Compare commits

..

16 Commits

Author SHA1 Message Date
Igor Loskutov
6a57388723 format 2026-01-26 17:38:38 -05:00
ddef1d4a4a Merge branch 'main' into feature/split-padding-transcription 2026-01-26 13:22:16 -05:00
88e0d11ccd Update server/reflector/hatchet/workflows/padding_workflow.py
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2026-01-23 19:59:32 -05:00
Igor Loskutov
9f6e7b515b Revert transcript text broadcast to empty string
Empty string was intentional - reverting my incorrect fix
2026-01-23 17:00:24 -05:00
Igor Loskutov
d0110f4dd4 Fix: Remove redundant checks and clarify variable scope
- Remove redundant padded_key None check (NonEmptyString cannot be None)
- Move storage_path definition before try block for clarity
- All padded tracks added to list (original or new)
2026-01-23 16:55:34 -05:00
Igor Loskutov
7dfb37154d Fix critical data flow and concurrency bugs
- Add empty padded_tracks guard in process_transcriptions
- Fix created_padded_files: use list instead of set to preserve order for zip cleanup
- Document size=0 contract in PadTrackResult (size=0 means original key, not padded)
- Remove redundant ctx.log in padding_workflow
2026-01-23 16:47:11 -05:00
Igor Loskutov
67679e90b2 Revert waveform dependency - allow background completion
Waveform generation can complete after transcript marked "ended".
User can see transcript immediately while waveform finishes in background.
2026-01-23 16:42:36 -05:00
Igor Loskutov
aa4c368479 Fix critical bugs from refactoring
- Fix empty transcript broadcast (was sending text="", should send merged_transcript.text)
- Restore generate_waveform to finalize parents (finalize must wait for waveform)
2026-01-23 16:40:57 -05:00
Igor Loskutov
deb5ed6010 Fix: Preserve track_index explicitly in PaddedTrackInfo
- Add track_index to PaddedTrackInfo model
- Preserve track_index from PadTrackResult when building padded_tracks list
- Use explicit track_index instead of enumerate in process_transcriptions
- Removes fragile ordering assumption
2026-01-23 16:36:16 -05:00
Igor Loskutov
30b28eed3b Merge main into feature/split-padding-transcription 2026-01-23 16:20:39 -05:00
Igor Loskutov
1b33fba3ba Fix: Move padding_workflow to LLM worker for parallel execution
Critical bug fix: padding_workflow was registered on CPU worker (slots=1),
causing all padding tasks to run serially instead of in parallel.

Changes:
- Moved padding_workflow from run_workers_cpu.py to run_workers_llm.py
- LLM worker has slots=10, allowing up to 10 parallel padding operations
- Padding is I/O-bound (S3 download/upload), not CPU-intensive
- CPU worker now handles only mixdown_tracks (compute-heavy, serialized)

Impact:
- Before: 4 tracks × 5s padding = 20s serial execution
- After: 4 tracks × 5s padding = ~5s parallel execution (4 concurrent)
- Restores intended performance benefit of the refactoring
2026-01-23 16:05:43 -05:00
Igor Loskutov
3ce279daa4 Split padding and transcription into separate workflow steps
- Split process_tracks into process_paddings + process_transcriptions
- Create PaddingWorkflow and TranscriptionWorkflow as separate child workflows
- Update dependency: mixdown_tracks now depends on process_paddings (not process_transcriptions)
- Performance: mixdown starts ~295s earlier (after padding completes, not after transcription)

Changes:
- New: padding_workflow.py, transcription_workflow.py
- Modified: daily_multitrack_pipeline.py (new tasks, updated dependencies)
- Modified: models.py (new ProcessPaddingsResult, ProcessTranscriptionsResult, deleted dead ProcessTracksResult)
- Modified: constants.py (new task names)
- Modified: run_workers_cpu.py, run_workers_llm.py (workflow registration)
- Deleted: track_processing.py

Code quality fixes:
- Removed redundant comments and verbose docstrings
- Added language validation in process_transcriptions
- Improved error logging with full context (transcript_id, track_index)
- Fixed log accuracy bugs (use correct counts)
- Updated worker pool documentation
2026-01-21 16:53:06 -05:00
Igor Loskutov
01650be787 fix tests 2026-01-21 15:04:05 -05:00
f00c16a41c Merge branch 'main' into fix/ics-window-bug 2026-01-21 14:38:36 -05:00
859df5513e Merge branch 'main' into fix/ics-window-bug 2026-01-21 08:47:34 -05:00
Igor Loskutov
2af9918979 ics non-sync bugfix 2026-01-20 16:56:06 -05:00
23 changed files with 358 additions and 901 deletions

1
.gitignore vendored
View File

@@ -1,6 +1,5 @@
.DS_Store .DS_Store
server/.env server/.env
server/.env.production
.env .env
Caddyfile Caddyfile
server/exportdanswer server/exportdanswer

View File

@@ -4,3 +4,4 @@ docs/docs/installation/daily-setup.md:curl-auth-header:277
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:74 gpu/self_hosted/DEV_SETUP.md:curl-auth-header:74
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:83 gpu/self_hosted/DEV_SETUP.md:curl-auth-header:83
server/reflector/worker/process.py:generic-api-key:465 server/reflector/worker/process.py:generic-api-key:465
server/reflector/worker/process.py:generic-api-key:594

View File

@@ -1,29 +1,5 @@
# Changelog # Changelog
## [0.32.2](https://github.com/Monadical-SAS/reflector/compare/v0.32.1...v0.32.2) (2026-02-03)
### Bug Fixes
* increase TIMEOUT_MEDIUM from 2m to 5m for LLM tasks ([#843](https://github.com/Monadical-SAS/reflector/issues/843)) ([4acde4b](https://github.com/Monadical-SAS/reflector/commit/4acde4b7fdef88cc02ca12cf38c9020b05ed96ac))
* make caddy optional ([#841](https://github.com/Monadical-SAS/reflector/issues/841)) ([a2ed7d6](https://github.com/Monadical-SAS/reflector/commit/a2ed7d60d557b551a5b64e4dfd909b63a791d9fc))
* use Daily API recording.duration as master source for transcript duration ([#844](https://github.com/Monadical-SAS/reflector/issues/844)) ([8707c66](https://github.com/Monadical-SAS/reflector/commit/8707c6694a80c939b6214bbc13331741f192e082))
## [0.32.1](https://github.com/Monadical-SAS/reflector/compare/v0.32.0...v0.32.1) (2026-01-30)
### Bug Fixes
* daily multitrack pipeline finalze dependency fix ([23eb137](https://github.com/Monadical-SAS/reflector/commit/23eb1371cb9348c4b81eb12ad506b582f8a4799e))
* match httpx pad with hatchet audio timeout ([c05d1f0](https://github.com/Monadical-SAS/reflector/commit/c05d1f03cd8369fc06efd455527e50246887efd0))
## [0.32.0](https://github.com/Monadical-SAS/reflector/compare/v0.31.0...v0.32.0) (2026-01-30)
### Features
* modal padding ([#837](https://github.com/Monadical-SAS/reflector/issues/837)) ([7fde64e](https://github.com/Monadical-SAS/reflector/commit/7fde64e2529a1d37b0f7507c62d983a7bd0b5b89))
## [0.31.0](https://github.com/Monadical-SAS/reflector/compare/v0.30.0...v0.31.0) (2026-01-23) ## [0.31.0](https://github.com/Monadical-SAS/reflector/compare/v0.30.0...v0.31.0) (2026-01-23)

View File

@@ -1,8 +1,6 @@
# Reflector Caddyfile (optional reverse proxy) # Reflector Caddyfile
# Use this only when you run Caddy via: docker compose -f docker-compose.prod.yml --profile caddy up -d # Replace example.com with your actual domains
# If Coolify, Traefik, or nginx already use ports 80/443, do NOT start Caddy; point your proxy at web:3000 and server:1250. # CORS is handled by the backend - Caddy just proxies
#
# Replace example.com with your actual domains. CORS is handled by the backend - Caddy just proxies.
# #
# For environment variable substitution, set: # For environment variable substitution, set:
# FRONTEND_DOMAIN=app.example.com # FRONTEND_DOMAIN=app.example.com

View File

@@ -1,14 +1,9 @@
# Production Docker Compose configuration # Production Docker Compose configuration
# Usage: docker compose -f docker-compose.prod.yml up -d # Usage: docker compose -f docker-compose.prod.yml up -d
# #
# Caddy (reverse proxy on ports 80/443) is OPTIONAL and behind the "caddy" profile:
# - With Caddy (self-hosted, you manage SSL): docker compose -f docker-compose.prod.yml --profile caddy up -d
# - Without Caddy (Coolify/Traefik/nginx already on 80/443): docker compose -f docker-compose.prod.yml up -d
# Then point your proxy at web:3000 (frontend) and server:1250 (API).
#
# Prerequisites: # Prerequisites:
# 1. Copy .env.example to .env and configure for both server/ and www/ # 1. Copy .env.example to .env and configure for both server/ and www/
# 2. If using Caddy: copy Caddyfile.example to Caddyfile and edit your domains # 2. Copy Caddyfile.example to Caddyfile and edit with your domains
# 3. Deploy Modal GPU functions (see gpu/modal_deployments/deploy-all.sh) # 3. Deploy Modal GPU functions (see gpu/modal_deployments/deploy-all.sh)
services: services:
@@ -89,8 +84,6 @@ services:
retries: 3 retries: 3
caddy: caddy:
profiles:
- caddy
image: caddy:2-alpine image: caddy:2-alpine
restart: unless-stopped restart: unless-stopped
ports: ports:

View File

@@ -11,15 +11,15 @@ This page documents the Docker Compose configuration for Reflector. For the comp
The `docker-compose.prod.yml` includes these services: The `docker-compose.prod.yml` includes these services:
| Service | Image | Purpose | | Service | Image | Purpose |
| ---------- | --------------------------------- | --------------------------------------------------------------------------- | |---------|-------|---------|
| `web` | `monadicalsas/reflector-frontend` | Next.js frontend | | `web` | `monadicalsas/reflector-frontend` | Next.js frontend |
| `server` | `monadicalsas/reflector-backend` | FastAPI backend | | `server` | `monadicalsas/reflector-backend` | FastAPI backend |
| `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks | | `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks |
| `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler | | `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler |
| `redis` | `redis:7.2-alpine` | Message broker and cache | | `redis` | `redis:7.2-alpine` | Message broker and cache |
| `postgres` | `postgres:17-alpine` | Primary database | | `postgres` | `postgres:17-alpine` | Primary database |
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL (optional; see [Caddy profile](#caddy-profile)) | | `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL |
## Environment Files ## Environment Files
@@ -30,7 +30,6 @@ Reflector uses two separate environment files:
Used by: `server`, `worker`, `beat` Used by: `server`, `worker`, `beat`
Key variables: Key variables:
```env ```env
# Database connection # Database connection
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
@@ -55,7 +54,6 @@ TRANSCRIPT_MODAL_API_KEY=...
Used by: `web` Used by: `web`
Key variables: Key variables:
```env ```env
# Domain configuration # Domain configuration
SITE_URL=https://app.example.com SITE_URL=https://app.example.com
@@ -72,42 +70,26 @@ Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-s
## Volumes ## Volumes
| Volume | Purpose | | Volume | Purpose |
| --------------- | ----------------------------- | |--------|---------|
| `redis_data` | Redis persistence | | `redis_data` | Redis persistence |
| `postgres_data` | PostgreSQL data | | `postgres_data` | PostgreSQL data |
| `server_data` | Uploaded files, local storage | | `server_data` | Uploaded files, local storage |
| `caddy_data` | SSL certificates | | `caddy_data` | SSL certificates |
| `caddy_config` | Caddy configuration | | `caddy_config` | Caddy configuration |
## Network ## Network
All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join. All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join.
## Caddy profile
Caddy (ports 80 and 443) is **optional** and behind the `caddy` profile so it does not conflict with an existing reverse proxy (e.g. Coolify, Traefik, nginx).
- **With Caddy** (you want Reflector to handle SSL):
`docker compose -f docker-compose.prod.yml --profile caddy up -d`
- **Without Caddy** (Coolify or another proxy already on 80/443):
`docker compose -f docker-compose.prod.yml up -d`
Then configure your proxy to send traffic to `web:3000` (frontend) and `server:1250` (API).
## Common Commands ## Common Commands
### Start all services ### Start all services
```bash ```bash
# Without Caddy (e.g. when using Coolify)
docker compose -f docker-compose.prod.yml up -d docker compose -f docker-compose.prod.yml up -d
# With Caddy as reverse proxy
docker compose -f docker-compose.prod.yml --profile caddy up -d
``` ```
### View logs ### View logs
```bash ```bash
# All services # All services
docker compose -f docker-compose.prod.yml logs -f docker compose -f docker-compose.prod.yml logs -f
@@ -117,7 +99,6 @@ docker compose -f docker-compose.prod.yml logs server --tail 50
``` ```
### Restart a service ### Restart a service
```bash ```bash
# Quick restart (doesn't reload .env changes) # Quick restart (doesn't reload .env changes)
docker compose -f docker-compose.prod.yml restart server docker compose -f docker-compose.prod.yml restart server
@@ -127,32 +108,27 @@ docker compose -f docker-compose.prod.yml up -d server
``` ```
### Run database migrations ### Run database migrations
```bash ```bash
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
``` ```
### Access database ### Access database
```bash ```bash
docker compose -f docker-compose.prod.yml exec postgres psql -U reflector docker compose -f docker-compose.prod.yml exec postgres psql -U reflector
``` ```
### Pull latest images ### Pull latest images
```bash ```bash
docker compose -f docker-compose.prod.yml pull docker compose -f docker-compose.prod.yml pull
docker compose -f docker-compose.prod.yml up -d docker compose -f docker-compose.prod.yml up -d
``` ```
### Stop all services ### Stop all services
```bash ```bash
docker compose -f docker-compose.prod.yml down docker compose -f docker-compose.prod.yml down
``` ```
### Full reset (WARNING: deletes data) ### Full reset (WARNING: deletes data)
```bash ```bash
docker compose -f docker-compose.prod.yml down -v docker compose -f docker-compose.prod.yml down -v
``` ```
@@ -211,7 +187,6 @@ The Caddyfile supports environment variable substitution:
Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly. Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly.
### Reload Caddy after changes ### Reload Caddy after changes
```bash ```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
``` ```

View File

@@ -26,7 +26,7 @@ flowchart LR
Before starting, you need: Before starting, you need:
- **Production server** - 4+ cores, 8GB+ RAM, public IP - **Production server** - 4+ cores, 8GB+ RAM, public IP
- **Two domain names** - e.g., `app.example.com` (frontend) and `api.example.com` (backend) - **Two domain names** - e.g., `app.example.com` (frontend) and `api.example.com` (backend)
- **GPU processing** - Choose one: - **GPU processing** - Choose one:
- Modal.com account, OR - Modal.com account, OR
@@ -60,17 +60,16 @@ Type: A Name: api Value: <your-server-ip>
Reflector requires GPU processing for transcription and speaker diarization. Choose one option: Reflector requires GPU processing for transcription and speaker diarization. Choose one option:
| | **Modal.com (Cloud)** | **Self-Hosted GPU** | | | **Modal.com (Cloud)** | **Self-Hosted GPU** |
| ------------ | --------------------------------- | ---------------------------- | |---|---|---|
| **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control | | **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control |
| **Pricing** | Pay-per-use | Fixed infrastructure cost | | **Pricing** | Pay-per-use | Fixed infrastructure cost |
### Option A: Modal.com (Serverless Cloud GPU) ### Option A: Modal.com (Serverless Cloud GPU)
#### Accept HuggingFace Licenses #### Accept HuggingFace Licenses
Visit both pages and click "Accept": Visit both pages and click "Accept":
- https://huggingface.co/pyannote/speaker-diarization-3.1 - https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0 - https://huggingface.co/pyannote/segmentation-3.0
@@ -180,7 +179,6 @@ Save these credentials - you'll need them in the next step.
## Configure Environment ## Configure Environment
Reflector has two env files: Reflector has two env files:
- `server/.env` - Backend configuration - `server/.env` - Backend configuration
- `www/.env` - Frontend configuration - `www/.env` - Frontend configuration
@@ -192,7 +190,6 @@ nano server/.env
``` ```
**Required settings:** **Required settings:**
```env ```env
# Database (defaults work with docker-compose.prod.yml) # Database (defaults work with docker-compose.prod.yml)
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
@@ -252,7 +249,6 @@ nano www/.env
``` ```
**Required settings:** **Required settings:**
```env ```env
# Your domains # Your domains
SITE_URL=https://app.example.com SITE_URL=https://app.example.com
@@ -270,11 +266,7 @@ FEATURE_REQUIRE_LOGIN=false
--- ---
## Reverse proxy (Caddy or existing) ## Configure Caddy
**If Coolify, Traefik, or nginx already use ports 80/443** (e.g. Coolify on your host): skip Caddy. Start the stack without the Caddy profile (see [Start Services](#start-services) below), then point your proxy at `web:3000` (frontend) and `server:1250` (API).
**If you want Reflector to provide the reverse proxy and SSL:**
```bash ```bash
cp Caddyfile.example Caddyfile cp Caddyfile.example Caddyfile
@@ -297,18 +289,10 @@ Replace `example.com` with your domains. The `{$VAR:default}` syntax uses Caddy'
## Start Services ## Start Services
**Without Caddy** (e.g. Coolify already on 80/443):
```bash ```bash
docker compose -f docker-compose.prod.yml up -d docker compose -f docker-compose.prod.yml up -d
``` ```
**With Caddy** (Reflector handles SSL):
```bash
docker compose -f docker-compose.prod.yml --profile caddy up -d
```
Wait for containers to start (first run may take 1-2 minutes to pull images and initialize). Wait for containers to start (first run may take 1-2 minutes to pull images and initialize).
--- ---
@@ -316,21 +300,18 @@ Wait for containers to start (first run may take 1-2 minutes to pull images and
## Verify Deployment ## Verify Deployment
### Check services ### Check services
```bash ```bash
docker compose -f docker-compose.prod.yml ps docker compose -f docker-compose.prod.yml ps
# All should show "Up" # All should show "Up"
``` ```
### Test API ### Test API
```bash ```bash
curl https://api.example.com/health curl https://api.example.com/health
# Should return: {"status":"healthy"} # Should return: {"status":"healthy"}
``` ```
### Test Frontend ### Test Frontend
- Visit https://app.example.com - Visit https://app.example.com
- You should see the Reflector interface - You should see the Reflector interface
- Try uploading an audio file to test transcription - Try uploading an audio file to test transcription
@@ -346,7 +327,6 @@ By default, Reflector is open (no login required). **Authentication is required
See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration. See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration.
Quick summary: Quick summary:
1. Deploy Authentik on your server 1. Deploy Authentik on your server
2. Create OAuth provider in Authentik 2. Create OAuth provider in Authentik
3. Extract public key for JWT verification 3. Extract public key for JWT verification
@@ -378,7 +358,6 @@ DAILYCO_STORAGE_AWS_ROLE_ARN=<arn:aws:iam::ACCOUNT:role/DailyCo>
``` ```
Reload env and restart: Reload env and restart:
```bash ```bash
docker compose -f docker-compose.prod.yml up -d server worker docker compose -f docker-compose.prod.yml up -d server worker
``` ```
@@ -388,43 +367,35 @@ docker compose -f docker-compose.prod.yml up -d server worker
## Troubleshooting ## Troubleshooting
### Check logs for errors ### Check logs for errors
```bash ```bash
docker compose -f docker-compose.prod.yml logs server --tail 20 docker compose -f docker-compose.prod.yml logs server --tail 20
docker compose -f docker-compose.prod.yml logs worker --tail 20 docker compose -f docker-compose.prod.yml logs worker --tail 20
``` ```
### Services won't start ### Services won't start
```bash ```bash
docker compose -f docker-compose.prod.yml logs docker compose -f docker-compose.prod.yml logs
``` ```
### CORS errors in browser ### CORS errors in browser
- Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`) - Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`)
- Reload env: `docker compose -f docker-compose.prod.yml up -d server` - Reload env: `docker compose -f docker-compose.prod.yml up -d server`
### SSL certificate errors (when using Caddy) ### SSL certificate errors
- Caddy auto-provisions Let's Encrypt certificates - Caddy auto-provisions Let's Encrypt certificates
- Ensure ports 80 and 443 are open and not used by another proxy - Ensure ports 80 and 443 are open
- Check: `docker compose -f docker-compose.prod.yml logs caddy` - Check: `docker compose -f docker-compose.prod.yml logs caddy`
- If port 80 is already in use (e.g. by Coolify), run without Caddy: `docker compose -f docker-compose.prod.yml up -d` and use your existing proxy
### Transcription not working ### Transcription not working
- Check Modal dashboard: https://modal.com/apps - Check Modal dashboard: https://modal.com/apps
- Verify URLs in `server/.env` match deployed functions - Verify URLs in `server/.env` match deployed functions
- Check worker logs: `docker compose -f docker-compose.prod.yml logs worker` - Check worker logs: `docker compose -f docker-compose.prod.yml logs worker`
### "Login required" but auth not configured ### "Login required" but auth not configured
- Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env` - Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env`
- Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web` - Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web`
### Database migrations or connectivity issues ### Database migrations or connectivity issues
Migrations run automatically on server startup. To check database connectivity or debug migration failures: Migrations run automatically on server startup. To check database connectivity or debug migration failures:
```bash ```bash
@@ -437,3 +408,4 @@ docker compose -f docker-compose.prod.yml exec server uv run python -c "from ref
# Manually run migrations (if needed) # Manually run migrations (if needed)
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
``` ```

View File

@@ -131,15 +131,6 @@ if [ -z "$DIARIZER_URL" ]; then
fi fi
echo " -> $DIARIZER_URL" echo " -> $DIARIZER_URL"
echo ""
echo "Deploying padding (CPU audio processing via Modal SDK)..."
modal deploy reflector_padding.py
if [ $? -ne 0 ]; then
echo "Error: Failed to deploy padding. Check Modal dashboard for details."
exit 1
fi
echo " -> reflector-padding.pad_track (Modal SDK function)"
# --- Output Configuration --- # --- Output Configuration ---
echo "" echo ""
echo "==========================================" echo "=========================================="
@@ -156,6 +147,4 @@ echo ""
echo "DIARIZATION_BACKEND=modal" echo "DIARIZATION_BACKEND=modal"
echo "DIARIZATION_URL=$DIARIZER_URL" echo "DIARIZATION_URL=$DIARIZER_URL"
echo "DIARIZATION_MODAL_API_KEY=$API_KEY" echo "DIARIZATION_MODAL_API_KEY=$API_KEY"
echo ""
echo "# Padding uses Modal SDK (requires MODAL_TOKEN_ID/SECRET in worker containers)"
echo "# --- End Modal Configuration ---" echo "# --- End Modal Configuration ---"

View File

@@ -1,277 +0,0 @@
"""
Reflector GPU backend - audio padding
======================================
CPU-intensive audio padding service for adding silence to audio tracks.
Uses PyAV filter graph (adelay) for precise track synchronization.
IMPORTANT: This padding logic is duplicated from server/reflector/utils/audio_padding.py
for Modal deployment isolation (Modal can't import from server/reflector/). If you modify
the PyAV filter graph or padding algorithm, you MUST update both:
- gpu/modal_deployments/reflector_padding.py (this file)
- server/reflector/utils/audio_padding.py
Constants duplicated from server/reflector/utils/audio_constants.py for same reason.
"""
import os
import tempfile
from fractions import Fraction
import math
import asyncio
import modal
S3_TIMEOUT = 60 # happens 2 times
PADDING_TIMEOUT = 600 + (S3_TIMEOUT * 2)
SCALEDOWN_WINDOW = 60 # The maximum duration (in seconds) that individual containers can remain idle when scaling down.
DISCONNECT_CHECK_INTERVAL = 2 # Check for client disconnect
app = modal.App("reflector-padding")
# CPU-based image
image = (
modal.Image.debian_slim(python_version="3.12")
.apt_install("ffmpeg") # Required by PyAV
.pip_install(
"av==13.1.0", # PyAV for audio processing
"requests==2.32.3", # HTTP for presigned URL downloads/uploads
"fastapi==0.115.12", # API framework
)
)
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_STANDARD_SAMPLE_RATE = 48000
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_DEFAULT_BIT_RATE = 128000
@app.function(
cpu=2.0,
timeout=PADDING_TIMEOUT,
scaledown_window=SCALEDOWN_WINDOW,
image=image,
)
@modal.asgi_app()
def web():
from fastapi import FastAPI, Request, HTTPException
from pydantic import BaseModel
class PaddingRequest(BaseModel):
track_url: str
output_url: str
start_time_seconds: float
track_index: int
class PaddingResponse(BaseModel):
size: int
cancelled: bool = False
web_app = FastAPI()
@web_app.post("/pad")
async def pad_track_endpoint(request: Request, req: PaddingRequest) -> PaddingResponse:
"""Modal web endpoint for padding audio tracks with disconnect detection.
"""
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
if not req.track_url:
raise HTTPException(status_code=400, detail="track_url cannot be empty")
if not req.output_url:
raise HTTPException(status_code=400, detail="output_url cannot be empty")
if req.start_time_seconds <= 0:
raise HTTPException(status_code=400, detail=f"start_time_seconds must be positive, got {req.start_time_seconds}")
if req.start_time_seconds > 18000:
raise HTTPException(status_code=400, detail=f"start_time_seconds exceeds maximum 18000s (5 hours)")
logger.info(f"Padding request: track {req.track_index}, delay={req.start_time_seconds}s")
# Thread-safe cancellation flag shared between async disconnect checker and blocking thread
import threading
cancelled = threading.Event()
async def check_disconnect():
"""Background task to check for client disconnect every 2 seconds."""
while not cancelled.is_set():
await asyncio.sleep(DISCONNECT_CHECK_INTERVAL)
if await request.is_disconnected():
logger.warning("Client disconnected, setting cancellation flag")
cancelled.set()
break
# Start disconnect checker in background
disconnect_task = asyncio.create_task(check_disconnect())
try:
result = await asyncio.get_event_loop().run_in_executor(
None, _pad_track_blocking, req, cancelled, logger
)
return PaddingResponse(**result)
finally:
cancelled.set()
disconnect_task.cancel()
try:
await disconnect_task
except asyncio.CancelledError:
pass
def _pad_track_blocking(req, cancelled, logger) -> dict:
"""Blocking CPU-bound padding work with periodic cancellation checks.
Args:
cancelled: threading.Event for thread-safe cancellation signaling
"""
import av
import requests
from av.audio.resampler import AudioResampler
import time
temp_dir = tempfile.mkdtemp()
input_path = None
output_path = None
last_check = time.time()
try:
logger.info("Downloading track for padding")
response = requests.get(req.track_url, stream=True, timeout=S3_TIMEOUT)
response.raise_for_status()
input_path = os.path.join(temp_dir, "track.webm")
total_bytes = 0
chunk_count = 0
with open(input_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
total_bytes += len(chunk)
chunk_count += 1
# Check for cancellation every arbitrary amount of chunks
if chunk_count % 12 == 0:
now = time.time()
if now - last_check >= DISCONNECT_CHECK_INTERVAL:
if cancelled.is_set():
logger.info("Cancelled during download, exiting early")
return {"size": 0, "cancelled": True}
last_check = now
logger.info(f"Track downloaded: {total_bytes} bytes")
if cancelled.is_set():
logger.info("Cancelled after download, exiting early")
return {"size": 0, "cancelled": True}
# Apply padding using PyAV
output_path = os.path.join(temp_dir, "padded.webm")
delay_ms = math.floor(req.start_time_seconds * 1000)
logger.info(f"Padding track {req.track_index} with {delay_ms}ms delay using PyAV")
in_container = av.open(input_path)
in_stream = next((s for s in in_container.streams if s.type == "audio"), None)
if in_stream is None:
raise ValueError("No audio stream in input")
with av.open(output_path, "w", format="webm") as out_container:
out_stream = out_container.add_stream("libopus", rate=OPUS_STANDARD_SAMPLE_RATE)
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
graph = av.filter.Graph()
abuf_args = (
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_fmt=s16:"
f"channel_layout=stereo"
)
src = graph.add("abuffer", args=abuf_args, name="src")
aresample_f = graph.add("aresample", args="async=1", name="ares")
delays_arg = f"{delay_ms}|{delay_ms}"
adelay_f = graph.add("adelay", args=f"delays={delays_arg}:all=1", name="delay")
sink = graph.add("abuffersink", name="sink")
src.link_to(aresample_f)
aresample_f.link_to(adelay_f)
adelay_f.link_to(sink)
graph.configure()
resampler = AudioResampler(
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
)
for frame in in_container.decode(in_stream):
# Check for cancellation periodically
now = time.time()
if now - last_check >= DISCONNECT_CHECK_INTERVAL:
if cancelled.is_set():
logger.info("Cancelled during processing, exiting early")
in_container.close()
return {"size": 0, "cancelled": True}
last_check = now
out_frames = resampler.resample(frame) or []
for rframe in out_frames:
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
src.push(rframe)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush filter graph
src.push(None)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush encoder
for packet in out_stream.encode(None):
out_container.mux(packet)
in_container.close()
file_size = os.path.getsize(output_path)
logger.info(f"Padding complete: {file_size} bytes")
logger.info("Uploading padded track to S3")
with open(output_path, "rb") as f:
upload_response = requests.put(req.output_url, data=f, timeout=S3_TIMEOUT)
upload_response.raise_for_status()
logger.info(f"Upload complete: {file_size} bytes")
return {"size": file_size}
finally:
if input_path and os.path.exists(input_path):
try:
os.unlink(input_path)
except Exception as e:
logger.warning(f"Failed to cleanup input file: {e}")
if output_path and os.path.exists(output_path):
try:
os.unlink(output_path)
except Exception as e:
logger.warning(f"Failed to cleanup output file: {e}")
try:
os.rmdir(temp_dir)
except Exception as e:
logger.warning(f"Failed to cleanup temp directory: {e}")
return web_app

View File

@@ -8,7 +8,7 @@ readme = "README.md"
dependencies = [ dependencies = [
"aiohttp>=3.9.0", "aiohttp>=3.9.0",
"aiohttp-cors>=0.7.0", "aiohttp-cors>=0.7.0",
"av>=15.0.0", "av>=10.0.0",
"requests>=2.31.0", "requests>=2.31.0",
"aiortc>=1.5.0", "aiortc>=1.5.0",
"sortedcontainers>=2.4.0", "sortedcontainers>=2.4.0",

View File

@@ -8,7 +8,8 @@ from enum import StrEnum
class TaskName(StrEnum): class TaskName(StrEnum):
GET_RECORDING = "get_recording" GET_RECORDING = "get_recording"
GET_PARTICIPANTS = "get_participants" GET_PARTICIPANTS = "get_participants"
PROCESS_TRACKS = "process_tracks" PROCESS_PADDINGS = "process_paddings"
PROCESS_TRANSCRIPTIONS = "process_transcriptions"
MIXDOWN_TRACKS = "mixdown_tracks" MIXDOWN_TRACKS = "mixdown_tracks"
GENERATE_WAVEFORM = "generate_waveform" GENERATE_WAVEFORM = "generate_waveform"
DETECT_TOPICS = "detect_topics" DETECT_TOPICS = "detect_topics"
@@ -35,9 +36,7 @@ LLM_RATE_LIMIT_PER_SECOND = 10
# Task execution timeouts (seconds) # Task execution timeouts (seconds)
TIMEOUT_SHORT = 60 # Quick operations: API calls, DB updates TIMEOUT_SHORT = 60 # Quick operations: API calls, DB updates
TIMEOUT_MEDIUM = ( TIMEOUT_MEDIUM = 120 # Single LLM calls, waveform generation
300 # Single LLM calls, waveform generation (5m for slow LLM responses)
)
TIMEOUT_LONG = 180 # Action items (larger context LLM) TIMEOUT_LONG = 180 # Action items (larger context LLM)
TIMEOUT_AUDIO = 720 # Audio processing: padding, mixdown TIMEOUT_AUDIO = 300 # Audio processing: padding, mixdown
TIMEOUT_HEAVY = 600 # Transcription, fan-out LLM tasks TIMEOUT_HEAVY = 600 # Transcription, fan-out LLM tasks

View File

@@ -1,9 +1,9 @@
""" """
CPU-heavy worker pool for audio processing tasks. CPU-heavy worker pool for audio processing tasks.
Handles ONLY: mixdown_tracks Handles: mixdown_tracks only (serialized with max_runs=1)
Configuration: Configuration:
- slots=1: Only mixdown (already serialized globally with max_runs=1) - slots=1: Only one mixdown at a time
- Worker affinity: pool=cpu-heavy - Worker affinity: pool=cpu-heavy
""" """
@@ -26,7 +26,7 @@ def main():
cpu_worker = hatchet.worker( cpu_worker = hatchet.worker(
"cpu-worker-pool", "cpu-worker-pool",
slots=1, # Only 1 mixdown at a time (already serialized globally) slots=1,
labels={ labels={
"pool": "cpu-heavy", "pool": "cpu-heavy",
}, },

View File

@@ -1,15 +1,16 @@
""" """
LLM/I/O worker pool for all non-CPU tasks. LLM/I/O worker pool for all non-CPU tasks.
Handles: all tasks except mixdown_tracks (transcription, LLM inference, orchestration) Handles: all tasks except mixdown_tracks (padding, transcription, LLM inference, orchestration)
""" """
from reflector.hatchet.client import HatchetClientManager from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.workflows.daily_multitrack_pipeline import ( from reflector.hatchet.workflows.daily_multitrack_pipeline import (
daily_multitrack_pipeline, daily_multitrack_pipeline,
) )
from reflector.hatchet.workflows.padding_workflow import padding_workflow
from reflector.hatchet.workflows.subject_processing import subject_workflow from reflector.hatchet.workflows.subject_processing import subject_workflow
from reflector.hatchet.workflows.topic_chunk_processing import topic_chunk_workflow from reflector.hatchet.workflows.topic_chunk_processing import topic_chunk_workflow
from reflector.hatchet.workflows.track_processing import track_workflow from reflector.hatchet.workflows.transcription_workflow import transcription_workflow
from reflector.logger import logger from reflector.logger import logger
SLOTS = 10 SLOTS = 10
@@ -29,7 +30,7 @@ def main():
llm_worker = hatchet.worker( llm_worker = hatchet.worker(
WORKER_NAME, WORKER_NAME,
slots=SLOTS, # not all slots are probably used slots=SLOTS,
labels={ labels={
"pool": POOL, "pool": POOL,
}, },
@@ -37,7 +38,8 @@ def main():
daily_multitrack_pipeline, daily_multitrack_pipeline,
topic_chunk_workflow, topic_chunk_workflow,
subject_workflow, subject_workflow,
track_workflow, padding_workflow,
transcription_workflow,
], ],
) )

View File

@@ -4,6 +4,10 @@ from reflector.hatchet.workflows.daily_multitrack_pipeline import (
PipelineInput, PipelineInput,
daily_multitrack_pipeline, daily_multitrack_pipeline,
) )
from reflector.hatchet.workflows.padding_workflow import (
PaddingInput,
padding_workflow,
)
from reflector.hatchet.workflows.subject_processing import ( from reflector.hatchet.workflows.subject_processing import (
SubjectInput, SubjectInput,
subject_workflow, subject_workflow,
@@ -12,15 +16,20 @@ from reflector.hatchet.workflows.topic_chunk_processing import (
TopicChunkInput, TopicChunkInput,
topic_chunk_workflow, topic_chunk_workflow,
) )
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow from reflector.hatchet.workflows.transcription_workflow import (
TranscriptionInput,
transcription_workflow,
)
__all__ = [ __all__ = [
"daily_multitrack_pipeline", "daily_multitrack_pipeline",
"subject_workflow", "subject_workflow",
"topic_chunk_workflow", "topic_chunk_workflow",
"track_workflow", "padding_workflow",
"transcription_workflow",
"PipelineInput", "PipelineInput",
"SubjectInput", "SubjectInput",
"TopicChunkInput", "TopicChunkInput",
"TrackInput", "PaddingInput",
"TranscriptionInput",
] ]

View File

@@ -54,8 +54,9 @@ from reflector.hatchet.workflows.models import (
PadTrackResult, PadTrackResult,
ParticipantInfo, ParticipantInfo,
ParticipantsResult, ParticipantsResult,
ProcessPaddingsResult,
ProcessSubjectsResult, ProcessSubjectsResult,
ProcessTracksResult, ProcessTranscriptionsResult,
RecapResult, RecapResult,
RecordingResult, RecordingResult,
SubjectsResult, SubjectsResult,
@@ -68,6 +69,7 @@ from reflector.hatchet.workflows.models import (
WebhookResult, WebhookResult,
ZulipResult, ZulipResult,
) )
from reflector.hatchet.workflows.padding_workflow import PaddingInput, padding_workflow
from reflector.hatchet.workflows.subject_processing import ( from reflector.hatchet.workflows.subject_processing import (
SubjectInput, SubjectInput,
subject_workflow, subject_workflow,
@@ -76,7 +78,10 @@ from reflector.hatchet.workflows.topic_chunk_processing import (
TopicChunkInput, TopicChunkInput,
topic_chunk_workflow, topic_chunk_workflow,
) )
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow from reflector.hatchet.workflows.transcription_workflow import (
TranscriptionInput,
transcription_workflow,
)
from reflector.logger import logger from reflector.logger import logger
from reflector.pipelines import topic_processing from reflector.pipelines import topic_processing
from reflector.processors import AudioFileWriterProcessor from reflector.processors import AudioFileWriterProcessor
@@ -322,7 +327,6 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
mtg_session_id = recording.mtg_session_id mtg_session_id = recording.mtg_session_id
async with fresh_db_connection(): async with fresh_db_connection():
from reflector.db.transcripts import ( # noqa: PLC0415 from reflector.db.transcripts import ( # noqa: PLC0415
TranscriptDuration,
TranscriptParticipant, TranscriptParticipant,
transcripts_controller, transcripts_controller,
) )
@@ -331,26 +335,15 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
if not transcript: if not transcript:
raise ValueError(f"Transcript {input.transcript_id} not found") raise ValueError(f"Transcript {input.transcript_id} not found")
# Note: title NOT cleared - preserves existing titles # Note: title NOT cleared - preserves existing titles
# Duration from Daily API (seconds -> milliseconds) - master source
duration_ms = recording.duration * 1000 if recording.duration else 0
await transcripts_controller.update( await transcripts_controller.update(
transcript, transcript,
{ {
"events": [], "events": [],
"topics": [], "topics": [],
"participants": [], "participants": [],
"duration": duration_ms,
}, },
) )
await append_event_and_broadcast(
input.transcript_id,
transcript,
"DURATION",
TranscriptDuration(duration=duration_ms),
logger=logger,
)
mtg_session_id = assert_non_none_and_non_empty( mtg_session_id = assert_non_none_and_non_empty(
mtg_session_id, "mtg_session_id is required" mtg_session_id, "mtg_session_id is required"
) )
@@ -416,72 +409,115 @@ async def get_participants(input: PipelineInput, ctx: Context) -> ParticipantsRe
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3, retries=3,
) )
@with_error_handling(TaskName.PROCESS_TRACKS) @with_error_handling(TaskName.PROCESS_PADDINGS)
async def process_tracks(input: PipelineInput, ctx: Context) -> ProcessTracksResult: async def process_paddings(input: PipelineInput, ctx: Context) -> ProcessPaddingsResult:
"""Spawn child workflows for each track (dynamic fan-out).""" """Spawn child workflows for each track to apply padding (dynamic fan-out)."""
ctx.log(f"process_tracks: spawning {len(input.tracks)} track workflows") ctx.log(f"process_paddings: spawning {len(input.tracks)} padding workflows")
participants_result = ctx.task_output(get_participants)
source_language = participants_result.source_language
bulk_runs = [ bulk_runs = [
track_workflow.create_bulk_run_item( padding_workflow.create_bulk_run_item(
input=TrackInput( input=PaddingInput(
track_index=i, track_index=i,
s3_key=track["s3_key"], s3_key=track["s3_key"],
bucket_name=input.bucket_name, bucket_name=input.bucket_name,
transcript_id=input.transcript_id, transcript_id=input.transcript_id,
language=source_language,
) )
) )
for i, track in enumerate(input.tracks) for i, track in enumerate(input.tracks)
] ]
results = await track_workflow.aio_run_many(bulk_runs) results = await padding_workflow.aio_run_many(bulk_runs)
target_language = participants_result.target_language
track_words: list[list[Word]] = []
padded_tracks = [] padded_tracks = []
created_padded_files = set() created_padded_files = []
for result in results: for result in results:
transcribe_result = TranscribeTrackResult(**result[TaskName.TRANSCRIBE_TRACK])
track_words.append(transcribe_result.words)
pad_result = PadTrackResult(**result[TaskName.PAD_TRACK]) pad_result = PadTrackResult(**result[TaskName.PAD_TRACK])
# Store S3 key info (not presigned URL) - consumer tasks presign on demand padded_tracks.append(
if pad_result.padded_key: PaddedTrackInfo(
padded_tracks.append( key=pad_result.padded_key,
PaddedTrackInfo( bucket_name=pad_result.bucket_name,
key=pad_result.padded_key, bucket_name=pad_result.bucket_name track_index=pad_result.track_index,
)
) )
)
if pad_result.size > 0: if pad_result.size > 0:
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{pad_result.track_index}.webm" storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{pad_result.track_index}.webm"
created_padded_files.add(storage_path) created_padded_files.append(storage_path)
all_words = [word for words in track_words for word in words] ctx.log(f"process_paddings complete: {len(padded_tracks)} padded tracks")
all_words.sort(key=lambda w: w.start)
ctx.log( return ProcessPaddingsResult(
f"process_tracks complete: {len(all_words)} words from {len(input.tracks)} tracks"
)
return ProcessTracksResult(
all_words=all_words,
padded_tracks=padded_tracks, padded_tracks=padded_tracks,
word_count=len(all_words),
num_tracks=len(input.tracks), num_tracks=len(input.tracks),
target_language=target_language,
created_padded_files=list(created_padded_files), created_padded_files=list(created_padded_files),
) )
@daily_multitrack_pipeline.task( @daily_multitrack_pipeline.task(
parents=[process_tracks], parents=[process_paddings],
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3,
)
@with_error_handling(TaskName.PROCESS_TRANSCRIPTIONS)
async def process_transcriptions(
input: PipelineInput, ctx: Context
) -> ProcessTranscriptionsResult:
"""Spawn child workflows for each padded track to transcribe (dynamic fan-out)."""
participants_result = ctx.task_output(get_participants)
paddings_result = ctx.task_output(process_paddings)
source_language = participants_result.source_language
if not source_language:
raise ValueError("source_language is required for transcription")
target_language = participants_result.target_language
padded_tracks = paddings_result.padded_tracks
if not padded_tracks:
raise ValueError("No padded tracks available for transcription")
ctx.log(
f"process_transcriptions: spawning {len(padded_tracks)} transcription workflows"
)
bulk_runs = [
transcription_workflow.create_bulk_run_item(
input=TranscriptionInput(
track_index=padded_track.track_index,
padded_key=padded_track.key,
bucket_name=padded_track.bucket_name,
language=source_language,
)
)
for padded_track in padded_tracks
]
results = await transcription_workflow.aio_run_many(bulk_runs)
track_words: list[list[Word]] = []
for result in results:
transcribe_result = TranscribeTrackResult(**result[TaskName.TRANSCRIBE_TRACK])
track_words.append(transcribe_result.words)
all_words = [word for words in track_words for word in words]
all_words.sort(key=lambda w: w.start)
ctx.log(
f"process_transcriptions complete: {len(all_words)} words from {len(padded_tracks)} tracks"
)
return ProcessTranscriptionsResult(
all_words=all_words,
word_count=len(all_words),
num_tracks=len(input.tracks),
target_language=target_language,
)
@daily_multitrack_pipeline.task(
parents=[process_paddings],
execution_timeout=timedelta(seconds=TIMEOUT_AUDIO), execution_timeout=timedelta(seconds=TIMEOUT_AUDIO),
retries=3, retries=3,
desired_worker_labels={ desired_worker_labels={
@@ -501,12 +537,12 @@ async def process_tracks(input: PipelineInput, ctx: Context) -> ProcessTracksRes
) )
@with_error_handling(TaskName.MIXDOWN_TRACKS) @with_error_handling(TaskName.MIXDOWN_TRACKS)
async def mixdown_tracks(input: PipelineInput, ctx: Context) -> MixdownResult: async def mixdown_tracks(input: PipelineInput, ctx: Context) -> MixdownResult:
"""Mix all padded tracks into single audio file using PyAV (same as Celery).""" """Mix all padded tracks into single audio file using PyAV."""
ctx.log("mixdown_tracks: mixing padded tracks into single audio file") ctx.log("mixdown_tracks: mixing padded tracks into single audio file")
track_result = ctx.task_output(process_tracks) paddings_result = ctx.task_output(process_paddings)
recording_result = ctx.task_output(get_recording) recording_result = ctx.task_output(get_recording)
padded_tracks = track_result.padded_tracks padded_tracks = paddings_result.padded_tracks
# Dynamic timeout: scales with track count and recording duration # Dynamic timeout: scales with track count and recording duration
# Base 300s + 60s per track + 1s per 10s of recording # Base 300s + 60s per track + 1s per 10s of recording
@@ -660,7 +696,7 @@ async def generate_waveform(input: PipelineInput, ctx: Context) -> WaveformResul
@daily_multitrack_pipeline.task( @daily_multitrack_pipeline.task(
parents=[process_tracks], parents=[process_transcriptions],
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), execution_timeout=timedelta(seconds=TIMEOUT_HEAVY),
retries=3, retries=3,
) )
@@ -669,8 +705,8 @@ async def detect_topics(input: PipelineInput, ctx: Context) -> TopicsResult:
"""Detect topics using parallel child workflows (one per chunk).""" """Detect topics using parallel child workflows (one per chunk)."""
ctx.log("detect_topics: analyzing transcript for topics") ctx.log("detect_topics: analyzing transcript for topics")
track_result = ctx.task_output(process_tracks) transcriptions_result = ctx.task_output(process_transcriptions)
words = track_result.all_words words = transcriptions_result.all_words
if not words: if not words:
ctx.log("detect_topics: no words, returning empty topics") ctx.log("detect_topics: no words, returning empty topics")
@@ -1107,7 +1143,7 @@ async def identify_action_items(
@daily_multitrack_pipeline.task( @daily_multitrack_pipeline.task(
parents=[process_tracks, generate_title, generate_recap, identify_action_items], parents=[generate_title, generate_recap, identify_action_items],
execution_timeout=timedelta(seconds=TIMEOUT_SHORT), execution_timeout=timedelta(seconds=TIMEOUT_SHORT),
retries=3, retries=3,
) )
@@ -1120,10 +1156,15 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
""" """
ctx.log("finalize: saving transcript and setting status to 'ended'") ctx.log("finalize: saving transcript and setting status to 'ended'")
track_result = ctx.task_output(process_tracks) mixdown_result = ctx.task_output(mixdown_tracks)
transcriptions_result = ctx.task_output(process_transcriptions)
paddings_result = ctx.task_output(process_paddings)
duration = mixdown_result.duration
all_words = transcriptions_result.all_words
# Cleanup temporary padded S3 files (deferred until finalize for semantic parity with Celery) # Cleanup temporary padded S3 files (deferred until finalize for semantic parity with Celery)
created_padded_files = track_result.created_padded_files created_padded_files = paddings_result.created_padded_files
if created_padded_files: if created_padded_files:
ctx.log(f"Cleaning up {len(created_padded_files)} temporary S3 files") ctx.log(f"Cleaning up {len(created_padded_files)} temporary S3 files")
storage = _spawn_storage() storage = _spawn_storage()
@@ -1141,6 +1182,7 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
async with fresh_db_connection(): async with fresh_db_connection():
from reflector.db.transcripts import ( # noqa: PLC0415 from reflector.db.transcripts import ( # noqa: PLC0415
TranscriptDuration,
TranscriptText, TranscriptText,
transcripts_controller, transcripts_controller,
) )
@@ -1149,6 +1191,8 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
if transcript is None: if transcript is None:
raise ValueError(f"Transcript {input.transcript_id} not found in database") raise ValueError(f"Transcript {input.transcript_id} not found in database")
merged_transcript = TranscriptType(words=all_words, translation=None)
await append_event_and_broadcast( await append_event_and_broadcast(
input.transcript_id, input.transcript_id,
transcript, transcript,
@@ -1160,15 +1204,21 @@ async def finalize(input: PipelineInput, ctx: Context) -> FinalizeResult:
logger=logger, logger=logger,
) )
# Clear workflow_run_id (workflow completed successfully) # Save duration and clear workflow_run_id (workflow completed successfully)
# Note: title/long_summary/short_summary/duration already saved by their callbacks # Note: title/long_summary/short_summary already saved by their callbacks
await transcripts_controller.update( await transcripts_controller.update(
transcript, transcript,
{ {
"duration": duration,
"workflow_run_id": None, # Clear on success - no need to resume "workflow_run_id": None, # Clear on success - no need to resume
}, },
) )
duration_data = TranscriptDuration(duration=duration)
await append_event_and_broadcast(
input.transcript_id, transcript, "DURATION", duration_data, logger=logger
)
await set_status_and_broadcast(input.transcript_id, "ended", logger=logger) await set_status_and_broadcast(input.transcript_id, "ended", logger=logger)
ctx.log( ctx.log(

View File

@@ -21,12 +21,14 @@ class ParticipantInfo(BaseModel):
class PadTrackResult(BaseModel): class PadTrackResult(BaseModel):
"""Result from pad_track task.""" """Result from pad_track task.
padded_key: NonEmptyString # S3 key (not presigned URL) - presign on demand to avoid stale URLs on replay If size=0, track required no padding and padded_key contains original S3 key.
bucket_name: ( If size>0, track was padded and padded_key contains new padded file S3 key.
NonEmptyString | None """
) # None means use default transcript storage bucket
padded_key: NonEmptyString
bucket_name: NonEmptyString | None
size: int size: int
track_index: int track_index: int
@@ -59,18 +61,25 @@ class PaddedTrackInfo(BaseModel):
"""Info for a padded track - S3 key + bucket for on-demand presigning.""" """Info for a padded track - S3 key + bucket for on-demand presigning."""
key: NonEmptyString key: NonEmptyString
bucket_name: NonEmptyString | None # None = use default storage bucket bucket_name: NonEmptyString | None
track_index: int
class ProcessTracksResult(BaseModel): class ProcessPaddingsResult(BaseModel):
"""Result from process_tracks task.""" """Result from process_paddings task."""
padded_tracks: list[PaddedTrackInfo]
num_tracks: int
created_padded_files: list[NonEmptyString]
class ProcessTranscriptionsResult(BaseModel):
"""Result from process_transcriptions task."""
all_words: list[Word] all_words: list[Word]
padded_tracks: list[PaddedTrackInfo] # S3 keys, not presigned URLs
word_count: int word_count: int
num_tracks: int num_tracks: int
target_language: NonEmptyString target_language: NonEmptyString
created_padded_files: list[NonEmptyString]
class MixdownResult(BaseModel): class MixdownResult(BaseModel):

View File

@@ -1,9 +1,11 @@
""" """
Hatchet child workflow: PaddingWorkflow Hatchet child workflow: PaddingWorkflow
Handles individual audio track padding via Modal.com backend. Handles individual audio track padding only.
""" """
import tempfile
from datetime import timedelta from datetime import timedelta
from pathlib import Path
import av import av
from hatchet_sdk import Context from hatchet_sdk import Context
@@ -14,7 +16,10 @@ from reflector.hatchet.constants import TIMEOUT_AUDIO
from reflector.hatchet.workflows.models import PadTrackResult from reflector.hatchet.workflows.models import PadTrackResult
from reflector.logger import logger from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_padding import extract_stream_start_time_from_container from reflector.utils.audio_padding import (
apply_audio_padding_to_file,
extract_stream_start_time_from_container,
)
class PaddingInput(BaseModel): class PaddingInput(BaseModel):
@@ -63,83 +68,61 @@ async def pad_track(input: PaddingInput, ctx: Context) -> PadTrackResult:
bucket=input.bucket_name, bucket=input.bucket_name,
) )
# Extract start_time to determine if padding needed
with av.open(source_url) as in_container: with av.open(source_url) as in_container:
if in_container.duration: with av.open(source_url) as in_container:
try: if in_container.duration:
duration = timedelta(seconds=in_container.duration // 1_000_000) try:
ctx.log( duration = timedelta(seconds=in_container.duration // 1_000_000)
f"pad_track: track {input.track_index}, duration={duration}" ctx.log(
) f"pad_track: track {input.track_index}, duration={duration}"
except (ValueError, TypeError, OverflowError) as e: )
ctx.log( except (ValueError, TypeError, OverflowError) as e:
f"pad_track: track {input.track_index}, duration error: {str(e)}" ctx.log(
) f"pad_track: track {input.track_index}, duration error: {str(e)}"
)
start_time_seconds = extract_stream_start_time_from_container( start_time_seconds = extract_stream_start_time_from_container(
in_container, input.track_index, logger=logger in_container, input.track_index, logger=logger
) )
if start_time_seconds <= 0: if start_time_seconds <= 0:
logger.info( logger.info(
f"Track {input.track_index} requires no padding", f"Track {input.track_index} requires no padding",
track_index=input.track_index, track_index=input.track_index,
) )
return PadTrackResult( return PadTrackResult(
padded_key=input.s3_key, padded_key=input.s3_key,
bucket_name=input.bucket_name, bucket_name=input.bucket_name,
size=0, size=0,
track_index=input.track_index, track_index=input.track_index,
) )
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm" storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
# Presign PUT URL for output (Modal will upload directly) with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
output_url = await storage.get_file_url( temp_path = temp_file.name
storage_path,
operation="put_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
)
import httpx # noqa: PLC0415 try:
apply_audio_padding_to_file(
in_container,
temp_path,
start_time_seconds,
input.track_index,
logger=logger,
)
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415 file_size = Path(temp_path).stat().st_size
AudioPaddingModalProcessor,
)
try: with open(temp_path, "rb") as padded_file:
processor = AudioPaddingModalProcessor() await storage.put_file(storage_path, padded_file)
result = await processor.pad_track(
track_url=source_url,
output_url=output_url,
start_time_seconds=start_time_seconds,
track_index=input.track_index,
)
file_size = result.size
ctx.log(f"pad_track: Modal returned size={file_size}") logger.info(
except httpx.HTTPStatusError as e: f"Uploaded padded track to S3",
error_detail = e.response.text if hasattr(e.response, "text") else str(e) key=storage_path,
logger.error( size=file_size,
"[Hatchet] Modal padding HTTP error", )
transcript_id=input.transcript_id, finally:
track_index=input.track_index, Path(temp_path).unlink(missing_ok=True)
status_code=e.response.status_code if hasattr(e, "response") else None,
error=error_detail,
exc_info=True,
)
raise Exception(
f"Modal padding failed: HTTP {e.response.status_code}"
) from e
except httpx.TimeoutException as e:
logger.error(
"[Hatchet] Modal padding timeout",
transcript_id=input.transcript_id,
track_index=input.track_index,
error=str(e),
exc_info=True,
)
raise Exception("Modal padding timeout") from e
logger.info( logger.info(
"[Hatchet] pad_track complete", "[Hatchet] pad_track complete",

View File

@@ -1,205 +0,0 @@
"""
Hatchet child workflow: TrackProcessing
Handles individual audio track processing: padding and transcription.
Spawned dynamically by the main diarization pipeline for each track.
Architecture note: This is a separate workflow (not inline tasks in DailyMultitrackPipeline)
because Hatchet workflow DAGs are defined statically, but the number of tracks varies
at runtime. Child workflow spawning via `aio_run()` + `asyncio.gather()` is the
standard pattern for dynamic fan-out. See `process_tracks` in daily_multitrack_pipeline.py.
Note: This file uses deferred imports (inside tasks) intentionally.
Hatchet workers run in forked processes; fresh imports per task ensure
storage/DB connections are not shared across forks.
"""
from datetime import timedelta
import av
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.constants import TIMEOUT_AUDIO, TIMEOUT_HEAVY
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_padding import extract_stream_start_time_from_container
class TrackInput(BaseModel):
"""Input for individual track processing."""
track_index: int
s3_key: str
bucket_name: str
transcript_id: str
language: str = "en"
hatchet = HatchetClientManager.get_client()
track_workflow = hatchet.workflow(name="TrackProcessing", input_validator=TrackInput)
@track_workflow.task(execution_timeout=timedelta(seconds=TIMEOUT_AUDIO), retries=3)
async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
"""Pad single audio track with silence for alignment.
Extracts stream.start_time from WebM container metadata and applies
silence padding using PyAV filter graph (adelay).
"""
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
logger.info(
"[Hatchet] pad_track",
track_index=input.track_index,
s3_key=input.s3_key,
transcript_id=input.transcript_id,
)
try:
# Create fresh storage instance to avoid aioboto3 fork issues
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
source_url = await storage.get_file_url(
input.s3_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=input.bucket_name,
)
with av.open(source_url) as in_container:
start_time_seconds = extract_stream_start_time_from_container(
in_container, input.track_index, logger=logger
)
# If no padding needed, return original S3 key
if start_time_seconds <= 0:
logger.info(
f"Track {input.track_index} requires no padding",
track_index=input.track_index,
)
return PadTrackResult(
padded_key=input.s3_key,
bucket_name=input.bucket_name,
size=0,
track_index=input.track_index,
)
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
# Presign PUT URL for output (Modal uploads directly)
output_url = await storage.get_file_url(
storage_path,
operation="put_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
)
from reflector.processors.audio_padding_modal import ( # noqa: PLC0415
AudioPaddingModalProcessor,
)
processor = AudioPaddingModalProcessor()
result = await processor.pad_track(
track_url=source_url,
output_url=output_url,
start_time_seconds=start_time_seconds,
track_index=input.track_index,
)
file_size = result.size
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
logger.info(
"[Hatchet] pad_track complete",
track_index=input.track_index,
padded_key=storage_path,
)
# Return S3 key (not presigned URL) - consumer tasks presign on demand
# This avoids stale URLs when workflow is replayed
return PadTrackResult(
padded_key=storage_path,
bucket_name=None, # None = use default transcript storage bucket
size=file_size,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] pad_track failed", error=str(e), exc_info=True)
raise
@track_workflow.task(
parents=[pad_track], execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), retries=3
)
async def transcribe_track(input: TrackInput, ctx: Context) -> TranscribeTrackResult:
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
logger.info(
"[Hatchet] transcribe_track",
track_index=input.track_index,
language=input.language,
)
try:
pad_result = ctx.task_output(pad_track)
padded_key = pad_result.padded_key
bucket_name = pad_result.bucket_name
if not padded_key:
raise ValueError("Missing padded_key from pad_track")
# Presign URL on demand (avoids stale URLs on workflow replay)
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
audio_url = await storage.get_file_url(
padded_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=bucket_name,
)
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
transcribe_file_with_processor,
)
transcript = await transcribe_file_with_processor(audio_url, input.language)
# Tag all words with speaker index
for word in transcript.words:
word.speaker = input.track_index
ctx.log(
f"transcribe_track complete: track {input.track_index}, {len(transcript.words)} words"
)
logger.info(
"[Hatchet] transcribe_track complete",
track_index=input.track_index,
word_count=len(transcript.words),
)
return TranscribeTrackResult(
words=transcript.words,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] transcribe_track failed", error=str(e), exc_info=True)
raise

View File

@@ -0,0 +1,98 @@
"""
Hatchet child workflow: TranscriptionWorkflow
Handles individual audio track transcription only.
"""
from datetime import timedelta
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.constants import TIMEOUT_HEAVY
from reflector.hatchet.workflows.models import TranscribeTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
class TranscriptionInput(BaseModel):
"""Input for individual track transcription."""
track_index: int
padded_key: str # S3 key from padding step
bucket_name: str | None # None = use default bucket
language: str = "en"
hatchet = HatchetClientManager.get_client()
transcription_workflow = hatchet.workflow(
name="TranscriptionWorkflow", input_validator=TranscriptionInput
)
@transcription_workflow.task(
execution_timeout=timedelta(seconds=TIMEOUT_HEAVY), retries=3
)
async def transcribe_track(
input: TranscriptionInput, ctx: Context
) -> TranscribeTrackResult:
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
logger.info(
"[Hatchet] transcribe_track",
track_index=input.track_index,
language=input.language,
)
try:
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
audio_url = await storage.get_file_url(
input.padded_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=input.bucket_name,
)
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
transcribe_file_with_processor,
)
transcript = await transcribe_file_with_processor(audio_url, input.language)
for word in transcript.words:
word.speaker = input.track_index
ctx.log(
f"transcribe_track complete: track {input.track_index}, {len(transcript.words)} words"
)
logger.info(
"[Hatchet] transcribe_track complete",
track_index=input.track_index,
word_count=len(transcript.words),
)
return TranscribeTrackResult(
words=transcript.words,
track_index=input.track_index,
)
except Exception as e:
logger.error(
"[Hatchet] transcribe_track failed",
track_index=input.track_index,
padded_key=input.padded_key,
language=input.language,
error=str(e),
exc_info=True,
)
raise

View File

@@ -1,113 +0,0 @@
"""
Modal.com backend for audio padding.
"""
import asyncio
import os
import httpx
from pydantic import BaseModel
from reflector.hatchet.constants import TIMEOUT_AUDIO
from reflector.logger import logger
class PaddingResponse(BaseModel):
size: int
cancelled: bool = False
class AudioPaddingModalProcessor:
"""Audio padding processor using Modal.com CPU backend via HTTP."""
def __init__(
self, padding_url: str | None = None, modal_api_key: str | None = None
):
self.padding_url = padding_url or os.getenv("PADDING_URL")
if not self.padding_url:
raise ValueError(
"PADDING_URL required to use AudioPaddingModalProcessor. "
"Set PADDING_URL environment variable or pass padding_url parameter."
)
self.modal_api_key = modal_api_key or os.getenv("MODAL_API_KEY")
async def pad_track(
self,
track_url: str,
output_url: str,
start_time_seconds: float,
track_index: int,
) -> PaddingResponse:
"""Pad audio track with silence via Modal backend.
Args:
track_url: Presigned GET URL for source audio track
output_url: Presigned PUT URL for output WebM
start_time_seconds: Amount of silence to prepend
track_index: Track index for logging
"""
if not track_url:
raise ValueError("track_url cannot be empty")
if start_time_seconds <= 0:
raise ValueError(
f"start_time_seconds must be positive, got {start_time_seconds}"
)
log = logger.bind(track_index=track_index, padding_seconds=start_time_seconds)
log.info("Sending Modal padding HTTP request")
url = f"{self.padding_url}/pad"
headers = {}
if self.modal_api_key:
headers["Authorization"] = f"Bearer {self.modal_api_key}"
try:
async with httpx.AsyncClient(timeout=TIMEOUT_AUDIO) as client:
response = await client.post(
url,
headers=headers,
json={
"track_url": track_url,
"output_url": output_url,
"start_time_seconds": start_time_seconds,
"track_index": track_index,
},
follow_redirects=True,
)
if response.status_code != 200:
error_body = response.text
log.error(
"Modal padding API error",
status_code=response.status_code,
error_body=error_body,
)
response.raise_for_status()
result = response.json()
# Check if work was cancelled
if result.get("cancelled"):
log.warning("Modal padding was cancelled by disconnect detection")
raise asyncio.CancelledError(
"Padding cancelled due to client disconnect"
)
log.info("Modal padding complete", size=result["size"])
return PaddingResponse(**result)
except asyncio.CancelledError:
log.warning(
"Modal padding cancelled (Hatchet timeout, disconnect detected on Modal side)"
)
raise
except httpx.TimeoutException as e:
log.error("Modal padding timeout", error=str(e), exc_info=True)
raise Exception(f"Modal padding timeout: {e}") from e
except httpx.HTTPStatusError as e:
log.error("Modal padding HTTP error", error=str(e), exc_info=True)
raise Exception(f"Modal padding HTTP error: {e}") from e
except Exception as e:
log.error("Modal padding unexpected error", error=str(e), exc_info=True)
raise

View File

@@ -98,10 +98,6 @@ class Settings(BaseSettings):
# Diarization: local pyannote.audio # Diarization: local pyannote.audio
DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None
# Audio Padding (Modal.com backend)
PADDING_URL: str | None = None
PADDING_MODAL_API_KEY: str | None = None
# Sentry # Sentry
SENTRY_DSN: str | None = None SENTRY_DSN: str | None = None

View File

@@ -5,9 +5,7 @@ Used by both Hatchet workflows and Celery pipelines for consistent audio encodin
""" """
# Opus codec settings # Opus codec settings
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_STANDARD_SAMPLE_RATE = 48000 OPUS_STANDARD_SAMPLE_RATE = 48000
# ref B0F71CE8-FC59-4AA5-8414-DAFB836DB711
OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality
# S3 presigned URL expiration # S3 presigned URL expiration

45
server/uv.lock generated
View File

@@ -159,20 +159,21 @@ wheels = [
[[package]] [[package]]
name = "aiortc" name = "aiortc"
version = "1.14.0" version = "1.13.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "aioice" }, { name = "aioice" },
{ name = "av" }, { name = "av" },
{ name = "cffi" },
{ name = "cryptography" }, { name = "cryptography" },
{ name = "google-crc32c" }, { name = "google-crc32c" },
{ name = "pyee" }, { name = "pyee" },
{ name = "pylibsrtp" }, { name = "pylibsrtp" },
{ name = "pyopenssl" }, { name = "pyopenssl" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/51/9c/4e027bfe0195de0442da301e2389329496745d40ae44d2d7c4571c4290ce/aiortc-1.14.0.tar.gz", hash = "sha256:adc8a67ace10a085721e588e06a00358ed8eaf5f6b62f0a95358ff45628dd762", size = 1180864 } sdist = { url = "https://files.pythonhosted.org/packages/62/03/bc947d74c548e0c17cf94e5d5bdacaed0ee9e5b2bb7b8b8cf1ac7a7c01ec/aiortc-1.13.0.tar.gz", hash = "sha256:5d209975c22d0910fb5a0f0e2caa828f2da966c53580f7c7170ac3a16a871620", size = 1179894 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/57/ab/31646a49209568cde3b97eeade0d28bb78b400e6645c56422c101df68932/aiortc-1.14.0-py3-none-any.whl", hash = "sha256:4b244d7e482f4e1f67e685b3468269628eca1ec91fa5b329ab517738cfca086e", size = 93183 }, { url = "https://files.pythonhosted.org/packages/87/29/765633cab5f1888890f5f172d1d53009b9b14e079cdfa01a62d9896a9ea9/aiortc-1.13.0-py3-none-any.whl", hash = "sha256:9ccccec98796f6a96bd1c3dd437a06da7e0f57521c96bd56e4b965a91b03a0a0", size = 92910 },
] ]
[[package]] [[package]]
@@ -326,24 +327,28 @@ wheels = [
[[package]] [[package]]
name = "av" name = "av"
version = "16.1.0" version = "14.4.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/78/cd/3a83ffbc3cc25b39721d174487fb0d51a76582f4a1703f98e46170ce83d4/av-16.1.0.tar.gz", hash = "sha256:a094b4fd87a3721dacf02794d3d2c82b8d712c85b9534437e82a8a978c175ffd", size = 4285203 } sdist = { url = "https://files.pythonhosted.org/packages/86/f6/0b473dab52dfdea05f28f3578b1c56b6c796ce85e76951bab7c4e38d5a74/av-14.4.0.tar.gz", hash = "sha256:3ecbf803a7fdf67229c0edada0830d6bfaea4d10bfb24f0c3f4e607cd1064b42", size = 3892203 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/48/d0/b71b65d1b36520dcb8291a2307d98b7fc12329a45614a303ff92ada4d723/av-16.1.0-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:e88ad64ee9d2b9c4c5d891f16c22ae78e725188b8926eb88187538d9dd0b232f", size = 26927747 }, { url = "https://files.pythonhosted.org/packages/18/8a/d57418b686ffd05fabd5a0a9cfa97e63b38c35d7101af00e87c51c8cc43c/av-14.4.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5b21d5586a88b9fce0ab78e26bd1c38f8642f8e2aad5b35e619f4d202217c701", size = 19965048 },
{ url = "https://files.pythonhosted.org/packages/2f/79/720a5a6ccdee06eafa211b945b0a450e3a0b8fc3d12922f0f3c454d870d2/av-16.1.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:cb296073fa6935724de72593800ba86ae49ed48af03960a4aee34f8a611f442b", size = 21492232 }, { url = "https://files.pythonhosted.org/packages/f5/aa/3f878b0301efe587e9b07bb773dd6b47ef44ca09a3cffb4af50c08a170f3/av-14.4.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:cf8762d90b0f94a20c9f6e25a94f1757db5a256707964dfd0b1d4403e7a16835", size = 23750064 },
{ url = "https://files.pythonhosted.org/packages/8e/4f/a1ba8d922f2f6d1a3d52419463ef26dd6c4d43ee364164a71b424b5ae204/av-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:720edd4d25aa73723c1532bb0597806d7b9af5ee34fc02358782c358cfe2f879", size = 39291737 }, { url = "https://files.pythonhosted.org/packages/9a/b4/6fe94a31f9ed3a927daa72df67c7151968587106f30f9f8fcd792b186633/av-14.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0ac9f08920c7bbe0795319689d901e27cb3d7870b9a0acae3f26fc9daa801a6", size = 33648775 },
{ url = "https://files.pythonhosted.org/packages/1a/31/fc62b9fe8738d2693e18d99f040b219e26e8df894c10d065f27c6b4f07e3/av-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:c7f2bc703d0df260a1fdf4de4253c7f5500ca9fc57772ea241b0cb241bcf972e", size = 40846822 }, { url = "https://files.pythonhosted.org/packages/6c/f3/7f3130753521d779450c935aec3f4beefc8d4645471159f27b54e896470c/av-14.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a56d9ad2afdb638ec0404e962dc570960aae7e08ae331ad7ff70fbe99a6cf40e", size = 32216915 },
{ url = "https://files.pythonhosted.org/packages/53/10/ab446583dbce730000e8e6beec6ec3c2753e628c7f78f334a35cad0317f4/av-16.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d69c393809babada7d54964d56099e4b30a3e1f8b5736ca5e27bd7be0e0f3c83", size = 40675604 }, { url = "https://files.pythonhosted.org/packages/f8/9a/8ffabfcafb42154b4b3a67d63f9b69e68fa8c34cb39ddd5cb813dd049ed4/av-14.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bed513cbcb3437d0ae47743edc1f5b4a113c0b66cdd4e1aafc533abf5b2fbf2", size = 35287279 },
{ url = "https://files.pythonhosted.org/packages/31/d7/1003be685277005f6d63fd9e64904ee222fe1f7a0ea70af313468bb597db/av-16.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:441892be28582356d53f282873c5a951592daaf71642c7f20165e3ddcb0b4c63", size = 42015955 }, { url = "https://files.pythonhosted.org/packages/ad/11/7023ba0a2ca94a57aedf3114ab8cfcecb0819b50c30982a4c5be4d31df41/av-14.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d030c2d3647931e53d51f2f6e0fcf465263e7acf9ec6e4faa8dbfc77975318c3", size = 36294683 },
{ url = "https://files.pythonhosted.org/packages/2f/4a/fa2a38ee9306bf4579f556f94ecbc757520652eb91294d2a99c7cf7623b9/av-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:273a3e32de64819e4a1cd96341824299fe06f70c46f2288b5dc4173944f0fd62", size = 31750339 }, { url = "https://files.pythonhosted.org/packages/3d/fa/b8ac9636bd5034e2b899354468bef9f4dadb067420a16d8a493a514b7817/av-14.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1cc21582a4f606271d8c2036ec7a6247df0831050306c55cf8a905701d0f0474", size = 34552391 },
{ url = "https://files.pythonhosted.org/packages/9c/84/2535f55edcd426cebec02eb37b811b1b0c163f26b8d3f53b059e2ec32665/av-16.1.0-cp312-cp312-macosx_11_0_x86_64.whl", hash = "sha256:640f57b93f927fba8689f6966c956737ee95388a91bd0b8c8b5e0481f73513d6", size = 26945785 }, { url = "https://files.pythonhosted.org/packages/fb/29/0db48079c207d1cba7a2783896db5aec3816e17de55942262c244dffbc0f/av-14.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce7c9cd452153d36f1b1478f904ed5f9ab191d76db873bdd3a597193290805d4", size = 37265250 },
{ url = "https://files.pythonhosted.org/packages/b6/17/ffb940c9e490bf42e86db4db1ff426ee1559cd355a69609ec1efe4d3a9eb/av-16.1.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:ae3fb658eec00852ebd7412fdc141f17f3ddce8afee2d2e1cf366263ad2a3b35", size = 21481147 }, { url = "https://files.pythonhosted.org/packages/1c/55/715858c3feb7efa4d667ce83a829c8e6ee3862e297fb2b568da3f968639d/av-14.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd261e31cc6b43ca722f80656c39934199d8f2eb391e0147e704b6226acebc29", size = 27925845 },
{ url = "https://files.pythonhosted.org/packages/15/c1/e0d58003d2d83c3921887d5c8c9b8f5f7de9b58dc2194356a2656a45cfdc/av-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:27ee558d9c02a142eebcbe55578a6d817fedfde42ff5676275504e16d07a7f86", size = 39517197 }, { url = "https://files.pythonhosted.org/packages/a6/75/b8641653780336c90ba89e5352cac0afa6256a86a150c7703c0b38851c6d/av-14.4.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:a53e682b239dd23b4e3bc9568cfb1168fc629ab01925fdb2e7556eb426339e94", size = 19954125 },
{ url = "https://files.pythonhosted.org/packages/32/77/787797b43475d1b90626af76f80bfb0c12cfec5e11eafcfc4151b8c80218/av-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7ae547f6d5fa31763f73900d43901e8c5fa6367bb9a9840978d57b5a7ae14ed2", size = 41174337 }, { url = "https://files.pythonhosted.org/packages/99/e6/37fe6fa5853a48d54d749526365780a63a4bc530be6abf2115e3a21e292a/av-14.4.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:5aa0b901751a32703fa938d2155d56ce3faf3630e4a48d238b35d2f7e49e5395", size = 23751479 },
{ url = "https://files.pythonhosted.org/packages/8e/ac/d90df7f1e3b97fc5554cf45076df5045f1e0a6adf13899e10121229b826c/av-16.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8cf065f9d438e1921dc31fc7aa045790b58aee71736897866420d80b5450f62a", size = 40817720 }, { url = "https://files.pythonhosted.org/packages/f7/75/9a5f0e6bda5f513b62bafd1cff2b495441a8b07ab7fb7b8e62f0c0d1683f/av-14.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3b316fed3597675fe2aacfed34e25fc9d5bb0196dc8c0b014ae5ed4adda48de", size = 33801401 },
{ url = "https://files.pythonhosted.org/packages/80/6f/13c3a35f9dbcebafd03fe0c4cbd075d71ac8968ec849a3cfce406c35a9d2/av-16.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a345877a9d3cc0f08e2bc4ec163ee83176864b92587afb9d08dff50f37a9a829", size = 42267396 }, { url = "https://files.pythonhosted.org/packages/6a/c9/e4df32a2ad1cb7f3a112d0ed610c5e43c89da80b63c60d60e3dc23793ec0/av-14.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a587b5c5014c3c0e16143a0f8d99874e46b5d0c50db6111aa0b54206b5687c81", size = 32364330 },
{ url = "https://files.pythonhosted.org/packages/c8/b9/275df9607f7fb44317ccb1d4be74827185c0d410f52b6e2cd770fe209118/av-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:f49243b1d27c91cd8c66fdba90a674e344eb8eb917264f36117bf2b6879118fd", size = 31752045 }, { url = "https://files.pythonhosted.org/packages/ca/f0/64e7444a41817fde49a07d0239c033f7e9280bec4a4bb4784f5c79af95e6/av-14.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d53f75e8ac1ec8877a551c0db32a83c0aaeae719d05285281eaaba211bbc30", size = 35519508 },
{ url = "https://files.pythonhosted.org/packages/c2/a8/a370099daa9033a3b6f9b9bd815304b3d8396907a14d09845f27467ba138/av-14.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c8558cfde79dd8fc92d97c70e0f0fa8c94c7a66f68ae73afdf58598f0fe5e10d", size = 36448593 },
{ url = "https://files.pythonhosted.org/packages/27/bb/edb6ceff8fa7259cb6330c51dbfbc98dd1912bd6eb5f7bc05a4bb14a9d6e/av-14.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:455b6410dea0ab2d30234ffb28df7d62ca3cdf10708528e247bec3a4cdcced09", size = 34701485 },
{ url = "https://files.pythonhosted.org/packages/a7/8a/957da1f581aa1faa9a5dfa8b47ca955edb47f2b76b949950933b457bfa1d/av-14.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1661efbe9d975f927b8512d654704223d936f39016fad2ddab00aee7c40f412c", size = 37521981 },
{ url = "https://files.pythonhosted.org/packages/28/76/3f1cf0568592f100fd68eb40ed8c491ce95ca3c1378cc2d4c1f6d1bd295d/av-14.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:fbbeef1f421a3461086853d6464ad5526b56ffe8ccb0ab3fd0a1f121dfbf26ad", size = 27925944 },
] ]
[[package]] [[package]]
@@ -3262,7 +3267,7 @@ requires-dist = [
{ name = "aiohttp-cors", specifier = ">=0.7.0" }, { name = "aiohttp-cors", specifier = ">=0.7.0" },
{ name = "aiortc", specifier = ">=1.5.0" }, { name = "aiortc", specifier = ">=1.5.0" },
{ name = "alembic", specifier = ">=1.11.3" }, { name = "alembic", specifier = ">=1.11.3" },
{ name = "av", specifier = ">=15.0.0" }, { name = "av", specifier = ">=10.0.0" },
{ name = "celery", specifier = ">=5.3.4" }, { name = "celery", specifier = ">=5.3.4" },
{ name = "databases", extras = ["aiosqlite", "asyncpg"], specifier = ">=0.7.0" }, { name = "databases", extras = ["aiosqlite", "asyncpg"], specifier = ">=0.7.0" },
{ name = "fastapi", extras = ["standard"], specifier = ">=0.100.1" }, { name = "fastapi", extras = ["standard"], specifier = ">=0.100.1" },