mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 12:19:06 +00:00
- allow LLM_URL to be passed directly by env, otherwise fallback to the current config.ini - prevent usage of global, shared variables are now passed through a context - can now have multiple meeting at the same time
380 lines
12 KiB
Python
380 lines
12 KiB
Python
import argparse
|
|
import asyncio
|
|
import datetime
|
|
import json
|
|
import os
|
|
import uuid
|
|
import wave
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import NoReturn, Union
|
|
|
|
import aiohttp_cors
|
|
import av
|
|
import requests
|
|
from aiohttp import web
|
|
from aiortc import MediaStreamTrack, RTCPeerConnection, RTCSessionDescription
|
|
from aiortc.contrib.media import MediaRelay
|
|
from faster_whisper import WhisperModel
|
|
|
|
from reflector_dataclasses import (
|
|
BlackListedMessages, FinalSummaryResult, ParseLLMResult, TitleSummaryInput,
|
|
TitleSummaryOutput, TranscriptionInput, TranscriptionOutput, TranscriptionContext)
|
|
from utils.log_utils import LOGGER
|
|
from utils.run_utils import CONFIG, run_in_executor, SECRETS
|
|
|
|
# WebRTC components
|
|
pcs = set()
|
|
relay = MediaRelay()
|
|
executor = ThreadPoolExecutor()
|
|
|
|
# Transcription model
|
|
model = WhisperModel("tiny", device="cpu",
|
|
compute_type="float32",
|
|
num_workers=12)
|
|
|
|
# Audio configurations
|
|
CHANNELS = int(CONFIG["AUDIO"]["CHANNELS"])
|
|
RATE = int(CONFIG["AUDIO"]["SAMPLING_RATE"])
|
|
AUDIO_BUFFER_SIZE = 256 * 960
|
|
|
|
# LLM
|
|
LLM_URL = os.environ.get("LLM_URL")
|
|
if LLM_URL:
|
|
LOGGER.info(f"Using LLM from environment: {LLM_URL}")
|
|
else:
|
|
LLM_MACHINE_IP = CONFIG["LLM"]["LLM_MACHINE_IP"]
|
|
LLM_MACHINE_PORT = CONFIG["LLM"]["LLM_MACHINE_PORT"]
|
|
LLM_URL = f"http://{LLM_MACHINE_IP}:{LLM_MACHINE_PORT}/api/v1/generate"
|
|
|
|
def parse_llm_output(param: TitleSummaryInput, response: requests.Response) -> Union[None, ParseLLMResult]:
|
|
"""
|
|
Function to parse the LLM response
|
|
:param param:
|
|
:param response:
|
|
:return:
|
|
"""
|
|
try:
|
|
output = json.loads(response.json()["results"][0]["text"])
|
|
return ParseLLMResult(param, output)
|
|
except Exception as e:
|
|
LOGGER.info("Exception" + str(e))
|
|
return None
|
|
|
|
|
|
def get_title_and_summary(ctx: TranscriptionContext, param: TitleSummaryInput) -> Union[None, TitleSummaryOutput]:
|
|
"""
|
|
From the input provided (transcript), query the LLM to generate
|
|
topics and summaries
|
|
:param param:
|
|
:return:
|
|
"""
|
|
LOGGER.info("Generating title and summary")
|
|
|
|
# TODO : Handle unexpected output formats from the model
|
|
try:
|
|
response = requests.post(LLM_URL,
|
|
headers=param.headers,
|
|
json=param.data)
|
|
output = parse_llm_output(param, response)
|
|
if output:
|
|
result = output.get_result()
|
|
ctx.incremental_responses.append(result)
|
|
return TitleSummaryOutput(ctx.incremental_responses)
|
|
except Exception:
|
|
LOGGER.exception("Exception while generating title and summary")
|
|
return None
|
|
|
|
|
|
def channel_log(channel, t: str, message: str) -> NoReturn:
|
|
"""
|
|
Add logs
|
|
:param channel:
|
|
:param t:
|
|
:param message:
|
|
:return:
|
|
"""
|
|
LOGGER.info("channel(%s) %s %s" % (channel.label, t, message))
|
|
|
|
|
|
def channel_send(channel, message: str) -> NoReturn:
|
|
"""
|
|
Send text messages via the data channel
|
|
:param channel:
|
|
:param message:
|
|
:return:
|
|
"""
|
|
if channel:
|
|
channel.send(message)
|
|
|
|
|
|
def channel_send_increment(channel, param: Union[FinalSummaryResult, TitleSummaryOutput]) -> NoReturn:
|
|
"""
|
|
Send the incremental topics and summaries via the data channel
|
|
:param channel:
|
|
:param param:
|
|
:return:
|
|
"""
|
|
if channel and param:
|
|
message = param.get_result()
|
|
channel.send(json.dumps(message))
|
|
|
|
|
|
def channel_send_transcript(ctx: TranscriptionContext) -> NoReturn:
|
|
"""
|
|
Send the transcription result via the data channel
|
|
:param channel:
|
|
:return:
|
|
"""
|
|
# channel_log(channel, ">", message)
|
|
if not ctx.data_channel:
|
|
return
|
|
try:
|
|
least_time = next(iter(ctx.sorted_transcripts))
|
|
message = ctx.sorted_transcripts[least_time].get_result()
|
|
if message:
|
|
del ctx.sorted_transcripts[least_time]
|
|
if message["text"] not in BlackListedMessages.messages:
|
|
ctx.data_channel.send(json.dumps(message))
|
|
# Due to exceptions if one of the earlier batches can't return
|
|
# a transcript, we don't want to be stuck waiting for the result
|
|
# With the threshold size of 3, we pop the first(lost) element
|
|
else:
|
|
if len(ctx.sorted_transcripts) >= 3:
|
|
del ctx.sorted_transcripts[least_time]
|
|
except Exception as exception:
|
|
LOGGER.info("Exception", str(exception))
|
|
|
|
|
|
def get_transcription(ctx: TranscriptionContext, input_frames: TranscriptionInput) -> Union[None, TranscriptionOutput]:
|
|
"""
|
|
From the collected audio frames create transcription by inferring from
|
|
the chosen transcription model
|
|
:param input_frames:
|
|
:return:
|
|
"""
|
|
LOGGER.info("Transcribing..")
|
|
ctx.sorted_transcripts[input_frames.frames[0].time] = None
|
|
|
|
# TODO: Find cleaner way, watch "no transcription" issue below
|
|
# Passing IO objects instead of temporary files throws an error
|
|
# Passing ndarray (type casted with float) does not give any
|
|
# transcription. Refer issue,
|
|
# https://github.com/guillaumekln/faster-whisper/issues/369
|
|
audio_file = "test" + str(datetime.datetime.now())
|
|
wf = wave.open(audio_file, "wb")
|
|
wf.setnchannels(CHANNELS)
|
|
wf.setframerate(RATE)
|
|
wf.setsampwidth(2)
|
|
|
|
for frame in input_frames.frames:
|
|
wf.writeframes(b"".join(frame.to_ndarray()))
|
|
wf.close()
|
|
|
|
result_text = ""
|
|
|
|
try:
|
|
segments, _ = \
|
|
model.transcribe(audio_file,
|
|
language="en",
|
|
beam_size=5,
|
|
vad_filter=True,
|
|
vad_parameters={"min_silence_duration_ms": 500})
|
|
os.remove(audio_file)
|
|
segments = list(segments)
|
|
result_text = ""
|
|
duration = 0.0
|
|
for segment in segments:
|
|
result_text += segment.text
|
|
start_time = segment.start
|
|
end_time = segment.end
|
|
if not segment.start:
|
|
start_time = 0.0
|
|
if not segment.end:
|
|
end_time = 5.5
|
|
duration += (end_time - start_time)
|
|
|
|
ctx.last_transcribed_time += duration
|
|
ctx.transcription_text += result_text
|
|
|
|
except Exception as exception:
|
|
LOGGER.info("Exception" + str(exception))
|
|
|
|
result = TranscriptionOutput(result_text)
|
|
ctx.sorted_transcripts[input_frames.frames[0].time] = result
|
|
return result
|
|
|
|
|
|
def get_final_summary_response(ctx: TranscriptionContext) -> FinalSummaryResult:
|
|
"""
|
|
Collate the incremental summaries generated so far and return as the final
|
|
summary
|
|
:return:
|
|
"""
|
|
final_summary = ""
|
|
|
|
# Collate inc summaries
|
|
for topic in ctx.incremental_responses:
|
|
final_summary += topic["description"]
|
|
|
|
response = FinalSummaryResult(final_summary, ctx.last_transcribed_time)
|
|
|
|
with open("./artefacts/meeting_titles_and_summaries.txt", "a",
|
|
encoding="utf-8") as file:
|
|
file.write(json.dumps(ctx.incremental_responses))
|
|
|
|
return response
|
|
|
|
|
|
class AudioStreamTrack(MediaStreamTrack):
|
|
"""
|
|
An audio stream track.
|
|
"""
|
|
|
|
kind = "audio"
|
|
|
|
def __init__(self, ctx: TranscriptionContext, track):
|
|
super().__init__()
|
|
self.ctx = ctx
|
|
self.track = track
|
|
self.audio_buffer = av.AudioFifo()
|
|
|
|
async def recv(self) -> av.audio.frame.AudioFrame:
|
|
ctx = self.ctx
|
|
frame = await self.track.recv()
|
|
self.audio_buffer.write(frame)
|
|
|
|
if local_frames := self.audio_buffer.read_many(AUDIO_BUFFER_SIZE, partial=False):
|
|
whisper_result = run_in_executor(
|
|
get_transcription,
|
|
ctx,
|
|
TranscriptionInput(local_frames),
|
|
executor=executor
|
|
)
|
|
whisper_result.add_done_callback(
|
|
lambda f: channel_send_transcript(ctx)
|
|
if f.result()
|
|
else None
|
|
)
|
|
|
|
if len(ctx.transcription_text) > 25:
|
|
llm_input_text = ctx.transcription_text
|
|
ctx.transcription_text = ""
|
|
param = TitleSummaryInput(input_text=llm_input_text,
|
|
transcribed_time=ctx.last_transcribed_time)
|
|
llm_result = run_in_executor(get_title_and_summary,
|
|
ctx,
|
|
param,
|
|
executor=executor)
|
|
llm_result.add_done_callback(
|
|
lambda f: channel_send_increment(ctx.data_channel,
|
|
llm_result.result())
|
|
if f.result()
|
|
else None
|
|
)
|
|
return frame
|
|
|
|
|
|
async def offer(request: requests.Request) -> web.Response:
|
|
"""
|
|
Establish the WebRTC connection with the client
|
|
:param request:
|
|
:return:
|
|
"""
|
|
params = await request.json()
|
|
offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"])
|
|
|
|
ctx = TranscriptionContext()
|
|
pc = RTCPeerConnection()
|
|
pc_id = "PeerConnection(%s)" % uuid.uuid4()
|
|
pcs.add(pc)
|
|
|
|
def log_info(msg, *args) -> NoReturn:
|
|
LOGGER.info(pc_id + " " + msg, *args)
|
|
|
|
log_info("Created for " + request.remote)
|
|
|
|
@pc.on("datachannel")
|
|
def on_datachannel(channel) -> NoReturn:
|
|
ctx.data_channel = channel
|
|
channel_log(channel, "-", "created by remote party")
|
|
|
|
@channel.on("message")
|
|
def on_message(message: str) -> NoReturn:
|
|
channel_log(channel, "<", message)
|
|
if json.loads(message)["cmd"] == "STOP":
|
|
# Placeholder final summary
|
|
response = get_final_summary_response()
|
|
channel_send_increment(channel, response)
|
|
# To-do Add code to stop connection from server side here
|
|
# But have to handshake with client once
|
|
|
|
if isinstance(message, str) and message.startswith("ping"):
|
|
channel_send(channel, "pong" + message[4:])
|
|
|
|
@pc.on("connectionstatechange")
|
|
async def on_connectionstatechange() -> NoReturn:
|
|
log_info("Connection state is " + pc.connectionState)
|
|
if pc.connectionState == "failed":
|
|
await pc.close()
|
|
pcs.discard(pc)
|
|
|
|
@pc.on("track")
|
|
def on_track(track) -> NoReturn:
|
|
log_info("Track " + track.kind + " received")
|
|
pc.addTrack(AudioStreamTrack(ctx, relay.subscribe(track)))
|
|
|
|
await pc.setRemoteDescription(offer)
|
|
|
|
answer = await pc.createAnswer()
|
|
await pc.setLocalDescription(answer)
|
|
return web.Response(
|
|
content_type="application/json",
|
|
text=json.dumps(
|
|
{
|
|
"sdp": pc.localDescription.sdp,
|
|
"type": pc.localDescription.type
|
|
}
|
|
),
|
|
)
|
|
|
|
|
|
async def on_shutdown(application: web.Application) -> NoReturn:
|
|
"""
|
|
On shutdown, the coroutines that shutdown client connections are
|
|
executed
|
|
:param application:
|
|
:return:
|
|
"""
|
|
coroutines = [pc.close() for pc in pcs]
|
|
await asyncio.gather(*coroutines)
|
|
pcs.clear()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="WebRTC based server for Reflector"
|
|
)
|
|
parser.add_argument(
|
|
"--host", default="0.0.0.0", help="Server host IP (def: 0.0.0.0)"
|
|
)
|
|
parser.add_argument(
|
|
"--port", type=int, default=1250, help="Server port (def: 1250)"
|
|
)
|
|
args = parser.parse_args()
|
|
app = web.Application()
|
|
cors = aiohttp_cors.setup(
|
|
app,
|
|
defaults={
|
|
"*": aiohttp_cors.ResourceOptions(
|
|
allow_credentials=True,
|
|
expose_headers="*",
|
|
allow_headers="*"
|
|
)
|
|
},
|
|
)
|
|
|
|
offer_resource = cors.add(app.router.add_resource("/offer"))
|
|
cors.add(offer_resource.add_route("POST", offer))
|
|
app.on_shutdown.append(on_shutdown)
|
|
web.run_app(app, access_log=None, host=args.host, port=args.port)
|