--- sidebar_position: 4 title: Processing Pipeline --- # Processing Pipeline Reflector uses a modular pipeline architecture to process audio efficiently and accurately. ## Pipeline Overview The processing pipeline consists of modular components that can be combined and configured based on your needs: ```mermaid graph LR A[Audio Input] --> B[Pre-processing] B --> C[Chunking] C --> D[Transcription] D --> E[Diarization] E --> F[Alignment] F --> G[Post-processing] G --> H[Output] ``` ## Pipeline Components ### Audio Input Accepts various input sources: - **File Upload**: MP3, WAV, M4A, WebM, MP4 - **WebRTC Stream**: Live browser audio - **Recording Integration**: Daily.co and Whereby recordings - **API Upload**: Direct API submission ### Pre-processing Prepares audio for optimal processing: - **Format Conversion**: Convert to 16kHz mono WAV - **Noise Reduction**: Optional background noise removal - **Validation**: Check duration and quality ### Chunking Splits audio for parallel processing: - **Configurable Size**: Audio split into processable segments - **Silence Detection**: Optional splitting at natural pauses - **Metadata**: Track chunk positions ### Transcription Converts speech to text: - **Model Selection**: Whisper or Parakeet - **Language Detection**: Automatic or specified - **Timestamp Generation**: Word-level timing - **Confidence Scores**: Quality indicators ### Diarization Identifies different speakers: - **Voice Activity Detection**: Find speech segments - **Speaker Embedding**: Extract voice characteristics - **Clustering**: Group similar voices - **Label Assignment**: Assign speaker IDs ### Alignment Merges all processing results: - **Chunk Assembly**: Combine transcription chunks - **Speaker Mapping**: Align speakers with text - **Overlap Resolution**: Handle chunk boundaries - **Timeline Creation**: Build unified timeline ### Post-processing Enhances the final output: - **Formatting**: Apply punctuation and capitalization - **Summarization**: Generate concise summaries - **Topic Extraction**: Identify key themes - **Action Items**: Extract tasks and decisions ## Processing Modes ### Batch Processing For uploaded files: - Optimized for throughput - Parallel chunk processing - Higher accuracy models - Complete file analysis ### Stream Processing For live audio: - Optimized for latency - Sequential processing - Real-time feedback - Progressive results ### Hybrid Processing For meetings: - Stream during meeting - Batch after completion - Best of both modes - Maximum accuracy ## Pipeline Orchestration ### Error Handling Error recovery: - **Automatic Retry**: Failed tasks retry up to 3 times - **Partial Recovery**: Continue with successful chunks - **Fallback Models**: Use alternative models on failure - **Error Reporting**: Detailed error messages ### Progress Tracking Real-time progress updates: - **Chunk Progress**: Track individual chunk processing - **Overall Progress**: Percentage completion - **ETA Calculation**: Estimated completion time - **WebSocket Updates**: Live progress to clients ## Optimization Strategies ### GPU Utilization Maximize GPU efficiency: - **Batch Processing**: Process multiple chunks together - **Model Caching**: Keep models loaded in memory - **Dynamic Batching**: Adjust batch size based on GPU memory - **Multi-GPU Support**: Distribute across available GPUs ### Memory Management Efficient memory usage: - **Streaming Processing**: Process large files in chunks - **Garbage Collection**: Clean up after each chunk - **Memory Limits**: Prevent out-of-memory errors - **Disk Caching**: Use disk for large intermediate results ### Network Optimization Minimize network overhead: - **Compression**: Compress audio before transfer - **CDN Integration**: Use CDN for static assets - **Connection Pooling**: Reuse network connections - **Parallel Uploads**: Multiple concurrent uploads ## Quality Assurance ### Accuracy Metrics Monitor processing quality: - **Word Error Rate (WER)**: Transcription accuracy - **Diarization Error Rate (DER)**: Speaker identification accuracy - **Summary Coherence**: Summary quality metrics ### Validation Steps Ensure output quality: - **Confidence Thresholds**: Filter low-confidence segments - **Consistency Checks**: Verify timeline consistency - **Language Validation**: Ensure correct language detection - **Format Validation**: Check output format compliance ## Advanced Features ### Custom Models Use your own models: - **Fine-tuned Whisper**: Domain-specific models - **Custom Diarization**: Trained on your speakers - **Specialized Post-processing**: Industry-specific formatting ### Pipeline Extensions Add custom processing steps: - **Sentiment Analysis**: Analyze emotional tone - **Entity Extraction**: Identify people, places, organizations - **Custom Metrics**: Calculate domain-specific metrics - **Integration Hooks**: Call external services