mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
35 Commits
release-pl
...
feat/durab
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
341884085d | ||
|
|
c9325ea4a4 | ||
|
|
f163111b4a | ||
|
|
84c1a57c83 | ||
|
|
af425e6dfd | ||
|
|
28007e846f | ||
|
|
17a93b7393 | ||
|
|
0ce38dfeb3 | ||
|
|
8272c79856 | ||
|
|
acad80df50 | ||
|
|
61e2b3211e | ||
|
|
bf90bd076b | ||
|
|
557073850e | ||
|
|
ce6b185bf7 | ||
|
|
cb41e9e779 | ||
|
|
f7f2957fc9 | ||
|
|
d683a83906 | ||
|
|
e77f38a12a | ||
|
|
6ae621eadd | ||
|
|
6ae8f1d870 | ||
|
|
7a29c742c5 | ||
|
|
298abe8656 | ||
|
|
67420d2ec4 | ||
|
|
4b00dda0ca | ||
|
|
7591387e52 | ||
|
|
447bf97854 | ||
|
|
c280e8dc1d | ||
|
|
9b8f76929e | ||
|
|
409c257889 | ||
|
|
fce0945564 | ||
|
|
e81e0cb5c3 | ||
|
|
1f49deb5b5 | ||
|
|
0f266eabdf | ||
|
|
c5498d26bf | ||
|
|
243ff2177c |
@@ -34,6 +34,20 @@ services:
|
||||
environment:
|
||||
ENTRYPOINT: beat
|
||||
|
||||
hatchet-worker:
|
||||
build:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
ENTRYPOINT: hatchet-worker
|
||||
depends_on:
|
||||
hatchet:
|
||||
condition: service_healthy
|
||||
|
||||
redis:
|
||||
image: redis:7.2
|
||||
ports:
|
||||
@@ -55,6 +69,7 @@ services:
|
||||
|
||||
postgres:
|
||||
image: postgres:17
|
||||
command: postgres -c 'max_connections=200'
|
||||
ports:
|
||||
- 5432:5432
|
||||
environment:
|
||||
@@ -63,6 +78,42 @@ services:
|
||||
POSTGRES_DB: reflector
|
||||
volumes:
|
||||
- ./data/postgres:/var/lib/postgresql/data
|
||||
- ./server/docker/init-hatchet-db.sql:/docker-entrypoint-initdb.d/init-hatchet-db.sql:ro
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "pg_isready -d reflector -U reflector"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 10s
|
||||
|
||||
hatchet:
|
||||
image: ghcr.io/hatchet-dev/hatchet/hatchet-lite:latest
|
||||
ports:
|
||||
- "8889:8888"
|
||||
- "7078:7077"
|
||||
depends_on:
|
||||
postgres:
|
||||
condition: service_healthy
|
||||
environment:
|
||||
DATABASE_URL: "postgresql://reflector:reflector@postgres:5432/hatchet?sslmode=disable"
|
||||
SERVER_AUTH_COOKIE_DOMAIN: localhost
|
||||
SERVER_AUTH_COOKIE_INSECURE: "t"
|
||||
SERVER_GRPC_BIND_ADDRESS: "0.0.0.0"
|
||||
SERVER_GRPC_INSECURE: "t"
|
||||
SERVER_GRPC_BROADCAST_ADDRESS: hatchet:7077
|
||||
SERVER_GRPC_PORT: "7077"
|
||||
SERVER_URL: http://localhost:8889
|
||||
SERVER_AUTH_SET_EMAIL_VERIFIED: "t"
|
||||
# SERVER_DEFAULT_ENGINE_VERSION: "V1" # default
|
||||
SERVER_INTERNAL_CLIENT_INTERNAL_GRPC_BROADCAST_ADDRESS: hatchet:7077
|
||||
volumes:
|
||||
- ./data/hatchet-config:/config
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:8888/api/live"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 30s
|
||||
|
||||
networks:
|
||||
default:
|
||||
|
||||
@@ -53,6 +53,36 @@ response = sqs.receive_message(QueueUrl=queue_url, ...)
|
||||
uv run /app/requeue_uploaded_file.py TRANSCRIPT_ID
|
||||
```
|
||||
|
||||
## Hatchet Setup (Fresh DB)
|
||||
|
||||
After resetting the Hatchet database:
|
||||
|
||||
### Option A: Automatic (CLI)
|
||||
|
||||
```bash
|
||||
# Get default tenant ID and create token in one command
|
||||
TENANT_ID=$(docker compose exec -T postgres psql -U reflector -d hatchet -t -c \
|
||||
"SELECT id FROM \"Tenant\" WHERE slug = 'default';" | tr -d ' \n') && \
|
||||
TOKEN=$(docker compose exec -T hatchet /hatchet-admin token create \
|
||||
--config /config --tenant-id "$TENANT_ID" 2>/dev/null | tr -d '\n') && \
|
||||
echo "HATCHET_CLIENT_TOKEN=$TOKEN"
|
||||
```
|
||||
|
||||
Copy the output to `server/.env`.
|
||||
|
||||
### Option B: Manual (UI)
|
||||
|
||||
1. Create API token at http://localhost:8889 → Settings → API Tokens
|
||||
2. Update `server/.env`: `HATCHET_CLIENT_TOKEN=<new-token>`
|
||||
|
||||
### Then restart workers
|
||||
|
||||
```bash
|
||||
docker compose restart server hatchet-worker
|
||||
```
|
||||
|
||||
Workflows register automatically when hatchet-worker starts.
|
||||
|
||||
## Pipeline Management
|
||||
|
||||
### Continue stuck pipeline from final summaries (identify_participants) step:
|
||||
|
||||
2
server/docker/init-hatchet-db.sql
Normal file
2
server/docker/init-hatchet-db.sql
Normal file
@@ -0,0 +1,2 @@
|
||||
-- Create hatchet database for Hatchet workflow engine
|
||||
CREATE DATABASE hatchet;
|
||||
@@ -0,0 +1,28 @@
|
||||
"""add workflow_run_id to transcript
|
||||
|
||||
Revision ID: 0f943fede0e0
|
||||
Revises: 05f8688d6895
|
||||
Create Date: 2025-12-16 01:54:13.855106
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0f943fede0e0"
|
||||
down_revision: Union[str, None] = "05f8688d6895"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("workflow_run_id", sa.String(), nullable=True))
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.drop_column("workflow_run_id")
|
||||
@@ -0,0 +1,35 @@
|
||||
"""add use_hatchet to room
|
||||
|
||||
Revision ID: bd3a729bb379
|
||||
Revises: 0f943fede0e0
|
||||
Create Date: 2025-12-16 16:34:03.594231
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "bd3a729bb379"
|
||||
down_revision: Union[str, None] = "0f943fede0e0"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"use_hatchet",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("use_hatchet")
|
||||
@@ -39,6 +39,7 @@ dependencies = [
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
"hatchet-sdk>=0.47.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
|
||||
@@ -47,7 +47,7 @@ class DailyApiError(Exception):
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
f"Daily.co API error: {operation} failed with status {self.status_code}"
|
||||
f"Daily.co API error: {operation} failed with status {self.status_code}: {response.text}"
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -57,6 +57,12 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"use_hatchet",
|
||||
sqlalchemy.Boolean,
|
||||
nullable=False,
|
||||
server_default=false(),
|
||||
),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
@@ -85,6 +91,7 @@ class Room(BaseModel):
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
platform: Platform = Field(default_factory=lambda: settings.DEFAULT_VIDEO_PLATFORM)
|
||||
use_hatchet: bool = False
|
||||
|
||||
|
||||
class RoomController:
|
||||
|
||||
@@ -84,6 +84,8 @@ transcripts = sqlalchemy.Table(
|
||||
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
|
||||
sqlalchemy.Column("room_id", sqlalchemy.String),
|
||||
sqlalchemy.Column("webvtt", sqlalchemy.Text),
|
||||
# Hatchet workflow run ID for resumption of failed workflows
|
||||
sqlalchemy.Column("workflow_run_id", sqlalchemy.String),
|
||||
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
|
||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||
@@ -223,6 +225,7 @@ class Transcript(BaseModel):
|
||||
zulip_message_id: int | None = None
|
||||
audio_deleted: bool | None = None
|
||||
webvtt: str | None = None
|
||||
workflow_run_id: str | None = None # Hatchet workflow run ID for resumption
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
|
||||
5
server/reflector/hatchet/__init__.py
Normal file
5
server/reflector/hatchet/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
"""Hatchet workflow orchestration for Reflector."""
|
||||
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
|
||||
__all__ = ["HatchetClientManager"]
|
||||
98
server/reflector/hatchet/broadcast.py
Normal file
98
server/reflector/hatchet/broadcast.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""WebSocket broadcasting helpers for Hatchet workflows.
|
||||
|
||||
DUPLICATION NOTE: To be kept when Celery is deprecated. Currently dupes Celery logic.
|
||||
|
||||
Provides WebSocket broadcasting for Hatchet that matches Celery's @broadcast_to_sockets
|
||||
decorator behavior. Events are broadcast to transcript rooms and user rooms.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import structlog
|
||||
|
||||
from reflector.db.transcripts import Transcript, TranscriptEvent, transcripts_controller
|
||||
from reflector.utils.string import NonEmptyString
|
||||
from reflector.ws_manager import get_ws_manager
|
||||
|
||||
# Events that should also be sent to user room (matches Celery behavior)
|
||||
USER_ROOM_EVENTS = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
|
||||
|
||||
async def broadcast_event(
|
||||
transcript_id: NonEmptyString,
|
||||
event: TranscriptEvent,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> None:
|
||||
"""Broadcast a TranscriptEvent to WebSocket subscribers.
|
||||
|
||||
Fire-and-forget: errors are logged but don't interrupt workflow execution.
|
||||
"""
|
||||
logger.info(
|
||||
"Broadcasting event",
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
try:
|
||||
ws_manager = get_ws_manager()
|
||||
|
||||
await ws_manager.send_json(
|
||||
room_id=f"ts:{transcript_id}",
|
||||
message=event.model_dump(mode="json"),
|
||||
)
|
||||
logger.info(
|
||||
"Event sent to transcript room",
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
|
||||
if event.event in USER_ROOM_EVENTS:
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
await ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{event.event}",
|
||||
"data": {"id": transcript_id, **event.data},
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to broadcast event",
|
||||
error=str(e),
|
||||
transcript_id=transcript_id,
|
||||
event_type=event.event,
|
||||
)
|
||||
|
||||
|
||||
async def set_status_and_broadcast(
|
||||
transcript_id: NonEmptyString,
|
||||
status: str,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> None:
|
||||
"""Set transcript status and broadcast to WebSocket.
|
||||
|
||||
Wrapper around transcripts_controller.set_status that adds WebSocket broadcasting.
|
||||
"""
|
||||
event = await transcripts_controller.set_status(transcript_id, status)
|
||||
if event:
|
||||
await broadcast_event(transcript_id, event, logger=logger)
|
||||
|
||||
|
||||
async def append_event_and_broadcast(
|
||||
transcript_id: NonEmptyString,
|
||||
transcript: Transcript,
|
||||
event_name: str,
|
||||
data: Any,
|
||||
logger: structlog.BoundLogger,
|
||||
) -> TranscriptEvent:
|
||||
"""Append event to transcript and broadcast to WebSocket.
|
||||
|
||||
Wrapper around transcripts_controller.append_event that adds WebSocket broadcasting.
|
||||
"""
|
||||
event = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event=event_name,
|
||||
data=data,
|
||||
)
|
||||
await broadcast_event(transcript_id, event, logger=logger)
|
||||
return event
|
||||
111
server/reflector/hatchet/client.py
Normal file
111
server/reflector/hatchet/client.py
Normal file
@@ -0,0 +1,111 @@
|
||||
"""Hatchet Python client wrapper.
|
||||
|
||||
Uses singleton pattern because:
|
||||
1. Hatchet client maintains persistent gRPC connections for workflow registration
|
||||
2. Creating multiple clients would cause registration conflicts and resource leaks
|
||||
3. The SDK is designed for a single client instance per process
|
||||
4. Tests use `HatchetClientManager.reset()` to isolate state between tests
|
||||
"""
|
||||
|
||||
import logging
|
||||
import threading
|
||||
|
||||
from hatchet_sdk import ClientConfig, Hatchet
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class HatchetClientManager:
|
||||
"""Singleton manager for Hatchet client connections.
|
||||
|
||||
See module docstring for rationale. For test isolation, use `reset()`.
|
||||
"""
|
||||
|
||||
_instance: Hatchet | None = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
@classmethod
|
||||
def get_client(cls) -> Hatchet:
|
||||
"""Get or create the Hatchet client (thread-safe singleton)."""
|
||||
if cls._instance is None:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
if not settings.HATCHET_CLIENT_TOKEN:
|
||||
raise ValueError("HATCHET_CLIENT_TOKEN must be set")
|
||||
|
||||
# Pass root logger to Hatchet so workflow logs appear in dashboard
|
||||
root_logger = logging.getLogger()
|
||||
cls._instance = Hatchet(
|
||||
debug=settings.HATCHET_DEBUG,
|
||||
config=ClientConfig(logger=root_logger),
|
||||
)
|
||||
return cls._instance
|
||||
|
||||
@classmethod
|
||||
async def start_workflow(
|
||||
cls,
|
||||
workflow_name: str,
|
||||
input_data: dict,
|
||||
additional_metadata: dict | None = None,
|
||||
) -> str:
|
||||
"""Start a workflow and return the workflow run ID.
|
||||
|
||||
Args:
|
||||
workflow_name: Name of the workflow to trigger.
|
||||
input_data: Input data for the workflow run.
|
||||
additional_metadata: Optional metadata for filtering in dashboard
|
||||
(e.g., transcript_id, recording_id).
|
||||
"""
|
||||
client = cls.get_client()
|
||||
result = await client.runs.aio_create(
|
||||
workflow_name,
|
||||
input_data,
|
||||
additional_metadata=additional_metadata,
|
||||
)
|
||||
return result.run.metadata.id
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_run_status(cls, workflow_run_id: str) -> V1TaskStatus:
|
||||
client = cls.get_client()
|
||||
return await client.runs.aio_get_status(workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def cancel_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_cancel(workflow_run_id)
|
||||
logger.info("[Hatchet] Cancelled workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def replay_workflow(cls, workflow_run_id: str) -> None:
|
||||
client = cls.get_client()
|
||||
await client.runs.aio_replay(workflow_run_id)
|
||||
logger.info("[Hatchet] Replaying workflow", workflow_run_id=workflow_run_id)
|
||||
|
||||
@classmethod
|
||||
async def can_replay(cls, workflow_run_id: str) -> bool:
|
||||
"""Check if workflow can be replayed (is FAILED)."""
|
||||
try:
|
||||
status = await cls.get_workflow_run_status(workflow_run_id)
|
||||
return status == V1TaskStatus.FAILED or status == V1TaskStatus.CANCELLED
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"[Hatchet] Failed to check replay status",
|
||||
workflow_run_id=workflow_run_id,
|
||||
error=str(e),
|
||||
)
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
async def get_workflow_status(cls, workflow_run_id: str) -> dict:
|
||||
"""Get the full workflow run details as dict."""
|
||||
client = cls.get_client()
|
||||
run = await client.runs.aio_get(workflow_run_id)
|
||||
return run.to_dict()
|
||||
|
||||
@classmethod
|
||||
def reset(cls) -> None:
|
||||
"""Reset the client instance (for testing)."""
|
||||
with cls._lock:
|
||||
cls._instance = None
|
||||
63
server/reflector/hatchet/run_workers.py
Normal file
63
server/reflector/hatchet/run_workers.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""
|
||||
Run Hatchet workers for the diarization pipeline.
|
||||
Runs as a separate process, just like Celery workers.
|
||||
|
||||
Usage:
|
||||
uv run -m reflector.hatchet.run_workers
|
||||
|
||||
# Or via docker:
|
||||
docker compose exec server uv run -m reflector.hatchet.run_workers
|
||||
"""
|
||||
|
||||
import signal
|
||||
import sys
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""Start Hatchet worker polling."""
|
||||
if not settings.HATCHET_ENABLED:
|
||||
logger.error("HATCHET_ENABLED is False, not starting workers")
|
||||
sys.exit(1)
|
||||
|
||||
if not settings.HATCHET_CLIENT_TOKEN:
|
||||
logger.error("HATCHET_CLIENT_TOKEN is not set")
|
||||
sys.exit(1)
|
||||
|
||||
logger.info(
|
||||
"Starting Hatchet workers",
|
||||
debug=settings.HATCHET_DEBUG,
|
||||
)
|
||||
|
||||
# Import here (not top-level) - workflow modules call HatchetClientManager.get_client()
|
||||
# at module level because Hatchet SDK decorators (@workflow.task) bind at import time.
|
||||
# Can't use lazy init: decorators need the client object when function is defined.
|
||||
from reflector.hatchet.client import HatchetClientManager # noqa: PLC0415
|
||||
from reflector.hatchet.workflows import ( # noqa: PLC0415
|
||||
diarization_pipeline,
|
||||
track_workflow,
|
||||
)
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
worker = hatchet.worker(
|
||||
"reflector-diarization-worker",
|
||||
workflows=[diarization_pipeline, track_workflow],
|
||||
)
|
||||
|
||||
def shutdown_handler(signum: int, frame) -> None:
|
||||
logger.info("Received shutdown signal, stopping workers...")
|
||||
# Worker cleanup happens automatically on exit
|
||||
sys.exit(0)
|
||||
|
||||
signal.signal(signal.SIGINT, shutdown_handler)
|
||||
signal.signal(signal.SIGTERM, shutdown_handler)
|
||||
|
||||
logger.info("Starting Hatchet worker polling...")
|
||||
worker.start()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
14
server/reflector/hatchet/workflows/__init__.py
Normal file
14
server/reflector/hatchet/workflows/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
"""Hatchet workflow definitions."""
|
||||
|
||||
from reflector.hatchet.workflows.diarization_pipeline import (
|
||||
PipelineInput,
|
||||
diarization_pipeline,
|
||||
)
|
||||
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
|
||||
|
||||
__all__ = [
|
||||
"diarization_pipeline",
|
||||
"track_workflow",
|
||||
"PipelineInput",
|
||||
"TrackInput",
|
||||
]
|
||||
938
server/reflector/hatchet/workflows/diarization_pipeline.py
Normal file
938
server/reflector/hatchet/workflows/diarization_pipeline.py
Normal file
@@ -0,0 +1,938 @@
|
||||
"""
|
||||
Hatchet main workflow: DiarizationPipeline
|
||||
|
||||
Multitrack diarization pipeline for Daily.co recordings.
|
||||
Orchestrates the full processing flow from recording metadata to final transcript.
|
||||
|
||||
Note: This file uses deferred imports (inside functions/tasks) intentionally.
|
||||
Hatchet workers run in forked processes; fresh imports per task ensure DB connections
|
||||
are not shared across forks, avoiding connection pooling issues.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import functools
|
||||
import tempfile
|
||||
from contextlib import asynccontextmanager
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import httpx
|
||||
from hatchet_sdk import Context
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.dailyco_api.client import DailyApiClient
|
||||
from reflector.hatchet.broadcast import (
|
||||
append_event_and_broadcast,
|
||||
set_status_and_broadcast,
|
||||
)
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.hatchet.workflows.models import (
|
||||
ConsentResult,
|
||||
FinalizeResult,
|
||||
MixdownResult,
|
||||
PaddedTrackInfo,
|
||||
ParticipantsResult,
|
||||
ProcessTracksResult,
|
||||
RecordingResult,
|
||||
SummaryResult,
|
||||
TitleResult,
|
||||
TopicsResult,
|
||||
WaveformResult,
|
||||
WebhookResult,
|
||||
ZulipResult,
|
||||
)
|
||||
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines import topic_processing
|
||||
from reflector.processors import AudioFileWriterProcessor
|
||||
from reflector.processors.types import (
|
||||
TitleSummary,
|
||||
TitleSummaryWithId,
|
||||
Word,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage.storage_aws import AwsStorage
|
||||
from reflector.utils.audio_constants import (
|
||||
PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
WAVEFORM_SEGMENTS,
|
||||
)
|
||||
from reflector.utils.audio_mixdown import (
|
||||
detect_sample_rate_from_tracks,
|
||||
mixdown_tracks_pyav,
|
||||
)
|
||||
from reflector.utils.audio_waveform import get_audio_waveform
|
||||
from reflector.utils.daily import (
|
||||
filter_cam_audio_tracks,
|
||||
parse_daily_recording_filename,
|
||||
)
|
||||
from reflector.utils.string import NonEmptyString, assert_non_none_and_non_empty
|
||||
from reflector.zulip import post_transcript_notification
|
||||
|
||||
|
||||
class PipelineInput(BaseModel):
|
||||
"""Input to trigger the diarization pipeline."""
|
||||
|
||||
recording_id: NonEmptyString
|
||||
tracks: list[dict] # List of {"s3_key": str}
|
||||
bucket_name: NonEmptyString
|
||||
transcript_id: NonEmptyString
|
||||
room_id: NonEmptyString | None = None
|
||||
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
diarization_pipeline = hatchet.workflow(
|
||||
name="DiarizationPipeline", input_validator=PipelineInput
|
||||
)
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def fresh_db_connection():
|
||||
"""Context manager for database connections in Hatchet workers.
|
||||
TECH DEBT: Made to make connection fork-aware without changing db code too much.
|
||||
The real fix would be making the db module fork-aware instead of bypassing it.
|
||||
Current pattern is acceptable given Hatchet's process model.
|
||||
"""
|
||||
import databases # noqa: PLC0415
|
||||
|
||||
from reflector.db import _database_context # noqa: PLC0415
|
||||
|
||||
_database_context.set(None)
|
||||
db = databases.Database(settings.DATABASE_URL)
|
||||
_database_context.set(db)
|
||||
await db.connect()
|
||||
try:
|
||||
yield db
|
||||
finally:
|
||||
await db.disconnect()
|
||||
_database_context.set(None)
|
||||
|
||||
|
||||
async def set_workflow_error_status(transcript_id: NonEmptyString) -> bool:
|
||||
"""Set transcript status to 'error' on workflow failure.
|
||||
|
||||
Returns:
|
||||
True if status was set successfully, False if failed.
|
||||
Failure is logged as CRITICAL since it means transcript may be stuck.
|
||||
"""
|
||||
try:
|
||||
async with fresh_db_connection():
|
||||
await set_status_and_broadcast(transcript_id, "error", logger=logger)
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.critical(
|
||||
"[Hatchet] CRITICAL: Failed to set error status - transcript may be stuck in 'processing'",
|
||||
transcript_id=transcript_id,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
def _spawn_storage():
|
||||
"""Create fresh storage instance."""
|
||||
return AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
|
||||
def with_error_handling(step_name: str, set_error_status: bool = True) -> Callable:
|
||||
"""Decorator that handles task failures uniformly.
|
||||
|
||||
Args:
|
||||
step_name: Name of the step for logging and progress tracking.
|
||||
set_error_status: Whether to set transcript status to 'error' on failure.
|
||||
"""
|
||||
|
||||
def decorator(func: Callable) -> Callable:
|
||||
@functools.wraps(func)
|
||||
async def wrapper(input: PipelineInput, ctx: Context):
|
||||
try:
|
||||
return await func(input, ctx)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[Hatchet] {step_name} failed",
|
||||
transcript_id=input.transcript_id,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
if set_error_status:
|
||||
await set_workflow_error_status(input.transcript_id)
|
||||
raise
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
@diarization_pipeline.task(execution_timeout=timedelta(seconds=60), retries=3)
|
||||
@with_error_handling("get_recording")
|
||||
async def get_recording(input: PipelineInput, ctx: Context) -> RecordingResult:
|
||||
"""Fetch recording metadata from Daily.co API."""
|
||||
ctx.log(f"get_recording: recording_id={input.recording_id}")
|
||||
|
||||
# Set transcript status to "processing" at workflow start (broadcasts to WebSocket)
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.transcripts import transcripts_controller # noqa: PLC0415
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript:
|
||||
await set_status_and_broadcast(
|
||||
input.transcript_id, "processing", logger=logger
|
||||
)
|
||||
ctx.log(f"Set transcript status to processing: {input.transcript_id}")
|
||||
|
||||
if not settings.DAILY_API_KEY:
|
||||
raise ValueError("DAILY_API_KEY not configured")
|
||||
|
||||
async with DailyApiClient(api_key=settings.DAILY_API_KEY) as client:
|
||||
recording = await client.get_recording(input.recording_id)
|
||||
|
||||
ctx.log(
|
||||
f"get_recording complete: room={recording.room_name}, duration={recording.duration}s"
|
||||
)
|
||||
|
||||
return RecordingResult(
|
||||
id=recording.id,
|
||||
mtg_session_id=recording.mtgSessionId,
|
||||
duration=recording.duration,
|
||||
)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[get_recording], execution_timeout=timedelta(seconds=60), retries=3
|
||||
)
|
||||
@with_error_handling("get_participants")
|
||||
async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsResult:
|
||||
"""Fetch participant list from Daily.co API and update transcript in database."""
|
||||
ctx.log(f"get_participants: transcript_id={input.transcript_id}")
|
||||
|
||||
recording = ctx.task_output(get_recording)
|
||||
mtg_session_id = recording.mtg_session_id
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptParticipant,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript:
|
||||
# Note: title NOT cleared - preserves existing titles
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
"participants": [],
|
||||
},
|
||||
)
|
||||
|
||||
mtg_session_id = assert_non_none_and_non_empty(
|
||||
mtg_session_id, "mtg_session_id is required"
|
||||
)
|
||||
daily_api_key = assert_non_none_and_non_empty(
|
||||
settings.DAILY_API_KEY, "DAILY_API_KEY is required"
|
||||
)
|
||||
|
||||
async with DailyApiClient(api_key=daily_api_key) as client:
|
||||
participants = await client.get_meeting_participants(mtg_session_id)
|
||||
|
||||
id_to_name = {}
|
||||
id_to_user_id = {}
|
||||
for p in participants.data:
|
||||
if p.user_name:
|
||||
id_to_name[p.participant_id] = p.user_name
|
||||
if p.user_id:
|
||||
id_to_user_id[p.participant_id] = p.user_id
|
||||
|
||||
track_keys = [t["s3_key"] for t in input.tracks]
|
||||
cam_audio_keys = filter_cam_audio_tracks(track_keys)
|
||||
|
||||
participants_list = []
|
||||
for idx, key in enumerate(cam_audio_keys):
|
||||
try:
|
||||
parsed = parse_daily_recording_filename(key)
|
||||
participant_id = parsed.participant_id
|
||||
except ValueError as e:
|
||||
logger.error(
|
||||
"Failed to parse Daily recording filename",
|
||||
error=str(e),
|
||||
key=key,
|
||||
)
|
||||
continue
|
||||
|
||||
default_name = f"Speaker {idx}"
|
||||
name = id_to_name.get(participant_id, default_name)
|
||||
user_id = id_to_user_id.get(participant_id)
|
||||
|
||||
participant = TranscriptParticipant(
|
||||
id=participant_id, speaker=idx, name=name, user_id=user_id
|
||||
)
|
||||
await transcripts_controller.upsert_participant(transcript, participant)
|
||||
participants_list.append(
|
||||
{
|
||||
"participant_id": participant_id,
|
||||
"user_name": name,
|
||||
"speaker": idx,
|
||||
}
|
||||
)
|
||||
|
||||
ctx.log(f"get_participants complete: {len(participants_list)} participants")
|
||||
|
||||
return ParticipantsResult(
|
||||
participants=participants_list,
|
||||
num_tracks=len(input.tracks),
|
||||
source_language=transcript.source_language if transcript else "en",
|
||||
target_language=transcript.target_language if transcript else "en",
|
||||
)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[get_participants], execution_timeout=timedelta(seconds=600), retries=3
|
||||
)
|
||||
@with_error_handling("process_tracks")
|
||||
async def process_tracks(input: PipelineInput, ctx: Context) -> ProcessTracksResult:
|
||||
"""Spawn child workflows for each track (dynamic fan-out)."""
|
||||
ctx.log(f"process_tracks: spawning {len(input.tracks)} track workflows")
|
||||
|
||||
participants_result = ctx.task_output(get_participants)
|
||||
source_language = participants_result.source_language
|
||||
|
||||
child_coroutines = [
|
||||
track_workflow.aio_run(
|
||||
TrackInput(
|
||||
track_index=i,
|
||||
s3_key=track["s3_key"],
|
||||
bucket_name=input.bucket_name,
|
||||
transcript_id=input.transcript_id,
|
||||
language=source_language,
|
||||
)
|
||||
)
|
||||
for i, track in enumerate(input.tracks)
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*child_coroutines)
|
||||
|
||||
target_language = participants_result.target_language
|
||||
|
||||
track_words = []
|
||||
padded_tracks = []
|
||||
created_padded_files = set()
|
||||
|
||||
for result in results:
|
||||
transcribe_result = result.get("transcribe_track", {})
|
||||
track_words.append(transcribe_result.get("words", []))
|
||||
|
||||
pad_result = result.get("pad_track", {})
|
||||
padded_key = pad_result.get("padded_key")
|
||||
bucket_name = pad_result.get("bucket_name")
|
||||
|
||||
# Store S3 key info (not presigned URL) - consumer tasks presign on demand
|
||||
if padded_key:
|
||||
padded_tracks.append(
|
||||
PaddedTrackInfo(key=padded_key, bucket_name=bucket_name)
|
||||
)
|
||||
|
||||
track_index = pad_result.get("track_index")
|
||||
if pad_result.get("size", 0) > 0 and track_index is not None:
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{track_index}.webm"
|
||||
created_padded_files.add(storage_path)
|
||||
|
||||
all_words = [word for words in track_words for word in words]
|
||||
all_words.sort(key=lambda w: w.get("start", 0))
|
||||
|
||||
ctx.log(
|
||||
f"process_tracks complete: {len(all_words)} words from {len(input.tracks)} tracks"
|
||||
)
|
||||
|
||||
return ProcessTracksResult(
|
||||
all_words=all_words,
|
||||
padded_tracks=padded_tracks,
|
||||
word_count=len(all_words),
|
||||
num_tracks=len(input.tracks),
|
||||
target_language=target_language,
|
||||
created_padded_files=list(created_padded_files),
|
||||
)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[process_tracks], execution_timeout=timedelta(seconds=300), retries=3
|
||||
)
|
||||
@with_error_handling("mixdown_tracks")
|
||||
async def mixdown_tracks(input: PipelineInput, ctx: Context) -> MixdownResult:
|
||||
"""Mix all padded tracks into single audio file using PyAV (same as Celery)."""
|
||||
ctx.log("mixdown_tracks: mixing padded tracks into single audio file")
|
||||
|
||||
track_result = ctx.task_output(process_tracks)
|
||||
padded_tracks = track_result.padded_tracks
|
||||
|
||||
# TODO think of NonEmpty type to avoid those checks, e.g. sized.NonEmpty from https://github.com/antonagestam/phantom-types/
|
||||
if not padded_tracks:
|
||||
raise ValueError("No padded tracks to mixdown")
|
||||
|
||||
storage = _spawn_storage()
|
||||
|
||||
# Presign URLs on demand (avoids stale URLs on workflow replay)
|
||||
padded_urls = []
|
||||
for track_info in padded_tracks:
|
||||
if track_info.key:
|
||||
url = await storage.get_file_url(
|
||||
track_info.key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=track_info.bucket_name,
|
||||
)
|
||||
padded_urls.append(url)
|
||||
|
||||
valid_urls = [url for url in padded_urls if url]
|
||||
if not valid_urls:
|
||||
raise ValueError("No valid padded tracks to mixdown")
|
||||
|
||||
target_sample_rate = detect_sample_rate_from_tracks(valid_urls, logger=logger)
|
||||
if not target_sample_rate:
|
||||
logger.error("Mixdown failed - no decodable audio frames found")
|
||||
raise ValueError("No decodable audio frames in any track")
|
||||
|
||||
output_path = tempfile.mktemp(suffix=".mp3")
|
||||
duration_ms_callback_capture_container = [0.0]
|
||||
|
||||
async def capture_duration(d):
|
||||
duration_ms_callback_capture_container[0] = d
|
||||
|
||||
writer = AudioFileWriterProcessor(path=output_path, on_duration=capture_duration)
|
||||
|
||||
await mixdown_tracks_pyav(
|
||||
valid_urls,
|
||||
writer,
|
||||
target_sample_rate,
|
||||
offsets_seconds=None,
|
||||
logger=logger,
|
||||
)
|
||||
await writer.flush()
|
||||
|
||||
file_size = Path(output_path).stat().st_size
|
||||
storage_path = f"{input.transcript_id}/audio.mp3"
|
||||
|
||||
with open(output_path, "rb") as mixed_file:
|
||||
await storage.put_file(storage_path, mixed_file)
|
||||
|
||||
Path(output_path).unlink(missing_ok=True)
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.transcripts import transcripts_controller # noqa: PLC0415
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript:
|
||||
await transcripts_controller.update(
|
||||
transcript, {"audio_location": "storage"}
|
||||
)
|
||||
|
||||
ctx.log(f"mixdown_tracks complete: uploaded {file_size} bytes to {storage_path}")
|
||||
|
||||
return MixdownResult(
|
||||
audio_key=storage_path,
|
||||
duration=duration_ms_callback_capture_container[0],
|
||||
tracks_mixed=len(valid_urls),
|
||||
)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[mixdown_tracks], execution_timeout=timedelta(seconds=120), retries=3
|
||||
)
|
||||
@with_error_handling("generate_waveform")
|
||||
async def generate_waveform(input: PipelineInput, ctx: Context) -> WaveformResult:
|
||||
"""Generate audio waveform visualization using AudioWaveformProcessor (matches Celery)."""
|
||||
ctx.log(f"generate_waveform: transcript_id={input.transcript_id}")
|
||||
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptWaveform,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
mixdown_result = ctx.task_output(mixdown_tracks)
|
||||
audio_key = mixdown_result.audio_key
|
||||
|
||||
storage = _spawn_storage()
|
||||
audio_url = await storage.get_file_url(
|
||||
audio_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
)
|
||||
|
||||
# Download MP3 to temp file (AudioWaveformProcessor needs local file)
|
||||
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(audio_url, timeout=120)
|
||||
response.raise_for_status()
|
||||
with open(temp_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
waveform = get_audio_waveform(
|
||||
path=Path(temp_path), segments_count=WAVEFORM_SEGMENTS
|
||||
)
|
||||
|
||||
async with fresh_db_connection():
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript:
|
||||
waveform_data = TranscriptWaveform(waveform=waveform)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id,
|
||||
transcript,
|
||||
"WAVEFORM",
|
||||
waveform_data,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
finally:
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
|
||||
ctx.log("generate_waveform complete")
|
||||
|
||||
return WaveformResult(waveform_generated=True)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[mixdown_tracks], execution_timeout=timedelta(seconds=300), retries=3
|
||||
)
|
||||
@with_error_handling("detect_topics")
|
||||
async def detect_topics(input: PipelineInput, ctx: Context) -> TopicsResult:
|
||||
"""Detect topics using LLM and save to database (matches Celery on_topic callback)."""
|
||||
ctx.log("detect_topics: analyzing transcript for topics")
|
||||
|
||||
track_result = ctx.task_output(process_tracks)
|
||||
words = track_result.all_words
|
||||
target_language = track_result.target_language
|
||||
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptTopic,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
word_objects = [Word(**w) for w in words]
|
||||
transcript_type = TranscriptType(words=word_objects)
|
||||
|
||||
empty_pipeline = topic_processing.EmptyPipeline(logger=logger)
|
||||
|
||||
async with fresh_db_connection():
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
|
||||
async def on_topic_callback(data):
|
||||
topic = TranscriptTopic(
|
||||
title=data.title,
|
||||
summary=data.summary,
|
||||
timestamp=data.timestamp,
|
||||
transcript=data.transcript.text,
|
||||
words=data.transcript.words,
|
||||
)
|
||||
if isinstance(
|
||||
data, TitleSummaryWithId
|
||||
): # Celery parity: main_live_pipeline.py
|
||||
topic.id = data.id
|
||||
await transcripts_controller.upsert_topic(transcript, topic)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id, transcript, "TOPIC", topic, logger=logger
|
||||
)
|
||||
|
||||
topics = await topic_processing.detect_topics(
|
||||
transcript_type,
|
||||
target_language,
|
||||
on_topic_callback=on_topic_callback,
|
||||
empty_pipeline=empty_pipeline,
|
||||
)
|
||||
|
||||
topics_list = [t.model_dump() for t in topics]
|
||||
|
||||
ctx.log(f"detect_topics complete: found {len(topics_list)} topics")
|
||||
|
||||
return TopicsResult(topics=topics_list)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[detect_topics], execution_timeout=timedelta(seconds=120), retries=3
|
||||
)
|
||||
@with_error_handling("generate_title")
|
||||
async def generate_title(input: PipelineInput, ctx: Context) -> TitleResult:
|
||||
"""Generate meeting title using LLM and save to database (matches Celery on_title callback)."""
|
||||
ctx.log("generate_title: generating title from topics")
|
||||
|
||||
topics_result = ctx.task_output(detect_topics)
|
||||
topics = topics_result.topics
|
||||
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptFinalTitle,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
topic_objects = [TitleSummary(**t) for t in topics]
|
||||
|
||||
empty_pipeline = topic_processing.EmptyPipeline(logger=logger)
|
||||
title_result = None
|
||||
|
||||
async with fresh_db_connection():
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
|
||||
async def on_title_callback(data):
|
||||
nonlocal title_result
|
||||
title_result = data.title
|
||||
final_title = TranscriptFinalTitle(title=data.title)
|
||||
if not transcript.title:
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{"title": final_title.title},
|
||||
)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id,
|
||||
transcript,
|
||||
"FINAL_TITLE",
|
||||
final_title,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
await topic_processing.generate_title(
|
||||
topic_objects,
|
||||
on_title_callback=on_title_callback,
|
||||
empty_pipeline=empty_pipeline,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
ctx.log(f"generate_title complete: '{title_result}'")
|
||||
|
||||
return TitleResult(title=title_result)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[detect_topics], execution_timeout=timedelta(seconds=300), retries=3
|
||||
)
|
||||
@with_error_handling("generate_summary")
|
||||
async def generate_summary(input: PipelineInput, ctx: Context) -> SummaryResult:
|
||||
"""Generate meeting summary using LLM and save to database (matches Celery callbacks)."""
|
||||
ctx.log("generate_summary: generating long and short summaries")
|
||||
|
||||
topics_result = ctx.task_output(detect_topics)
|
||||
topics = topics_result.topics
|
||||
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
topic_objects = [TitleSummary(**t) for t in topics]
|
||||
|
||||
empty_pipeline = topic_processing.EmptyPipeline(logger=logger)
|
||||
summary_result = None
|
||||
short_summary_result = None
|
||||
|
||||
async with fresh_db_connection():
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
|
||||
async def on_long_summary_callback(data):
|
||||
nonlocal summary_result
|
||||
summary_result = data.long_summary
|
||||
final_long_summary = TranscriptFinalLongSummary(
|
||||
long_summary=data.long_summary
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{"long_summary": final_long_summary.long_summary},
|
||||
)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id,
|
||||
transcript,
|
||||
"FINAL_LONG_SUMMARY",
|
||||
final_long_summary,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
async def on_short_summary_callback(data):
|
||||
nonlocal short_summary_result
|
||||
short_summary_result = data.short_summary
|
||||
final_short_summary = TranscriptFinalShortSummary(
|
||||
short_summary=data.short_summary
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{"short_summary": final_short_summary.short_summary},
|
||||
)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id,
|
||||
transcript,
|
||||
"FINAL_SHORT_SUMMARY",
|
||||
final_short_summary,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
await topic_processing.generate_summaries(
|
||||
topic_objects,
|
||||
transcript, # DB transcript for context
|
||||
on_long_summary_callback=on_long_summary_callback,
|
||||
on_short_summary_callback=on_short_summary_callback,
|
||||
empty_pipeline=empty_pipeline,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
ctx.log("generate_summary complete")
|
||||
|
||||
return SummaryResult(summary=summary_result, short_summary=short_summary_result)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[generate_waveform, generate_title, generate_summary],
|
||||
execution_timeout=timedelta(seconds=60),
|
||||
retries=3,
|
||||
)
|
||||
@with_error_handling("finalize")
|
||||
async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
|
||||
"""Finalize transcript: save words, emit TRANSCRIPT event, set status to 'ended'.
|
||||
|
||||
Matches Celery's on_transcript + set_status behavior.
|
||||
Note: Title and summaries are already saved by their respective task callbacks.
|
||||
"""
|
||||
ctx.log("finalize: saving transcript and setting status to 'ended'")
|
||||
|
||||
mixdown_result = ctx.task_output(mixdown_tracks)
|
||||
track_result = ctx.task_output(process_tracks)
|
||||
|
||||
duration = mixdown_result.duration
|
||||
all_words = track_result.all_words
|
||||
|
||||
# Cleanup temporary padded S3 files (deferred until finalize for semantic parity with Celery)
|
||||
created_padded_files = track_result.created_padded_files
|
||||
if created_padded_files:
|
||||
ctx.log(f"Cleaning up {len(created_padded_files)} temporary S3 files")
|
||||
storage = _spawn_storage()
|
||||
cleanup_results = await asyncio.gather(
|
||||
*[storage.delete_file(path) for path in created_padded_files],
|
||||
return_exceptions=True,
|
||||
)
|
||||
for storage_path, result in zip(created_padded_files, cleanup_results):
|
||||
if isinstance(result, Exception):
|
||||
logger.warning(
|
||||
"[Hatchet] Failed to cleanup temporary padded track",
|
||||
storage_path=storage_path,
|
||||
error=str(result),
|
||||
)
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.transcripts import ( # noqa: PLC0415
|
||||
TranscriptDuration,
|
||||
TranscriptText,
|
||||
transcripts_controller,
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript is None:
|
||||
raise ValueError(f"Transcript {input.transcript_id} not found in database")
|
||||
|
||||
word_objects = [Word(**w) for w in all_words]
|
||||
merged_transcript = TranscriptType(words=word_objects, translation=None)
|
||||
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id,
|
||||
transcript,
|
||||
"TRANSCRIPT",
|
||||
TranscriptText(
|
||||
text=merged_transcript.text,
|
||||
translation=merged_transcript.translation,
|
||||
),
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
# Save duration and clear workflow_run_id (workflow completed successfully)
|
||||
# Note: title/long_summary/short_summary already saved by their callbacks
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"duration": duration,
|
||||
"workflow_run_id": None, # Clear on success - no need to resume
|
||||
},
|
||||
)
|
||||
|
||||
duration_data = TranscriptDuration(duration=duration)
|
||||
await append_event_and_broadcast(
|
||||
input.transcript_id, transcript, "DURATION", duration_data, logger=logger
|
||||
)
|
||||
|
||||
await set_status_and_broadcast(input.transcript_id, "ended", logger=logger)
|
||||
|
||||
ctx.log(
|
||||
f"finalize complete: transcript {input.transcript_id} status set to 'ended'"
|
||||
)
|
||||
|
||||
return FinalizeResult(status="COMPLETED")
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[finalize], execution_timeout=timedelta(seconds=60), retries=3
|
||||
)
|
||||
@with_error_handling("cleanup_consent", set_error_status=False)
|
||||
async def cleanup_consent(input: PipelineInput, ctx: Context) -> ConsentResult:
|
||||
"""Check consent and delete audio files if any participant denied."""
|
||||
ctx.log(f"cleanup_consent: transcript_id={input.transcript_id}")
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.meetings import ( # noqa: PLC0415
|
||||
meeting_consent_controller,
|
||||
meetings_controller,
|
||||
)
|
||||
from reflector.db.recordings import recordings_controller # noqa: PLC0415
|
||||
from reflector.db.transcripts import transcripts_controller # noqa: PLC0415
|
||||
from reflector.storage import get_transcripts_storage # noqa: PLC0415
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if not transcript:
|
||||
ctx.log("cleanup_consent: transcript not found")
|
||||
return ConsentResult()
|
||||
|
||||
consent_denied = False
|
||||
if transcript.meeting_id:
|
||||
meeting = await meetings_controller.get_by_id(transcript.meeting_id)
|
||||
if meeting:
|
||||
consent_denied = await meeting_consent_controller.has_any_denial(
|
||||
meeting.id
|
||||
)
|
||||
|
||||
if not consent_denied:
|
||||
ctx.log("cleanup_consent: consent approved, keeping all files")
|
||||
return ConsentResult()
|
||||
|
||||
ctx.log("cleanup_consent: consent denied, deleting audio files")
|
||||
|
||||
input_track_keys = set(t["s3_key"] for t in input.tracks)
|
||||
|
||||
# Detect if recording.track_keys was manually modified after workflow started
|
||||
if transcript.recording_id:
|
||||
recording = await recordings_controller.get_by_id(transcript.recording_id)
|
||||
if recording and recording.track_keys:
|
||||
db_track_keys = set(filter_cam_audio_tracks(recording.track_keys))
|
||||
|
||||
if input_track_keys != db_track_keys:
|
||||
added = db_track_keys - input_track_keys
|
||||
removed = input_track_keys - db_track_keys
|
||||
logger.warning(
|
||||
"[Hatchet] Track keys mismatch: DB changed since workflow start",
|
||||
transcript_id=input.transcript_id,
|
||||
recording_id=transcript.recording_id,
|
||||
input_count=len(input_track_keys),
|
||||
db_count=len(db_track_keys),
|
||||
added_in_db=list(added) if added else None,
|
||||
removed_from_db=list(removed) if removed else None,
|
||||
)
|
||||
ctx.log(
|
||||
f"WARNING: track_keys mismatch - "
|
||||
f"input has {len(input_track_keys)}, DB has {len(db_track_keys)}. "
|
||||
f"Using input tracks for deletion."
|
||||
)
|
||||
|
||||
deletion_errors = []
|
||||
|
||||
if input_track_keys and input.bucket_name:
|
||||
master_storage = get_transcripts_storage()
|
||||
for key in input_track_keys:
|
||||
try:
|
||||
await master_storage.delete_file(key, bucket=input.bucket_name)
|
||||
ctx.log(f"Deleted recording file: {input.bucket_name}/{key}")
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to delete {key}: {e}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
deletion_errors.append(error_msg)
|
||||
|
||||
if transcript.audio_location == "storage":
|
||||
storage = get_transcripts_storage()
|
||||
try:
|
||||
await storage.delete_file(transcript.storage_audio_path)
|
||||
ctx.log(f"Deleted processed audio: {transcript.storage_audio_path}")
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to delete processed audio: {e}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
deletion_errors.append(error_msg)
|
||||
|
||||
if deletion_errors:
|
||||
logger.warning(
|
||||
"[Hatchet] cleanup_consent completed with errors",
|
||||
transcript_id=input.transcript_id,
|
||||
error_count=len(deletion_errors),
|
||||
errors=deletion_errors,
|
||||
)
|
||||
ctx.log(f"cleanup_consent completed with {len(deletion_errors)} errors")
|
||||
else:
|
||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||
ctx.log("cleanup_consent: all audio deleted successfully")
|
||||
|
||||
return ConsentResult()
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[cleanup_consent], execution_timeout=timedelta(seconds=60), retries=5
|
||||
)
|
||||
@with_error_handling("post_zulip", set_error_status=False)
|
||||
async def post_zulip(input: PipelineInput, ctx: Context) -> ZulipResult:
|
||||
"""Post notification to Zulip."""
|
||||
ctx.log(f"post_zulip: transcript_id={input.transcript_id}")
|
||||
|
||||
if not settings.ZULIP_REALM:
|
||||
ctx.log("post_zulip skipped (Zulip not configured)")
|
||||
return ZulipResult(zulip_message_id=None, skipped=True)
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.transcripts import transcripts_controller # noqa: PLC0415
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
if transcript:
|
||||
message_id = await post_transcript_notification(transcript)
|
||||
ctx.log(f"post_zulip complete: zulip_message_id={message_id}")
|
||||
else:
|
||||
message_id = None
|
||||
|
||||
return ZulipResult(zulip_message_id=message_id)
|
||||
|
||||
|
||||
@diarization_pipeline.task(
|
||||
parents=[post_zulip], execution_timeout=timedelta(seconds=120), retries=30
|
||||
)
|
||||
@with_error_handling("send_webhook", set_error_status=False)
|
||||
async def send_webhook(input: PipelineInput, ctx: Context) -> WebhookResult:
|
||||
"""Send completion webhook to external service."""
|
||||
ctx.log(f"send_webhook: transcript_id={input.transcript_id}")
|
||||
|
||||
if not input.room_id:
|
||||
ctx.log("send_webhook skipped (no room_id)")
|
||||
return WebhookResult(webhook_sent=False, skipped=True)
|
||||
|
||||
async with fresh_db_connection():
|
||||
from reflector.db.rooms import rooms_controller # noqa: PLC0415
|
||||
from reflector.db.transcripts import transcripts_controller # noqa: PLC0415
|
||||
|
||||
room = await rooms_controller.get_by_id(input.room_id)
|
||||
transcript = await transcripts_controller.get_by_id(input.transcript_id)
|
||||
|
||||
if room and room.webhook_url and transcript:
|
||||
webhook_payload = {
|
||||
"event": "transcript.completed",
|
||||
"transcript_id": input.transcript_id,
|
||||
"title": transcript.title,
|
||||
"duration": transcript.duration,
|
||||
}
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
room.webhook_url, json=webhook_payload, timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
ctx.log(f"send_webhook complete: status_code={response.status_code}")
|
||||
|
||||
return WebhookResult(webhook_sent=True, response_code=response.status_code)
|
||||
|
||||
return WebhookResult(webhook_sent=False, skipped=True)
|
||||
123
server/reflector/hatchet/workflows/models.py
Normal file
123
server/reflector/hatchet/workflows/models.py
Normal file
@@ -0,0 +1,123 @@
|
||||
"""
|
||||
Pydantic models for Hatchet workflow task return types.
|
||||
|
||||
Provides static typing for all task outputs, enabling type checking
|
||||
and better IDE support.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
class PadTrackResult(BaseModel):
|
||||
"""Result from pad_track task."""
|
||||
|
||||
padded_key: NonEmptyString # S3 key (not presigned URL) - presign on demand to avoid stale URLs on replay
|
||||
bucket_name: (
|
||||
NonEmptyString | None
|
||||
) # None means use default transcript storage bucket
|
||||
size: int
|
||||
track_index: int
|
||||
|
||||
|
||||
class TranscribeTrackResult(BaseModel):
|
||||
"""Result from transcribe_track task."""
|
||||
|
||||
words: list[dict[str, Any]]
|
||||
track_index: int
|
||||
|
||||
|
||||
class RecordingResult(BaseModel):
|
||||
"""Result from get_recording task."""
|
||||
|
||||
id: NonEmptyString | None
|
||||
mtg_session_id: NonEmptyString | None
|
||||
duration: float
|
||||
|
||||
|
||||
class ParticipantsResult(BaseModel):
|
||||
"""Result from get_participants task."""
|
||||
|
||||
participants: list[dict[str, Any]]
|
||||
num_tracks: int
|
||||
source_language: NonEmptyString
|
||||
target_language: NonEmptyString
|
||||
|
||||
|
||||
class PaddedTrackInfo(BaseModel):
|
||||
"""Info for a padded track - S3 key + bucket for on-demand presigning."""
|
||||
|
||||
key: NonEmptyString
|
||||
bucket_name: NonEmptyString | None # None = use default storage bucket
|
||||
|
||||
|
||||
class ProcessTracksResult(BaseModel):
|
||||
"""Result from process_tracks task."""
|
||||
|
||||
all_words: list[dict[str, Any]]
|
||||
padded_tracks: list[PaddedTrackInfo] # S3 keys, not presigned URLs
|
||||
word_count: int
|
||||
num_tracks: int
|
||||
target_language: NonEmptyString
|
||||
created_padded_files: list[NonEmptyString]
|
||||
|
||||
|
||||
class MixdownResult(BaseModel):
|
||||
"""Result from mixdown_tracks task."""
|
||||
|
||||
audio_key: NonEmptyString
|
||||
duration: float
|
||||
tracks_mixed: int
|
||||
|
||||
|
||||
class WaveformResult(BaseModel):
|
||||
"""Result from generate_waveform task."""
|
||||
|
||||
waveform_generated: bool
|
||||
|
||||
|
||||
class TopicsResult(BaseModel):
|
||||
"""Result from detect_topics task."""
|
||||
|
||||
topics: list[dict[str, Any]]
|
||||
|
||||
|
||||
class TitleResult(BaseModel):
|
||||
"""Result from generate_title task."""
|
||||
|
||||
title: str | None
|
||||
|
||||
|
||||
class SummaryResult(BaseModel):
|
||||
"""Result from generate_summary task."""
|
||||
|
||||
summary: str | None
|
||||
short_summary: str | None
|
||||
|
||||
|
||||
class FinalizeResult(BaseModel):
|
||||
"""Result from finalize task."""
|
||||
|
||||
status: NonEmptyString
|
||||
|
||||
|
||||
class ConsentResult(BaseModel):
|
||||
"""Result from cleanup_consent task."""
|
||||
|
||||
|
||||
class ZulipResult(BaseModel):
|
||||
"""Result from post_zulip task."""
|
||||
|
||||
zulip_message_id: int | None = None
|
||||
skipped: bool = False
|
||||
|
||||
|
||||
class WebhookResult(BaseModel):
|
||||
"""Result from send_webhook task."""
|
||||
|
||||
webhook_sent: bool
|
||||
skipped: bool = False
|
||||
response_code: int | None = None
|
||||
222
server/reflector/hatchet/workflows/track_processing.py
Normal file
222
server/reflector/hatchet/workflows/track_processing.py
Normal file
@@ -0,0 +1,222 @@
|
||||
"""
|
||||
Hatchet child workflow: TrackProcessing
|
||||
|
||||
Handles individual audio track processing: padding and transcription.
|
||||
Spawned dynamically by the main diarization pipeline for each track.
|
||||
|
||||
Architecture note: This is a separate workflow (not inline tasks in DiarizationPipeline)
|
||||
because Hatchet workflow DAGs are defined statically, but the number of tracks varies
|
||||
at runtime. Child workflow spawning via `aio_run()` + `asyncio.gather()` is the
|
||||
standard pattern for dynamic fan-out. See `process_tracks` in diarization_pipeline.py.
|
||||
|
||||
Note: This file uses deferred imports (inside tasks) intentionally.
|
||||
Hatchet workers run in forked processes; fresh imports per task ensure
|
||||
storage/DB connections are not shared across forks.
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
from hatchet_sdk import Context
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
|
||||
from reflector.utils.audio_padding import (
|
||||
apply_audio_padding_to_file,
|
||||
extract_stream_start_time_from_container,
|
||||
)
|
||||
|
||||
|
||||
class TrackInput(BaseModel):
|
||||
"""Input for individual track processing."""
|
||||
|
||||
track_index: int
|
||||
s3_key: str
|
||||
bucket_name: str
|
||||
transcript_id: str
|
||||
language: str = "en"
|
||||
|
||||
|
||||
hatchet = HatchetClientManager.get_client()
|
||||
|
||||
track_workflow = hatchet.workflow(name="TrackProcessing", input_validator=TrackInput)
|
||||
|
||||
|
||||
@track_workflow.task(execution_timeout=timedelta(seconds=300), retries=3)
|
||||
async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
|
||||
"""Pad single audio track with silence for alignment.
|
||||
|
||||
Extracts stream.start_time from WebM container metadata and applies
|
||||
silence padding using PyAV filter graph (adelay).
|
||||
"""
|
||||
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
|
||||
logger.info(
|
||||
"[Hatchet] pad_track",
|
||||
track_index=input.track_index,
|
||||
s3_key=input.s3_key,
|
||||
transcript_id=input.transcript_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Create fresh storage instance to avoid aioboto3 fork issues
|
||||
from reflector.settings import settings # noqa: PLC0415
|
||||
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
|
||||
|
||||
storage = AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
source_url = await storage.get_file_url(
|
||||
input.s3_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=input.bucket_name,
|
||||
)
|
||||
|
||||
with av.open(source_url) as in_container:
|
||||
start_time_seconds = extract_stream_start_time_from_container(
|
||||
in_container, input.track_index, logger=logger
|
||||
)
|
||||
|
||||
# If no padding needed, return original S3 key
|
||||
if start_time_seconds <= 0:
|
||||
logger.info(
|
||||
f"Track {input.track_index} requires no padding",
|
||||
track_index=input.track_index,
|
||||
)
|
||||
return PadTrackResult(
|
||||
padded_key=input.s3_key,
|
||||
bucket_name=input.bucket_name,
|
||||
size=0,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
apply_audio_padding_to_file(
|
||||
in_container,
|
||||
temp_path,
|
||||
start_time_seconds,
|
||||
input.track_index,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
file_size = Path(temp_path).stat().st_size
|
||||
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
|
||||
|
||||
logger.info(
|
||||
f"About to upload padded track",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
|
||||
with open(temp_path, "rb") as padded_file:
|
||||
await storage.put_file(storage_path, padded_file)
|
||||
|
||||
logger.info(
|
||||
f"Uploaded padded track to S3",
|
||||
key=storage_path,
|
||||
size=file_size,
|
||||
)
|
||||
finally:
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
|
||||
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
|
||||
logger.info(
|
||||
"[Hatchet] pad_track complete",
|
||||
track_index=input.track_index,
|
||||
padded_key=storage_path,
|
||||
)
|
||||
|
||||
# Return S3 key (not presigned URL) - consumer tasks presign on demand
|
||||
# This avoids stale URLs when workflow is replayed
|
||||
return PadTrackResult(
|
||||
padded_key=storage_path,
|
||||
bucket_name=None, # None = use default transcript storage bucket
|
||||
size=file_size,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("[Hatchet] pad_track failed", error=str(e), exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
@track_workflow.task(
|
||||
parents=[pad_track], execution_timeout=timedelta(seconds=600), retries=3
|
||||
)
|
||||
async def transcribe_track(input: TrackInput, ctx: Context) -> TranscribeTrackResult:
|
||||
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
|
||||
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
|
||||
logger.info(
|
||||
"[Hatchet] transcribe_track",
|
||||
track_index=input.track_index,
|
||||
language=input.language,
|
||||
)
|
||||
|
||||
try:
|
||||
pad_result = ctx.task_output(pad_track)
|
||||
padded_key = pad_result.padded_key
|
||||
bucket_name = pad_result.bucket_name
|
||||
|
||||
if not padded_key:
|
||||
raise ValueError("Missing padded_key from pad_track")
|
||||
|
||||
# Presign URL on demand (avoids stale URLs on workflow replay)
|
||||
from reflector.settings import settings # noqa: PLC0415
|
||||
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
|
||||
|
||||
storage = AwsStorage(
|
||||
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
|
||||
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
audio_url = await storage.get_file_url(
|
||||
padded_key,
|
||||
operation="get_object",
|
||||
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
|
||||
bucket=bucket_name,
|
||||
)
|
||||
|
||||
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
|
||||
transcribe_file_with_processor,
|
||||
)
|
||||
|
||||
transcript = await transcribe_file_with_processor(audio_url, input.language)
|
||||
|
||||
# Tag all words with speaker index
|
||||
words = []
|
||||
for word in transcript.words:
|
||||
word_dict = word.model_dump()
|
||||
word_dict["speaker"] = input.track_index
|
||||
words.append(word_dict)
|
||||
|
||||
ctx.log(
|
||||
f"transcribe_track complete: track {input.track_index}, {len(words)} words"
|
||||
)
|
||||
logger.info(
|
||||
"[Hatchet] transcribe_track complete",
|
||||
track_index=input.track_index,
|
||||
word_count=len(words),
|
||||
)
|
||||
|
||||
return TranscribeTrackResult(
|
||||
words=words,
|
||||
track_index=input.track_index,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("[Hatchet] transcribe_track failed", error=str(e), exc_info=True)
|
||||
raise
|
||||
@@ -97,13 +97,8 @@ class PipelineMainFile(PipelineMainBase):
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
# Upload for processing
|
||||
audio_url = await self.upload_audio(audio_path, transcript)
|
||||
|
||||
# Run parallel processing
|
||||
await self.run_parallel_processing(
|
||||
audio_path,
|
||||
audio_url,
|
||||
@@ -197,7 +192,6 @@ class PipelineMainFile(PipelineMainBase):
|
||||
transcript_result = results[0]
|
||||
diarization_result = results[1]
|
||||
|
||||
# Handle errors - raise any exception that occurred
|
||||
self._handle_gather_exceptions(results, "parallel processing")
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
@@ -212,7 +206,6 @@ class PipelineMainFile(PipelineMainBase):
|
||||
transcript=transcript_result, diarization=diarization_result or []
|
||||
)
|
||||
|
||||
# Store result for retrieval
|
||||
diarized_transcript: Transcript | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
@@ -349,7 +342,6 @@ async def task_pipeline_file_process(*, transcript_id: str):
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
@@ -1,11 +1,8 @@
|
||||
import asyncio
|
||||
import math
|
||||
import tempfile
|
||||
from fractions import Fraction
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
@@ -32,6 +29,15 @@ from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import Transcript as TranscriptType
|
||||
from reflector.storage import Storage, get_transcripts_storage
|
||||
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
|
||||
from reflector.utils.audio_mixdown import (
|
||||
detect_sample_rate_from_tracks,
|
||||
mixdown_tracks_pyav,
|
||||
)
|
||||
from reflector.utils.audio_padding import (
|
||||
apply_audio_padding_to_file,
|
||||
extract_stream_start_time_from_container,
|
||||
)
|
||||
from reflector.utils.daily import (
|
||||
filter_cam_audio_tracks,
|
||||
parse_daily_recording_filename,
|
||||
@@ -39,13 +45,6 @@ from reflector.utils.daily import (
|
||||
from reflector.utils.string import NonEmptyString
|
||||
from reflector.video_platforms.factory import create_platform_client
|
||||
|
||||
# Audio encoding constants
|
||||
OPUS_STANDARD_SAMPLE_RATE = 48000
|
||||
OPUS_DEFAULT_BIT_RATE = 128000
|
||||
|
||||
# Storage operation constants
|
||||
PRESIGNED_URL_EXPIRATION_SECONDS = 7200 # 2 hours
|
||||
|
||||
|
||||
class PipelineMainMultitrack(PipelineMainBase):
|
||||
def __init__(self, transcript_id: str):
|
||||
@@ -125,8 +124,8 @@ class PipelineMainMultitrack(PipelineMainBase):
|
||||
try:
|
||||
# PyAV streams input from S3 URL efficiently (2-5MB fixed overhead for codec/filters)
|
||||
with av.open(track_url) as in_container:
|
||||
start_time_seconds = self._extract_stream_start_time_from_container(
|
||||
in_container, track_idx
|
||||
start_time_seconds = extract_stream_start_time_from_container(
|
||||
in_container, track_idx, logger=self.logger
|
||||
)
|
||||
|
||||
if start_time_seconds <= 0:
|
||||
@@ -144,8 +143,12 @@ class PipelineMainMultitrack(PipelineMainBase):
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
self._apply_audio_padding_to_file(
|
||||
in_container, temp_path, start_time_seconds, track_idx
|
||||
apply_audio_padding_to_file(
|
||||
in_container,
|
||||
temp_path,
|
||||
start_time_seconds,
|
||||
track_idx,
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
storage_path = (
|
||||
@@ -156,7 +159,6 @@ class PipelineMainMultitrack(PipelineMainBase):
|
||||
with open(temp_path, "rb") as padded_file:
|
||||
await storage.put_file(storage_path, padded_file)
|
||||
finally:
|
||||
# Clean up temp file
|
||||
Path(temp_path).unlink(missing_ok=True)
|
||||
|
||||
padded_url = await storage.get_file_url(
|
||||
@@ -186,317 +188,28 @@ class PipelineMainMultitrack(PipelineMainBase):
|
||||
f"Track {track_idx} padding failed - transcript would have incorrect timestamps"
|
||||
) from e
|
||||
|
||||
def _extract_stream_start_time_from_container(
|
||||
self, container, track_idx: int
|
||||
) -> float:
|
||||
"""
|
||||
Extract meeting-relative start time from WebM stream metadata.
|
||||
Uses PyAV to read stream.start_time from WebM container.
|
||||
More accurate than filename timestamps by ~209ms due to network/encoding delays.
|
||||
"""
|
||||
start_time_seconds = 0.0
|
||||
try:
|
||||
audio_streams = [s for s in container.streams if s.type == "audio"]
|
||||
stream = audio_streams[0] if audio_streams else container.streams[0]
|
||||
|
||||
# 1) Try stream-level start_time (most reliable for Daily.co tracks)
|
||||
if stream.start_time is not None and stream.time_base is not None:
|
||||
start_time_seconds = float(stream.start_time * stream.time_base)
|
||||
|
||||
# 2) Fallback to container-level start_time (in av.time_base units)
|
||||
if (start_time_seconds <= 0) and (container.start_time is not None):
|
||||
start_time_seconds = float(container.start_time * av.time_base)
|
||||
|
||||
# 3) Fallback to first packet DTS in stream.time_base
|
||||
if start_time_seconds <= 0:
|
||||
for packet in container.demux(stream):
|
||||
if packet.dts is not None:
|
||||
start_time_seconds = float(packet.dts * stream.time_base)
|
||||
break
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"PyAV metadata read failed; assuming 0 start_time",
|
||||
track_idx=track_idx,
|
||||
error=str(e),
|
||||
)
|
||||
start_time_seconds = 0.0
|
||||
|
||||
self.logger.info(
|
||||
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
return start_time_seconds
|
||||
|
||||
def _apply_audio_padding_to_file(
|
||||
self,
|
||||
in_container,
|
||||
output_path: str,
|
||||
start_time_seconds: float,
|
||||
track_idx: int,
|
||||
) -> None:
|
||||
"""Apply silence padding to audio track using PyAV filter graph, writing to file"""
|
||||
delay_ms = math.floor(start_time_seconds * 1000)
|
||||
|
||||
self.logger.info(
|
||||
f"Padding track {track_idx} with {delay_ms}ms delay using PyAV",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
)
|
||||
|
||||
try:
|
||||
with av.open(output_path, "w", format="webm") as out_container:
|
||||
in_stream = next(
|
||||
(s for s in in_container.streams if s.type == "audio"), None
|
||||
)
|
||||
if in_stream is None:
|
||||
raise Exception("No audio stream in input")
|
||||
|
||||
out_stream = out_container.add_stream(
|
||||
"libopus", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
|
||||
graph = av.filter.Graph()
|
||||
|
||||
abuf_args = (
|
||||
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_fmt=s16:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
src = graph.add("abuffer", args=abuf_args, name="src")
|
||||
aresample_f = graph.add("aresample", args="async=1", name="ares")
|
||||
# adelay requires one delay value per channel separated by '|'
|
||||
delays_arg = f"{delay_ms}|{delay_ms}"
|
||||
adelay_f = graph.add(
|
||||
"adelay", args=f"delays={delays_arg}:all=1", name="delay"
|
||||
)
|
||||
sink = graph.add("abuffersink", name="sink")
|
||||
|
||||
src.link_to(aresample_f)
|
||||
aresample_f.link_to(adelay_f)
|
||||
adelay_f.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
resampler = AudioResampler(
|
||||
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
# Decode -> resample -> push through graph -> encode Opus
|
||||
for frame in in_container.decode(in_stream):
|
||||
out_frames = resampler.resample(frame) or []
|
||||
for rframe in out_frames:
|
||||
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
src.push(rframe)
|
||||
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
src.push(None)
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"PyAV padding failed for track",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
async def mixdown_tracks(
|
||||
self,
|
||||
track_urls: list[str],
|
||||
writer: AudioFileWriterProcessor,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
) -> None:
|
||||
"""Multi-track mixdown using PyAV filter graph (amix), reading from S3 presigned URLs"""
|
||||
|
||||
target_sample_rate: int | None = None
|
||||
for url in track_urls:
|
||||
if not url:
|
||||
continue
|
||||
container = None
|
||||
try:
|
||||
container = av.open(url)
|
||||
for frame in container.decode(audio=0):
|
||||
target_sample_rate = frame.sample_rate
|
||||
break
|
||||
except Exception:
|
||||
continue
|
||||
finally:
|
||||
if container is not None:
|
||||
container.close()
|
||||
if target_sample_rate:
|
||||
break
|
||||
|
||||
"""Multi-track mixdown using PyAV filter graph (amix), reading from S3 presigned URLs."""
|
||||
target_sample_rate = detect_sample_rate_from_tracks(
|
||||
track_urls, logger=self.logger
|
||||
)
|
||||
if not target_sample_rate:
|
||||
self.logger.error("Mixdown failed - no decodable audio frames found")
|
||||
raise Exception("Mixdown failed: No decodable audio frames in any track")
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
valid_track_urls = [url for url in track_urls if url]
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, url in enumerate(track_urls) if url
|
||||
]
|
||||
for idx, url in enumerate(valid_track_urls):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
self.logger.error("Mixdown failed - no valid inputs for graph")
|
||||
raise Exception("Mixdown failed: No valid inputs for filter graph")
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=(
|
||||
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
|
||||
),
|
||||
name="fmt",
|
||||
await mixdown_tracks_pyav(
|
||||
track_urls,
|
||||
writer,
|
||||
target_sample_rate,
|
||||
offsets_seconds=offsets_seconds,
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
containers = []
|
||||
try:
|
||||
# Open all containers with cleanup guaranteed
|
||||
for i, url in enumerate(valid_track_urls):
|
||||
try:
|
||||
c = av.open(
|
||||
url,
|
||||
options={
|
||||
# it's trying to stream from s3 by default
|
||||
"reconnect": "1",
|
||||
"reconnect_streamed": "1",
|
||||
"reconnect_delay_max": "5",
|
||||
},
|
||||
)
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Mixdown: failed to open container from URL",
|
||||
input=i,
|
||||
url=url,
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
if not containers:
|
||||
self.logger.error("Mixdown failed - no valid containers opened")
|
||||
raise Exception("Mixdown failed: Could not open any track containers")
|
||||
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
# causes stream to move on / unclogs memory
|
||||
inputs[i].push(None)
|
||||
continue
|
||||
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
finally:
|
||||
# Cleanup all containers, even if processing failed
|
||||
for c in containers:
|
||||
if c is not None:
|
||||
try:
|
||||
c.close()
|
||||
except Exception:
|
||||
pass # Best effort cleanup
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
|
||||
@@ -11,13 +11,19 @@ from typing import Literal, Union, assert_never
|
||||
|
||||
import celery
|
||||
from celery.result import AsyncResult
|
||||
from hatchet_sdk.clients.rest.exceptions import ApiException
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.transcripts import Transcript
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import Transcript, transcripts_controller
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
from reflector.pipelines.main_multitrack_pipeline import (
|
||||
task_pipeline_multitrack_process,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
@@ -37,6 +43,8 @@ class MultitrackProcessingConfig:
|
||||
transcript_id: NonEmptyString
|
||||
bucket_name: NonEmptyString
|
||||
track_keys: list[str]
|
||||
recording_id: NonEmptyString | None = None
|
||||
room_id: NonEmptyString | None = None
|
||||
mode: Literal["multitrack"] = "multitrack"
|
||||
|
||||
|
||||
@@ -49,6 +57,7 @@ class ValidationOk:
|
||||
# transcript currently doesnt always have recording_id
|
||||
recording_id: NonEmptyString | None
|
||||
transcript_id: NonEmptyString
|
||||
room_id: NonEmptyString | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -96,6 +105,7 @@ async def validate_transcript_for_processing(
|
||||
if transcript.status == "idle":
|
||||
return ValidationNotReady(detail="Recording is not ready for processing")
|
||||
|
||||
# Check Celery tasks
|
||||
if task_is_scheduled_or_active(
|
||||
"reflector.pipelines.main_file_pipeline.task_pipeline_file_process",
|
||||
transcript_id=transcript.id,
|
||||
@@ -105,8 +115,25 @@ async def validate_transcript_for_processing(
|
||||
):
|
||||
return ValidationAlreadyScheduled(detail="already running")
|
||||
|
||||
# Check Hatchet workflows (if enabled)
|
||||
if settings.HATCHET_ENABLED and transcript.workflow_run_id:
|
||||
try:
|
||||
status = await HatchetClientManager.get_workflow_run_status(
|
||||
transcript.workflow_run_id
|
||||
)
|
||||
# If workflow is running or queued, don't allow new processing
|
||||
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
|
||||
return ValidationAlreadyScheduled(
|
||||
detail="Hatchet workflow already running"
|
||||
)
|
||||
except ApiException:
|
||||
# Workflow might be gone (404) or API issue - allow processing
|
||||
pass
|
||||
|
||||
return ValidationOk(
|
||||
recording_id=transcript.recording_id, transcript_id=transcript.id
|
||||
recording_id=transcript.recording_id,
|
||||
transcript_id=transcript.id,
|
||||
room_id=transcript.room_id,
|
||||
)
|
||||
|
||||
|
||||
@@ -116,6 +143,7 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
|
||||
"""
|
||||
bucket_name: str | None = None
|
||||
track_keys: list[str] | None = None
|
||||
recording_id: str | None = validation.recording_id
|
||||
|
||||
if validation.recording_id:
|
||||
recording = await recordings_controller.get_by_id(validation.recording_id)
|
||||
@@ -137,6 +165,8 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
|
||||
bucket_name=bucket_name, # type: ignore (validated above)
|
||||
track_keys=track_keys,
|
||||
transcript_id=validation.transcript_id,
|
||||
recording_id=recording_id,
|
||||
room_id=validation.room_id,
|
||||
)
|
||||
|
||||
return FileProcessingConfig(
|
||||
@@ -144,8 +174,104 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
|
||||
)
|
||||
|
||||
|
||||
def dispatch_transcript_processing(config: ProcessingConfig) -> AsyncResult:
|
||||
async def dispatch_transcript_processing(
|
||||
config: ProcessingConfig, force: bool = False
|
||||
) -> AsyncResult | None:
|
||||
"""Dispatch transcript processing to appropriate backend (Hatchet or Celery).
|
||||
|
||||
Returns AsyncResult for Celery tasks, None for Hatchet workflows.
|
||||
"""
|
||||
if isinstance(config, MultitrackProcessingConfig):
|
||||
# Check if room has use_hatchet=True (overrides env vars)
|
||||
room_forces_hatchet = False
|
||||
if config.room_id:
|
||||
room = await rooms_controller.get_by_id(config.room_id)
|
||||
room_forces_hatchet = room.use_hatchet if room else False
|
||||
|
||||
# Start durable workflow if enabled (Hatchet)
|
||||
# or if room has use_hatchet=True
|
||||
use_hatchet = settings.HATCHET_ENABLED or room_forces_hatchet
|
||||
|
||||
if room_forces_hatchet:
|
||||
logger.info(
|
||||
"Room forces Hatchet workflow",
|
||||
room_id=config.room_id,
|
||||
transcript_id=config.transcript_id,
|
||||
)
|
||||
|
||||
if use_hatchet:
|
||||
# First check if we can replay (outside transaction since it's read-only)
|
||||
transcript = await transcripts_controller.get_by_id(config.transcript_id)
|
||||
if transcript and transcript.workflow_run_id and not force:
|
||||
can_replay = await HatchetClientManager.can_replay(
|
||||
transcript.workflow_run_id
|
||||
)
|
||||
if can_replay:
|
||||
await HatchetClientManager.replay_workflow(
|
||||
transcript.workflow_run_id
|
||||
)
|
||||
logger.info(
|
||||
"Replaying Hatchet workflow",
|
||||
workflow_id=transcript.workflow_run_id,
|
||||
)
|
||||
return None
|
||||
|
||||
# Force: cancel old workflow if exists
|
||||
if force and transcript and transcript.workflow_run_id:
|
||||
await HatchetClientManager.cancel_workflow(transcript.workflow_run_id)
|
||||
logger.info(
|
||||
"Cancelled old workflow (--force)",
|
||||
workflow_id=transcript.workflow_run_id,
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript, {"workflow_run_id": None}
|
||||
)
|
||||
|
||||
# Re-fetch and check for concurrent dispatch (optimistic approach).
|
||||
# No database lock - worst case is duplicate dispatch, but Hatchet
|
||||
# workflows are idempotent so this is acceptable.
|
||||
transcript = await transcripts_controller.get_by_id(config.transcript_id)
|
||||
if transcript and transcript.workflow_run_id:
|
||||
# Another process started a workflow between validation and now
|
||||
try:
|
||||
status = await HatchetClientManager.get_workflow_run_status(
|
||||
transcript.workflow_run_id
|
||||
)
|
||||
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
|
||||
logger.info(
|
||||
"Concurrent workflow detected, skipping dispatch",
|
||||
workflow_id=transcript.workflow_run_id,
|
||||
)
|
||||
return None
|
||||
except ApiException:
|
||||
# Workflow might be gone (404) or API issue - proceed with new workflow
|
||||
pass
|
||||
|
||||
workflow_id = await HatchetClientManager.start_workflow(
|
||||
workflow_name="DiarizationPipeline",
|
||||
input_data={
|
||||
"recording_id": config.recording_id,
|
||||
"tracks": [{"s3_key": k} for k in config.track_keys],
|
||||
"bucket_name": config.bucket_name,
|
||||
"transcript_id": config.transcript_id,
|
||||
"room_id": config.room_id,
|
||||
},
|
||||
additional_metadata={
|
||||
"transcript_id": config.transcript_id,
|
||||
"recording_id": config.recording_id,
|
||||
"daily_recording_id": config.recording_id,
|
||||
},
|
||||
)
|
||||
|
||||
if transcript:
|
||||
await transcripts_controller.update(
|
||||
transcript, {"workflow_run_id": workflow_id}
|
||||
)
|
||||
|
||||
logger.info("Hatchet workflow dispatched", workflow_id=workflow_id)
|
||||
return None
|
||||
|
||||
# Celery pipeline (durable workflows disabled)
|
||||
return task_pipeline_multitrack_process.delay(
|
||||
transcript_id=config.transcript_id,
|
||||
bucket_name=config.bucket_name,
|
||||
|
||||
@@ -153,5 +153,19 @@ class Settings(BaseSettings):
|
||||
ZULIP_API_KEY: str | None = None
|
||||
ZULIP_BOT_EMAIL: str | None = None
|
||||
|
||||
# Durable workflow orchestration
|
||||
# Provider: "hatchet" (or "none" to disable)
|
||||
DURABLE_WORKFLOW_PROVIDER: str = "none"
|
||||
|
||||
# Hatchet workflow orchestration
|
||||
HATCHET_CLIENT_TOKEN: str | None = None
|
||||
HATCHET_CLIENT_TLS_STRATEGY: str = "none" # none, tls, mtls
|
||||
HATCHET_DEBUG: bool = False
|
||||
|
||||
@property
|
||||
def HATCHET_ENABLED(self) -> bool:
|
||||
"""True if Hatchet is the active provider."""
|
||||
return self.DURABLE_WORKFLOW_PROVIDER == "hatchet"
|
||||
|
||||
|
||||
settings = Settings()
|
||||
|
||||
@@ -15,8 +15,11 @@ import time
|
||||
from typing import Callable
|
||||
|
||||
from celery.result import AsyncResult
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.db.transcripts import Transcript, transcripts_controller
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.services.transcript_process import (
|
||||
FileProcessingConfig,
|
||||
MultitrackProcessingConfig,
|
||||
@@ -34,24 +37,26 @@ async def process_transcript_inner(
|
||||
transcript: Transcript,
|
||||
on_validation: Callable[[ValidationResult], None],
|
||||
on_preprocess: Callable[[PrepareResult], None],
|
||||
) -> AsyncResult:
|
||||
force: bool = False,
|
||||
) -> AsyncResult | None:
|
||||
validation = await validate_transcript_for_processing(transcript)
|
||||
on_validation(validation)
|
||||
config = await prepare_transcript_processing(validation)
|
||||
on_preprocess(config)
|
||||
return dispatch_transcript_processing(config)
|
||||
return await dispatch_transcript_processing(config, force=force)
|
||||
|
||||
|
||||
async def process_transcript(transcript_id: str, sync: bool = False) -> None:
|
||||
async def process_transcript(
|
||||
transcript_id: str, sync: bool = False, force: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
Process a transcript by ID, auto-detecting multitrack vs file pipeline.
|
||||
|
||||
Args:
|
||||
transcript_id: The transcript UUID
|
||||
sync: If True, wait for task completion. If False, dispatch and exit.
|
||||
force: If True, cancel old workflow and start new (latest code). If False, replay failed workflow.
|
||||
"""
|
||||
from reflector.db import get_database
|
||||
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
|
||||
@@ -82,10 +87,42 @@ async def process_transcript(transcript_id: str, sync: bool = False) -> None:
|
||||
print(f"Dispatching file pipeline", file=sys.stderr)
|
||||
|
||||
result = await process_transcript_inner(
|
||||
transcript, on_validation=on_validation, on_preprocess=on_preprocess
|
||||
transcript,
|
||||
on_validation=on_validation,
|
||||
on_preprocess=on_preprocess,
|
||||
force=force,
|
||||
)
|
||||
|
||||
if sync:
|
||||
if result is None:
|
||||
# Hatchet workflow dispatched
|
||||
if sync:
|
||||
# Re-fetch transcript to get workflow_run_id
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript or not transcript.workflow_run_id:
|
||||
print("Error: workflow_run_id not found", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
print("Waiting for Hatchet workflow...", file=sys.stderr)
|
||||
while True:
|
||||
status = await HatchetClientManager.get_workflow_run_status(
|
||||
transcript.workflow_run_id
|
||||
)
|
||||
print(f" Status: {status.value}", file=sys.stderr)
|
||||
|
||||
if status == V1TaskStatus.COMPLETED:
|
||||
print("Workflow completed successfully", file=sys.stderr)
|
||||
break
|
||||
elif status in (V1TaskStatus.FAILED, V1TaskStatus.CANCELLED):
|
||||
print(f"Workflow failed: {status}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
await asyncio.sleep(5)
|
||||
else:
|
||||
print(
|
||||
"Task dispatched (use --sync to wait for completion)",
|
||||
file=sys.stderr,
|
||||
)
|
||||
elif sync:
|
||||
print("Waiting for task completion...", file=sys.stderr)
|
||||
while not result.ready():
|
||||
print(f" Status: {result.state}", file=sys.stderr)
|
||||
@@ -118,9 +155,16 @@ def main():
|
||||
action="store_true",
|
||||
help="Wait for task completion instead of just dispatching",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force",
|
||||
action="store_true",
|
||||
help="Cancel old workflow and start new (uses latest code instead of replaying)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
asyncio.run(process_transcript(args.transcript_id, sync=args.sync))
|
||||
asyncio.run(
|
||||
process_transcript(args.transcript_id, sync=args.sync, force=args.force)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
15
server/reflector/utils/audio_constants.py
Normal file
15
server/reflector/utils/audio_constants.py
Normal file
@@ -0,0 +1,15 @@
|
||||
"""
|
||||
Shared audio processing constants.
|
||||
|
||||
Used by both Hatchet workflows and Celery pipelines for consistent audio encoding.
|
||||
"""
|
||||
|
||||
# Opus codec settings
|
||||
OPUS_STANDARD_SAMPLE_RATE = 48000
|
||||
OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality
|
||||
|
||||
# S3 presigned URL expiration
|
||||
PRESIGNED_URL_EXPIRATION_SECONDS = 7200 # 2 hours
|
||||
|
||||
# Waveform visualization
|
||||
WAVEFORM_SEGMENTS = 255
|
||||
227
server/reflector/utils/audio_mixdown.py
Normal file
227
server/reflector/utils/audio_mixdown.py
Normal file
@@ -0,0 +1,227 @@
|
||||
"""
|
||||
Audio track mixdown utilities.
|
||||
|
||||
Shared PyAV-based functions for mixing multiple audio tracks into a single output.
|
||||
Used by both Hatchet workflows and Celery pipelines.
|
||||
"""
|
||||
|
||||
from fractions import Fraction
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
|
||||
def detect_sample_rate_from_tracks(track_urls: list[str], logger=None) -> int | None:
|
||||
"""Detect sample rate from first decodable audio frame.
|
||||
|
||||
Args:
|
||||
track_urls: List of URLs to audio files (S3 presigned or local)
|
||||
logger: Optional logger instance
|
||||
|
||||
Returns:
|
||||
Sample rate in Hz, or None if no decodable frames found
|
||||
"""
|
||||
for url in track_urls:
|
||||
if not url:
|
||||
continue
|
||||
container = None
|
||||
try:
|
||||
container = av.open(url)
|
||||
for frame in container.decode(audio=0):
|
||||
return frame.sample_rate
|
||||
except Exception:
|
||||
continue
|
||||
finally:
|
||||
if container is not None:
|
||||
container.close()
|
||||
return None
|
||||
|
||||
|
||||
async def mixdown_tracks_pyav(
|
||||
track_urls: list[str],
|
||||
writer,
|
||||
target_sample_rate: int,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
logger=None,
|
||||
) -> None:
|
||||
"""Multi-track mixdown using PyAV filter graph (amix).
|
||||
|
||||
Builds a filter graph: N abuffer -> optional adelay -> amix -> aformat -> sink
|
||||
Reads from S3 presigned URLs or local files, pushes mixed frames to writer.
|
||||
|
||||
Args:
|
||||
track_urls: List of URLs to audio tracks (S3 presigned or local)
|
||||
writer: AudioFileWriterProcessor instance with async push() method
|
||||
target_sample_rate: Sample rate for output (Hz)
|
||||
offsets_seconds: Optional per-track delays in seconds for alignment.
|
||||
If provided, must have same length as track_urls. Delays are relative
|
||||
to the minimum offset (earliest track has delay=0).
|
||||
logger: Optional logger instance
|
||||
|
||||
Raises:
|
||||
ValueError: If offsets_seconds length doesn't match track_urls,
|
||||
no valid tracks provided, or no containers can be opened
|
||||
"""
|
||||
if offsets_seconds is not None and len(offsets_seconds) != len(track_urls):
|
||||
raise ValueError(
|
||||
f"offsets_seconds length ({len(offsets_seconds)}) must match track_urls ({len(track_urls)})"
|
||||
)
|
||||
|
||||
valid_track_urls = [url for url in track_urls if url]
|
||||
if not valid_track_urls:
|
||||
if logger:
|
||||
logger.error("Mixdown failed - no valid track URLs provided")
|
||||
raise ValueError("Mixdown failed: No valid track URLs")
|
||||
|
||||
# Calculate per-input delays if offsets provided
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, url in enumerate(track_urls) if url
|
||||
]
|
||||
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
|
||||
for idx, url in enumerate(valid_track_urls):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
if logger:
|
||||
logger.error("Mixdown failed - no valid inputs for graph")
|
||||
raise ValueError("Mixdown failed: No valid inputs for filter graph")
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}",
|
||||
name="fmt",
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
containers = []
|
||||
try:
|
||||
# Open all containers with cleanup guaranteed
|
||||
for i, url in enumerate(valid_track_urls):
|
||||
try:
|
||||
c = av.open(
|
||||
url,
|
||||
options={
|
||||
# S3 streaming options
|
||||
"reconnect": "1",
|
||||
"reconnect_streamed": "1",
|
||||
"reconnect_delay_max": "5",
|
||||
},
|
||||
)
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
if logger:
|
||||
logger.warning(
|
||||
"Mixdown: failed to open container from URL",
|
||||
input=i,
|
||||
url=url,
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
if not containers:
|
||||
if logger:
|
||||
logger.error("Mixdown failed - no valid containers opened")
|
||||
raise ValueError("Mixdown failed: Could not open any track containers")
|
||||
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
# Signal end of stream to filter graph
|
||||
inputs[i].push(None)
|
||||
continue
|
||||
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
# Flush remaining frames from filter graph
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
finally:
|
||||
# Cleanup all containers, even if processing failed
|
||||
for c in containers:
|
||||
if c is not None:
|
||||
try:
|
||||
c.close()
|
||||
except Exception:
|
||||
pass # Best effort cleanup
|
||||
186
server/reflector/utils/audio_padding.py
Normal file
186
server/reflector/utils/audio_padding.py
Normal file
@@ -0,0 +1,186 @@
|
||||
"""
|
||||
Audio track padding utilities.
|
||||
|
||||
Shared PyAV-based functions for extracting stream metadata and applying
|
||||
silence padding to audio tracks. Used by both Hatchet workflows and Celery pipelines.
|
||||
"""
|
||||
|
||||
import math
|
||||
from fractions import Fraction
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.utils.audio_constants import (
|
||||
OPUS_DEFAULT_BIT_RATE,
|
||||
OPUS_STANDARD_SAMPLE_RATE,
|
||||
)
|
||||
|
||||
|
||||
def extract_stream_start_time_from_container(
|
||||
container,
|
||||
track_idx: int,
|
||||
logger=None,
|
||||
) -> float:
|
||||
"""Extract meeting-relative start time from WebM stream metadata.
|
||||
|
||||
Uses PyAV to read stream.start_time from WebM container.
|
||||
More accurate than filename timestamps by ~209ms due to network/encoding delays.
|
||||
|
||||
Args:
|
||||
container: PyAV container opened from audio file/URL
|
||||
track_idx: Track index for logging context
|
||||
logger: Optional logger instance (structlog or stdlib compatible)
|
||||
|
||||
Returns:
|
||||
Start time in seconds (0.0 if extraction fails)
|
||||
"""
|
||||
start_time_seconds = 0.0
|
||||
try:
|
||||
audio_streams = [s for s in container.streams if s.type == "audio"]
|
||||
stream = audio_streams[0] if audio_streams else container.streams[0]
|
||||
|
||||
# 1) Try stream-level start_time (most reliable for Daily.co tracks)
|
||||
if stream.start_time is not None and stream.time_base is not None:
|
||||
start_time_seconds = float(stream.start_time * stream.time_base)
|
||||
|
||||
# 2) Fallback to container-level start_time (in av.time_base units)
|
||||
if (start_time_seconds <= 0) and (container.start_time is not None):
|
||||
start_time_seconds = float(container.start_time * av.time_base)
|
||||
|
||||
# 3) Fallback to first packet DTS in stream.time_base
|
||||
if start_time_seconds <= 0:
|
||||
for packet in container.demux(stream):
|
||||
if packet.dts is not None:
|
||||
start_time_seconds = float(packet.dts * stream.time_base)
|
||||
break
|
||||
except Exception as e:
|
||||
if logger:
|
||||
logger.warning(
|
||||
"PyAV metadata read failed; assuming 0 start_time",
|
||||
track_idx=track_idx,
|
||||
error=str(e),
|
||||
)
|
||||
start_time_seconds = 0.0
|
||||
|
||||
if logger:
|
||||
logger.info(
|
||||
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
return start_time_seconds
|
||||
|
||||
|
||||
def apply_audio_padding_to_file(
|
||||
in_container,
|
||||
output_path: str,
|
||||
start_time_seconds: float,
|
||||
track_idx: int,
|
||||
logger=None,
|
||||
) -> None:
|
||||
"""Apply silence padding to audio track using PyAV filter graph.
|
||||
|
||||
Uses adelay filter to prepend silence, aligning track to meeting start time.
|
||||
Output is WebM/Opus format.
|
||||
|
||||
Args:
|
||||
in_container: PyAV container opened from source audio
|
||||
output_path: Path for output WebM file
|
||||
start_time_seconds: Amount of silence to prepend (in seconds)
|
||||
track_idx: Track index for logging context
|
||||
logger: Optional logger instance (structlog or stdlib compatible)
|
||||
|
||||
Raises:
|
||||
Exception: If no audio stream found or PyAV processing fails
|
||||
"""
|
||||
delay_ms = math.floor(start_time_seconds * 1000)
|
||||
|
||||
if logger:
|
||||
logger.info(
|
||||
f"Padding track {track_idx} with {delay_ms}ms delay using PyAV",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
)
|
||||
|
||||
try:
|
||||
with av.open(output_path, "w", format="webm") as out_container:
|
||||
in_stream = next(
|
||||
(s for s in in_container.streams if s.type == "audio"), None
|
||||
)
|
||||
if in_stream is None:
|
||||
raise Exception("No audio stream in input")
|
||||
|
||||
out_stream = out_container.add_stream(
|
||||
"libopus", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
|
||||
graph = av.filter.Graph()
|
||||
|
||||
abuf_args = (
|
||||
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
|
||||
f"sample_fmt=s16:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
src = graph.add("abuffer", args=abuf_args, name="src")
|
||||
aresample_f = graph.add("aresample", args="async=1", name="ares")
|
||||
# adelay requires one delay value per channel separated by '|'
|
||||
delays_arg = f"{delay_ms}|{delay_ms}"
|
||||
adelay_f = graph.add(
|
||||
"adelay", args=f"delays={delays_arg}:all=1", name="delay"
|
||||
)
|
||||
sink = graph.add("abuffersink", name="sink")
|
||||
|
||||
src.link_to(aresample_f)
|
||||
aresample_f.link_to(adelay_f)
|
||||
adelay_f.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
resampler = AudioResampler(
|
||||
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
|
||||
)
|
||||
|
||||
# Decode -> resample -> push through graph -> encode Opus
|
||||
for frame in in_container.decode(in_stream):
|
||||
out_frames = resampler.resample(frame) or []
|
||||
for rframe in out_frames:
|
||||
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
src.push(rframe)
|
||||
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush remaining frames from filter graph
|
||||
src.push(None)
|
||||
while True:
|
||||
try:
|
||||
f_out = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
|
||||
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
|
||||
for packet in out_stream.encode(f_out):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
|
||||
except Exception as e:
|
||||
if logger:
|
||||
logger.error(
|
||||
"PyAV padding failed for track",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
error=str(e),
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
4
server/reflector/utils/common.py
Normal file
4
server/reflector/utils/common.py
Normal file
@@ -0,0 +1,4 @@
|
||||
def assert_not_none[T](value: T | None, message: str = "Value is None") -> T:
|
||||
if value is None:
|
||||
raise ValueError(message)
|
||||
return value
|
||||
@@ -2,6 +2,17 @@ from typing import Annotated, TypeVar
|
||||
|
||||
from pydantic import Field, TypeAdapter, constr
|
||||
|
||||
T_NotNone = TypeVar("T_NotNone")
|
||||
|
||||
|
||||
def assert_not_none(
|
||||
value: T_NotNone | None, message: str = "Value is None"
|
||||
) -> T_NotNone:
|
||||
if value is None:
|
||||
raise ValueError(message)
|
||||
return value
|
||||
|
||||
|
||||
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
|
||||
NonEmptyString = Annotated[
|
||||
NonEmptyStringBase,
|
||||
@@ -23,10 +34,18 @@ def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
|
||||
return parse_non_empty_string(s)
|
||||
|
||||
|
||||
T = TypeVar("T", bound=str)
|
||||
T_Str = TypeVar("T_Str", bound=str)
|
||||
|
||||
|
||||
def assert_equal[T](s1: T, s2: T) -> T:
|
||||
def assert_equal(s1: T_Str, s2: T_Str) -> T_Str:
|
||||
if s1 != s2:
|
||||
raise ValueError(f"assert_equal: {s1} != {s2}")
|
||||
return s1
|
||||
|
||||
|
||||
def assert_non_none_and_non_empty(
|
||||
value: str | None, error: str | None = None
|
||||
) -> NonEmptyString:
|
||||
return parse_non_empty_string(
|
||||
assert_not_none(value, error or "Value is None"), error
|
||||
)
|
||||
|
||||
@@ -50,5 +50,5 @@ async def transcript_process(
|
||||
if isinstance(config, ProcessError):
|
||||
raise HTTPException(status_code=500, detail=config.detail)
|
||||
else:
|
||||
dispatch_transcript_processing(config)
|
||||
await dispatch_transcript_processing(config)
|
||||
return ProcessStatus(status="ok")
|
||||
|
||||
@@ -24,6 +24,7 @@ from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
from reflector.pipelines.main_live_pipeline import asynctask
|
||||
from reflector.pipelines.main_multitrack_pipeline import (
|
||||
@@ -286,6 +287,45 @@ async def _process_multitrack_recording_inner(
|
||||
room_id=room.id,
|
||||
)
|
||||
|
||||
# Start durable workflow if enabled (Hatchet) or room overrides it
|
||||
durable_started = False
|
||||
use_hatchet = settings.HATCHET_ENABLED or (room and room.use_hatchet)
|
||||
|
||||
if room and room.use_hatchet and not settings.HATCHET_ENABLED:
|
||||
logger.info(
|
||||
"Room forces Hatchet workflow",
|
||||
room_id=room.id,
|
||||
transcript_id=transcript.id,
|
||||
)
|
||||
|
||||
if use_hatchet:
|
||||
workflow_id = await HatchetClientManager.start_workflow(
|
||||
workflow_name="DiarizationPipeline",
|
||||
input_data={
|
||||
"recording_id": recording_id,
|
||||
"tracks": [{"s3_key": k} for k in filter_cam_audio_tracks(track_keys)],
|
||||
"bucket_name": bucket_name,
|
||||
"transcript_id": transcript.id,
|
||||
"room_id": room.id,
|
||||
},
|
||||
additional_metadata={
|
||||
"transcript_id": transcript.id,
|
||||
"recording_id": recording_id,
|
||||
"daily_recording_id": recording_id,
|
||||
},
|
||||
)
|
||||
logger.info(
|
||||
"Started Hatchet workflow",
|
||||
workflow_id=workflow_id,
|
||||
transcript_id=transcript.id,
|
||||
)
|
||||
|
||||
await transcripts_controller.update(
|
||||
transcript, {"workflow_run_id": workflow_id}
|
||||
)
|
||||
return
|
||||
|
||||
# Celery pipeline (runs when durable workflows disabled)
|
||||
task_pipeline_multitrack_process.delay(
|
||||
transcript_id=transcript.id,
|
||||
bucket_name=bucket_name,
|
||||
|
||||
@@ -16,6 +16,7 @@ import threading
|
||||
import redis.asyncio as redis
|
||||
from fastapi import WebSocket
|
||||
|
||||
from reflector.events import subscribers_shutdown
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
@@ -109,29 +110,30 @@ class WebsocketManager:
|
||||
await socket.send_json(data)
|
||||
|
||||
|
||||
_ws_manager_instance: WebsocketManager | None = None
|
||||
_ws_manager_lock = threading.Lock()
|
||||
|
||||
|
||||
def get_ws_manager() -> WebsocketManager:
|
||||
"""
|
||||
Returns the WebsocketManager instance for managing websockets.
|
||||
"""Returns the WebsocketManager singleton instance."""
|
||||
global _ws_manager_instance
|
||||
if _ws_manager_instance is None:
|
||||
with _ws_manager_lock:
|
||||
if _ws_manager_instance is None:
|
||||
pubsub_client = RedisPubSubManager(
|
||||
host=settings.REDIS_HOST,
|
||||
port=settings.REDIS_PORT,
|
||||
)
|
||||
_ws_manager_instance = WebsocketManager(pubsub_client=pubsub_client)
|
||||
return _ws_manager_instance
|
||||
|
||||
This function initializes and returns the WebsocketManager instance,
|
||||
which is responsible for managing websockets and handling websocket
|
||||
connections.
|
||||
|
||||
Returns:
|
||||
WebsocketManager: The initialized WebsocketManager instance.
|
||||
async def cleanup_ws_manager(_app=None) -> None:
|
||||
"""Cleanup WebsocketManager singleton on shutdown."""
|
||||
global _ws_manager_instance
|
||||
if _ws_manager_instance is not None:
|
||||
await _ws_manager_instance.pubsub_client.disconnect()
|
||||
_ws_manager_instance = None
|
||||
|
||||
Raises:
|
||||
ImportError: If the 'reflector.settings' module cannot be imported.
|
||||
RedisConnectionError: If there is an error connecting to the Redis server.
|
||||
"""
|
||||
local = threading.local()
|
||||
if hasattr(local, "ws_manager"):
|
||||
return local.ws_manager
|
||||
|
||||
pubsub_client = RedisPubSubManager(
|
||||
host=settings.REDIS_HOST,
|
||||
port=settings.REDIS_PORT,
|
||||
)
|
||||
ws_manager = WebsocketManager(pubsub_client=pubsub_client)
|
||||
local.ws_manager = ws_manager
|
||||
return ws_manager
|
||||
subscribers_shutdown.append(cleanup_ws_manager)
|
||||
|
||||
@@ -3,7 +3,8 @@ from urllib.parse import urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
from reflector.db.transcripts import Transcript
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import Transcript, transcripts_controller
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
@@ -113,6 +114,49 @@ def get_zulip_message(transcript: Transcript, include_topics: bool):
|
||||
return message
|
||||
|
||||
|
||||
async def post_transcript_notification(transcript: Transcript) -> int | None:
|
||||
"""Post or update transcript notification in Zulip.
|
||||
|
||||
Uses transcript.room_id directly (Hatchet flow).
|
||||
Celery's pipeline_post_to_zulip uses recording→meeting→room path instead.
|
||||
DUPLICATION NOTE: This function will stay when we use Celery no more, and Celery one will be removed.
|
||||
"""
|
||||
if not transcript.room_id:
|
||||
return None
|
||||
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if not room or not room.zulip_stream or not room.zulip_auto_post:
|
||||
return None
|
||||
|
||||
message = get_zulip_message(transcript=transcript, include_topics=True)
|
||||
message_updated = False
|
||||
|
||||
if transcript.zulip_message_id:
|
||||
try:
|
||||
await update_zulip_message(
|
||||
transcript.zulip_message_id,
|
||||
room.zulip_stream,
|
||||
room.zulip_topic,
|
||||
message,
|
||||
)
|
||||
message_updated = True
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if not message_updated:
|
||||
response = await send_message_to_zulip(
|
||||
room.zulip_stream, room.zulip_topic, message
|
||||
)
|
||||
message_id = response.get("id")
|
||||
if message_id:
|
||||
await transcripts_controller.update(
|
||||
transcript, {"zulip_message_id": message_id}
|
||||
)
|
||||
return message_id
|
||||
|
||||
return transcript.zulip_message_id
|
||||
|
||||
|
||||
def extract_domain(url: str) -> str:
|
||||
return urlparse(url).netloc
|
||||
|
||||
|
||||
@@ -7,6 +7,8 @@ elif [ "${ENTRYPOINT}" = "worker" ]; then
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
elif [ "${ENTRYPOINT}" = "beat" ]; then
|
||||
uv run celery -A reflector.worker.app beat --loglevel=info
|
||||
elif [ "${ENTRYPOINT}" = "hatchet-worker" ]; then
|
||||
uv run python -m reflector.hatchet.run_workers
|
||||
else
|
||||
echo "Unknown command"
|
||||
fi
|
||||
|
||||
@@ -527,6 +527,22 @@ def fake_mp3_upload():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def reset_hatchet_client():
|
||||
"""Reset HatchetClientManager singleton before and after each test.
|
||||
|
||||
This ensures test isolation - each test starts with a fresh client state.
|
||||
The fixture is autouse=True so it applies to all tests automatically.
|
||||
"""
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
|
||||
# Reset before test
|
||||
HatchetClientManager.reset()
|
||||
yield
|
||||
# Reset after test to clean up
|
||||
HatchetClientManager.reset()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def fake_transcript_with_topics(tmpdir, client):
|
||||
import shutil
|
||||
|
||||
54
server/tests/test_hatchet_client.py
Normal file
54
server/tests/test_hatchet_client.py
Normal file
@@ -0,0 +1,54 @@
|
||||
"""
|
||||
Tests for HatchetClientManager error handling and validation.
|
||||
|
||||
Only tests that catch real bugs - not mock verification tests.
|
||||
|
||||
Note: The `reset_hatchet_client` fixture (autouse=True in conftest.py)
|
||||
automatically resets the singleton before and after each test.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_client_can_replay_handles_exception():
|
||||
"""Test can_replay returns False when status check fails.
|
||||
|
||||
Useful: Ensures network/API errors don't crash the system and
|
||||
gracefully allow reprocessing when workflow state is unknown.
|
||||
"""
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
|
||||
with patch("reflector.hatchet.client.settings") as mock_settings:
|
||||
mock_settings.HATCHET_CLIENT_TOKEN = "test-token"
|
||||
mock_settings.HATCHET_DEBUG = False
|
||||
|
||||
with patch("reflector.hatchet.client.Hatchet") as mock_hatchet_class:
|
||||
mock_client = MagicMock()
|
||||
mock_hatchet_class.return_value = mock_client
|
||||
|
||||
mock_client.runs.aio_get_status = AsyncMock(
|
||||
side_effect=Exception("Network error")
|
||||
)
|
||||
|
||||
can_replay = await HatchetClientManager.can_replay("workflow-123")
|
||||
|
||||
# Should return False on error (workflow might be gone)
|
||||
assert can_replay is False
|
||||
|
||||
|
||||
def test_hatchet_client_raises_without_token():
|
||||
"""Test that get_client raises ValueError without token.
|
||||
|
||||
Useful: Catches if someone removes the token validation,
|
||||
which would cause cryptic errors later.
|
||||
"""
|
||||
from reflector.hatchet.client import HatchetClientManager
|
||||
|
||||
with patch("reflector.hatchet.client.settings") as mock_settings:
|
||||
mock_settings.HATCHET_CLIENT_TOKEN = None
|
||||
|
||||
with pytest.raises(ValueError, match="HATCHET_CLIENT_TOKEN must be set"):
|
||||
HatchetClientManager.get_client()
|
||||
398
server/tests/test_hatchet_dispatch.py
Normal file
398
server/tests/test_hatchet_dispatch.py
Normal file
@@ -0,0 +1,398 @@
|
||||
"""
|
||||
Tests for Hatchet workflow dispatch and routing logic.
|
||||
|
||||
These tests verify:
|
||||
1. Routing to Hatchet when HATCHET_ENABLED=True
|
||||
2. Replay logic for failed workflows
|
||||
3. Force flag to cancel and restart
|
||||
4. Validation prevents concurrent workflows
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
from hatchet_sdk.clients.rest.exceptions import ApiException
|
||||
from hatchet_sdk.clients.rest.models import V1TaskStatus
|
||||
|
||||
from reflector.db.transcripts import Transcript
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_blocks_running_workflow():
|
||||
"""Test that validation blocks reprocessing when workflow is running."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationAlreadyScheduled,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="processing",
|
||||
source_kind="room",
|
||||
workflow_run_id="running-workflow-123",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock(
|
||||
return_value=V1TaskStatus.RUNNING
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationAlreadyScheduled)
|
||||
assert "running" in result.detail.lower()
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_blocks_queued_workflow():
|
||||
"""Test that validation blocks reprocessing when workflow is queued."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationAlreadyScheduled,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="processing",
|
||||
source_kind="room",
|
||||
workflow_run_id="queued-workflow-123",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock(
|
||||
return_value=V1TaskStatus.QUEUED
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationAlreadyScheduled)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_allows_failed_workflow():
|
||||
"""Test that validation allows reprocessing when workflow has failed."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationOk,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="error",
|
||||
source_kind="room",
|
||||
workflow_run_id="failed-workflow-123",
|
||||
recording_id="test-recording-id",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock(
|
||||
return_value=V1TaskStatus.FAILED
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationOk)
|
||||
assert result.transcript_id == "test-transcript-id"
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_allows_completed_workflow():
|
||||
"""Test that validation allows reprocessing when workflow has completed."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationOk,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="ended",
|
||||
source_kind="room",
|
||||
workflow_run_id="completed-workflow-123",
|
||||
recording_id="test-recording-id",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock(
|
||||
return_value=V1TaskStatus.COMPLETED
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationOk)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_allows_when_status_check_fails():
|
||||
"""Test that validation allows reprocessing when status check fails (workflow might be gone)."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationOk,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="error",
|
||||
source_kind="room",
|
||||
workflow_run_id="old-workflow-123",
|
||||
recording_id="test-recording-id",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
# Status check fails (workflow might be deleted)
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock(
|
||||
side_effect=ApiException("Workflow not found")
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
# Should allow processing when we can't get status
|
||||
assert isinstance(result, ValidationOk)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_skipped_when_no_workflow_id():
|
||||
"""Test that Hatchet validation is skipped when transcript has no workflow_run_id."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationOk,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="uploaded",
|
||||
source_kind="room",
|
||||
workflow_run_id=None, # No workflow yet
|
||||
recording_id="test-recording-id",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = True
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.HatchetClientManager"
|
||||
) as mock_hatchet:
|
||||
# Should not be called
|
||||
mock_hatchet.get_workflow_run_status = AsyncMock()
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
# Should not check Hatchet status
|
||||
mock_hatchet.get_workflow_run_status.assert_not_called()
|
||||
assert isinstance(result, ValidationOk)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_hatchet_validation_skipped_when_disabled():
|
||||
"""Test that Hatchet validation is skipped when HATCHET_ENABLED is False."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationOk,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="uploaded",
|
||||
source_kind="room",
|
||||
workflow_run_id="some-workflow-123",
|
||||
recording_id="test-recording-id",
|
||||
)
|
||||
|
||||
with patch("reflector.services.transcript_process.settings") as mock_settings:
|
||||
mock_settings.HATCHET_ENABLED = False # Hatchet disabled
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.task_is_scheduled_or_active"
|
||||
) as mock_celery_check:
|
||||
mock_celery_check.return_value = False
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
# Should not check Hatchet at all
|
||||
assert isinstance(result, ValidationOk)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_validation_locked_transcript():
|
||||
"""Test that validation rejects locked transcripts."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationLocked,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="ended",
|
||||
source_kind="room",
|
||||
locked=True,
|
||||
)
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationLocked)
|
||||
assert "locked" in result.detail.lower()
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_validation_idle_transcript():
|
||||
"""Test that validation rejects idle transcripts (not ready)."""
|
||||
from reflector.services.transcript_process import (
|
||||
ValidationNotReady,
|
||||
validate_transcript_for_processing,
|
||||
)
|
||||
|
||||
mock_transcript = Transcript(
|
||||
id="test-transcript-id",
|
||||
name="Test",
|
||||
status="idle",
|
||||
source_kind="room",
|
||||
)
|
||||
|
||||
result = await validate_transcript_for_processing(mock_transcript)
|
||||
|
||||
assert isinstance(result, ValidationNotReady)
|
||||
assert "not ready" in result.detail.lower()
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_prepare_multitrack_config():
|
||||
"""Test preparing multitrack processing config."""
|
||||
from reflector.db.recordings import Recording
|
||||
from reflector.services.transcript_process import (
|
||||
MultitrackProcessingConfig,
|
||||
ValidationOk,
|
||||
prepare_transcript_processing,
|
||||
)
|
||||
|
||||
validation = ValidationOk(
|
||||
recording_id="test-recording-id",
|
||||
transcript_id="test-transcript-id",
|
||||
)
|
||||
|
||||
mock_recording = Recording(
|
||||
id="test-recording-id",
|
||||
bucket_name="test-bucket",
|
||||
object_key="recordings/test",
|
||||
recorded_at="2024-01-01T00:00:00Z",
|
||||
track_keys=["track1.webm", "track2.webm"],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.recordings_controller"
|
||||
) as mock_rc:
|
||||
mock_rc.get_by_id = AsyncMock(return_value=mock_recording)
|
||||
|
||||
result = await prepare_transcript_processing(validation)
|
||||
|
||||
assert isinstance(result, MultitrackProcessingConfig)
|
||||
assert result.bucket_name == "test-bucket"
|
||||
assert result.track_keys == ["track1.webm", "track2.webm"]
|
||||
assert result.transcript_id == "test-transcript-id"
|
||||
assert result.room_id is None # ValidationOk didn't specify room_id
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("setup_database")
|
||||
@pytest.mark.asyncio
|
||||
async def test_prepare_file_config():
|
||||
"""Test preparing file processing config (no track keys)."""
|
||||
from reflector.db.recordings import Recording
|
||||
from reflector.services.transcript_process import (
|
||||
FileProcessingConfig,
|
||||
ValidationOk,
|
||||
prepare_transcript_processing,
|
||||
)
|
||||
|
||||
validation = ValidationOk(
|
||||
recording_id="test-recording-id",
|
||||
transcript_id="test-transcript-id",
|
||||
)
|
||||
|
||||
mock_recording = Recording(
|
||||
id="test-recording-id",
|
||||
bucket_name="test-bucket",
|
||||
object_key="recordings/test.mp4",
|
||||
recorded_at="2024-01-01T00:00:00Z",
|
||||
track_keys=None, # No track keys = file pipeline
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.services.transcript_process.recordings_controller"
|
||||
) as mock_rc:
|
||||
mock_rc.get_by_id = AsyncMock(return_value=mock_recording)
|
||||
|
||||
result = await prepare_transcript_processing(validation)
|
||||
|
||||
assert isinstance(result, FileProcessingConfig)
|
||||
assert result.transcript_id == "test-transcript-id"
|
||||
3416
server/uv.lock
generated
3416
server/uv.lock
generated
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user