# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview Reflector is an AI-powered audio transcription and meeting analysis platform with real-time processing capabilities. The system consists of: - **Frontend**: Next.js 14 React application (`www/`) with Chakra UI, real-time WebSocket integration - **Backend**: Python FastAPI server (`server/`) with async database operations and background processing - **Processing**: GPU-accelerated ML pipeline for transcription, diarization, summarization via Modal.com - **Infrastructure**: Redis, PostgreSQL/SQLite, Celery workers, WebRTC streaming ## Development Commands ### Backend (Python) - `cd server/` **Setup and Dependencies:** ```bash # Install dependencies uv sync # Database migrations (first run or schema changes) uv run alembic upgrade head # Start services docker compose up -d redis ``` **Development:** ```bash # Start FastAPI server uv run -m reflector.app --reload # Start Celery worker for background tasks uv run celery -A reflector.worker.app worker --loglevel=info # Start Celery beat scheduler (optional, for cron jobs) uv run celery -A reflector.worker.app beat ``` **Testing:** ```bash # Run all tests with coverage uv run pytest # Run specific test file uv run pytest tests/test_transcripts.py # Run tests with verbose output uv run pytest -v ``` **Process Audio Files:** ```bash # Process local audio file manually uv run python -m reflector.tools.process path/to/audio.wav ``` ### Frontend (Next.js) - `cd www/` **Setup:** ```bash # Install dependencies pnpm install # Copy configuration templates cp .env_template .env cp config-template.ts config.ts ``` **Development:** ```bash # Start development server pnpm dev # Generate TypeScript API client from OpenAPI spec pnpm openapi # Lint code pnpm lint # Format code pnpm format # Build for production pnpm build ``` ### Docker Compose (Full Stack) ```bash # Start all services docker compose up -d # Start specific services docker compose up -d redis server worker ``` ## Architecture Overview ### Backend Processing Pipeline The audio processing follows a modular pipeline architecture: 1. **Audio Input**: WebRTC streaming, file upload, or cloud recording ingestion 2. **Chunking**: Audio split into processable segments (`AudioChunkerProcessor`) 3. **Transcription**: Whisper or Modal.com GPU processing (`AudioTranscriptAutoProcessor`) 4. **Diarization**: Speaker identification (`AudioDiarizationAutoProcessor`) 5. **Text Processing**: Formatting, translation, topic detection 6. **Summarization**: AI-powered summaries and title generation 7. **Storage**: Database persistence with optional S3 backend ### Database Models Core entities: - `transcript`: Main table with processing results, summaries, topics, participants - `meeting`: Live meeting sessions with consent management - `room`: Virtual meeting spaces with configuration - `recording`: Audio/video file metadata and processing status ### API Structure All endpoints prefixed `/v1/`: - `transcripts/` - CRUD operations for transcripts - `transcripts_audio/` - Audio streaming and download - `transcripts_webrtc/` - Real-time WebRTC endpoints - `transcripts_websocket/` - WebSocket for live updates - `meetings/` - Meeting lifecycle management - `rooms/` - Virtual room management ### Frontend Architecture - **App Router**: Next.js 14 with route groups for organization - **State**: React Context pattern, no Redux - **Real-time**: WebSocket integration for live transcription updates - **Auth**: NextAuth.js with Authentik OAuth/OIDC provider - **UI**: Chakra UI components with Tailwind CSS utilities ## Key Configuration ### Environment Variables **Backend** (`server/.env`): - `DATABASE_URL` - Database connection string - `REDIS_URL` - Redis broker for Celery - `TRANSCRIPT_BACKEND=modal` + `TRANSCRIPT_MODAL_API_KEY` - Modal.com transcription - `DIARIZATION_BACKEND=modal` + `DIARIZATION_MODAL_API_KEY` - Modal.com diarization - `TRANSLATION_BACKEND=modal` + `TRANSLATION_MODAL_API_KEY` - Modal.com translation - `WHEREBY_API_KEY` - Video platform integration - `REFLECTOR_AUTH_BACKEND` - Authentication method (none, jwt) **Frontend** (`www/.env`): - `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration - `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint - `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings ## Testing Strategy - **Backend**: pytest with async support, HTTP client mocking, audio processing tests - **Frontend**: No current test suite - opportunities for Jest/React Testing Library - **Coverage**: Backend maintains test coverage reports in `htmlcov/` ## GPU Processing Modal.com integration for scalable ML processing: - Deploy changes: `modal run server/gpu/path/to/model.py` - Requires Modal account with `REFLECTOR_GPU_APIKEY` secret - Fallback to local processing when Modal unavailable ## Common Issues - **Permissions**: Browser microphone access required in System Preferences - **Audio Routing**: Use BlackHole (Mac) for merging multiple audio sources - **WebRTC**: Ensure proper CORS configuration for cross-origin streaming - **Database**: Run `uv run alembic upgrade head` after pulling schema changes ## Pipeline/worker related info If you need to do any worker/pipeline related work, search for "Pipeline" classes and their "create" or "build" methods to find the main processor sequence. Look for task orchestration patterns (like "chord", "group", or "chain") to identify the post-processing flow with parallel execution chains. This will give you abstract vision on how processing pipeling is organized.