame.format.bytes
|
||||
|
||||
# determine if we need processing
|
||||
needs_processing = self.downsample_to_16k_mono and (
|
||||
original_sample_rate != 16000 or original_channels != 1
|
||||
)
|
||||
|
||||
# determine output parameters
|
||||
if self.downsample_to_16k_mono:
|
||||
output_sample_rate = 16000
|
||||
output_channels = 1
|
||||
output_sample_width = 2 # 16-bit = 2 bytes
|
||||
else:
|
||||
output_sample_rate = original_sample_rate
|
||||
output_channels = original_channels
|
||||
output_sample_width = original_sample_width
|
||||
output_channels = len(frame.layout.channels)
|
||||
output_sample_rate = frame.sample_rate
|
||||
output_sample_width = frame.format.bytes
|
||||
|
||||
# create audio file
|
||||
uu = uuid4().hex
|
||||
fd = io.BytesIO()
|
||||
|
||||
if needs_processing:
|
||||
# Process with PyAV resampler
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=16000)
|
||||
out_stream.layout = "mono"
|
||||
# Use PyAV to write frames
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = frame.layout.name
|
||||
|
||||
# Create resampler if needed
|
||||
resampler = None
|
||||
if original_sample_rate != 16000 or original_channels != 1:
|
||||
resampler = AudioResampler(format="s16", layout="mono", rate=16000)
|
||||
|
||||
for frame in data:
|
||||
if resampler:
|
||||
# Resample and convert to mono
|
||||
# XXX for an unknown reason, if we don't use a copy of the frame, we get
|
||||
# Invalid Argumment from resample. Debugging indicate that when a previous processor
|
||||
# already used the frame (like AudioFileWriter), it make it invalid argument here.
|
||||
resampled_frames = resampler.resample(copy_frame(frame))
|
||||
for resampled_frame in resampled_frames:
|
||||
for packet in out_stream.encode(resampled_frame):
|
||||
out_container.mux(packet)
|
||||
else:
|
||||
# Direct encoding without resampling
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
else:
|
||||
# Use PyAV for original frames (no processing needed)
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = "mono" if output_channels == 1 else frame.layout
|
||||
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
|
||||
fd.seek(0)
|
||||
|
||||
|
||||
@@ -12,9 +12,6 @@ API will be a POST request to TRANSCRIPT_URL:
|
||||
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import aiohttp
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from reflector.processors.audio_transcript import AudioTranscriptProcessor
|
||||
@@ -25,7 +22,9 @@ from reflector.settings import settings
|
||||
|
||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
def __init__(
|
||||
self, modal_api_key: str | None = None, batch_enabled: bool = True, **kwargs
|
||||
self,
|
||||
modal_api_key: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if not settings.TRANSCRIPT_URL:
|
||||
@@ -35,126 +34,6 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
|
||||
self.timeout = settings.TRANSCRIPT_TIMEOUT
|
||||
self.modal_api_key = modal_api_key
|
||||
self.max_batch_duration = 10.0
|
||||
self.max_batch_files = 15
|
||||
self.batch_enabled = batch_enabled
|
||||
self.pending_files: List[AudioFile] = [] # Files waiting to be processed
|
||||
|
||||
@classmethod
|
||||
def _calculate_duration(cls, audio_file: AudioFile) -> float:
|
||||
"""Calculate audio duration in seconds from AudioFile metadata"""
|
||||
# Duration = total_samples / sample_rate
|
||||
# We need to estimate total samples from the file data
|
||||
import wave
|
||||
|
||||
try:
|
||||
# Try to read as WAV file to get duration
|
||||
audio_file.fd.seek(0)
|
||||
with wave.open(audio_file.fd, "rb") as wav_file:
|
||||
frames = wav_file.getnframes()
|
||||
sample_rate = wav_file.getframerate()
|
||||
duration = frames / sample_rate
|
||||
return duration
|
||||
except Exception:
|
||||
# Fallback: estimate from file size and audio parameters
|
||||
audio_file.fd.seek(0, 2) # Seek to end
|
||||
file_size = audio_file.fd.tell()
|
||||
audio_file.fd.seek(0) # Reset to beginning
|
||||
|
||||
# Estimate: file_size / (sample_rate * channels * sample_width)
|
||||
bytes_per_second = (
|
||||
audio_file.sample_rate
|
||||
* audio_file.channels
|
||||
* (audio_file.sample_width // 8)
|
||||
)
|
||||
estimated_duration = (
|
||||
file_size / bytes_per_second if bytes_per_second > 0 else 0
|
||||
)
|
||||
return max(0, estimated_duration)
|
||||
|
||||
def _create_batches(self, audio_files: List[AudioFile]) -> List[List[AudioFile]]:
|
||||
"""Group audio files into batches with maximum 30s total duration"""
|
||||
batches = []
|
||||
current_batch = []
|
||||
current_duration = 0.0
|
||||
|
||||
for audio_file in audio_files:
|
||||
duration = self._calculate_duration(audio_file)
|
||||
|
||||
# If adding this file exceeds max duration, start a new batch
|
||||
if current_duration + duration > self.max_batch_duration and current_batch:
|
||||
batches.append(current_batch)
|
||||
current_batch = [audio_file]
|
||||
current_duration = duration
|
||||
else:
|
||||
current_batch.append(audio_file)
|
||||
current_duration += duration
|
||||
|
||||
# Add the last batch if not empty
|
||||
if current_batch:
|
||||
batches.append(current_batch)
|
||||
|
||||
return batches
|
||||
|
||||
async def _transcript_batch(self, audio_files: List[AudioFile]) -> List[Transcript]:
|
||||
"""Transcribe a batch of audio files using the parakeet backend"""
|
||||
if not audio_files:
|
||||
return []
|
||||
|
||||
self.logger.debug(f"Batch transcribing {len(audio_files)} files")
|
||||
|
||||
# Prepare form data for batch request
|
||||
data = aiohttp.FormData()
|
||||
data.add_field("language", self.get_pref("audio:source_language", "en"))
|
||||
data.add_field("batch", "true")
|
||||
|
||||
for i, audio_file in enumerate(audio_files):
|
||||
audio_file.fd.seek(0)
|
||||
data.add_field(
|
||||
"files",
|
||||
audio_file.fd,
|
||||
filename=f"{audio_file.name}",
|
||||
content_type="audio/wav",
|
||||
)
|
||||
|
||||
# Make batch request
|
||||
headers = {"Authorization": f"Bearer {self.modal_api_key}"}
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=self.timeout)
|
||||
) as session:
|
||||
async with session.post(
|
||||
f"{self.transcript_url}/audio/transcriptions",
|
||||
data=data,
|
||||
headers=headers,
|
||||
) as response:
|
||||
if response.status != 200:
|
||||
error_text = await response.text()
|
||||
raise Exception(
|
||||
f"Batch transcription failed: {response.status} {error_text}"
|
||||
)
|
||||
|
||||
result = await response.json()
|
||||
|
||||
# Process batch results
|
||||
transcripts = []
|
||||
results = result.get("results", [])
|
||||
|
||||
for i, (audio_file, file_result) in enumerate(zip(audio_files, results)):
|
||||
transcript = Transcript(
|
||||
words=[
|
||||
Word(
|
||||
text=word_info["word"],
|
||||
start=word_info["start"],
|
||||
end=word_info["end"],
|
||||
)
|
||||
for word_info in file_result.get("words", [])
|
||||
]
|
||||
)
|
||||
transcript.add_offset(audio_file.timestamp)
|
||||
transcripts.append(transcript)
|
||||
|
||||
return transcripts
|
||||
|
||||
async def _transcript(self, data: AudioFile):
|
||||
async with AsyncOpenAI(
|
||||
@@ -187,96 +66,5 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
|
||||
return transcript
|
||||
|
||||
async def transcript_multiple(
|
||||
self, audio_files: List[AudioFile]
|
||||
) -> List[Transcript]:
|
||||
"""Transcribe multiple audio files using batching"""
|
||||
if len(audio_files) == 1:
|
||||
# Single file, use existing method
|
||||
return [await self._transcript(audio_files[0])]
|
||||
|
||||
# Create batches with max 30s duration each
|
||||
batches = self._create_batches(audio_files)
|
||||
|
||||
self.logger.debug(
|
||||
f"Processing {len(audio_files)} files in {len(batches)} batches"
|
||||
)
|
||||
|
||||
# Process all batches concurrently
|
||||
all_transcripts = []
|
||||
|
||||
for batch in batches:
|
||||
batch_transcripts = await self._transcript_batch(batch)
|
||||
all_transcripts.extend(batch_transcripts)
|
||||
|
||||
return all_transcripts
|
||||
|
||||
async def _push(self, data: AudioFile):
|
||||
"""Override _push to support batching"""
|
||||
if not self.batch_enabled:
|
||||
# Use parent implementation for single file processing
|
||||
return await super()._push(data)
|
||||
|
||||
# Add file to pending batch
|
||||
self.pending_files.append(data)
|
||||
self.logger.debug(
|
||||
f"Added file to batch: {data.name}, batch size: {len(self.pending_files)}"
|
||||
)
|
||||
|
||||
# Calculate total duration of pending files
|
||||
total_duration = sum(self._calculate_duration(f) for f in self.pending_files)
|
||||
|
||||
# Process batch if it reaches max duration or has multiple files ready for optimization
|
||||
should_process_batch = (
|
||||
total_duration >= self.max_batch_duration
|
||||
or len(self.pending_files) >= self.max_batch_files
|
||||
)
|
||||
|
||||
if should_process_batch:
|
||||
await self._process_pending_batch()
|
||||
|
||||
async def _process_pending_batch(self):
|
||||
"""Process all pending files as batches"""
|
||||
if not self.pending_files:
|
||||
return
|
||||
|
||||
self.logger.debug(f"Processing batch of {len(self.pending_files)} files")
|
||||
|
||||
try:
|
||||
# Create batches respecting duration limit
|
||||
batches = self._create_batches(self.pending_files)
|
||||
|
||||
# Process each batch
|
||||
for batch in batches:
|
||||
self.m_transcript_call.inc()
|
||||
try:
|
||||
with self.m_transcript.time():
|
||||
# Use batch transcription
|
||||
transcripts = await self._transcript_batch(batch)
|
||||
|
||||
self.m_transcript_success.inc()
|
||||
|
||||
# Emit each transcript
|
||||
for transcript in transcripts:
|
||||
if transcript:
|
||||
await self.emit(transcript)
|
||||
|
||||
except Exception:
|
||||
self.m_transcript_failure.inc()
|
||||
raise
|
||||
finally:
|
||||
# Release audio files
|
||||
for audio_file in batch:
|
||||
audio_file.release()
|
||||
|
||||
finally:
|
||||
# Clear pending files
|
||||
self.pending_files.clear()
|
||||
|
||||
async def _flush(self):
|
||||
"""Process any remaining files when flushing"""
|
||||
await self._process_pending_batch()
|
||||
await super()._flush()
|
||||
|
||||
|
||||
AudioTranscriptAutoProcessor.register("modal", AudioTranscriptModalProcessor)
|
||||
|
||||
@@ -47,6 +47,7 @@ class FileDiarizationModalProcessor(FileDiarizationProcessor):
|
||||
"audio_file_url": data.audio_url,
|
||||
"timestamp": 0,
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
response.raise_for_status()
|
||||
diarization_data = response.json()["diarization"]
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user