Files
reflector/server/reflector/settings.py

133 lines
3.6 KiB
Python

from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
model_config = SettingsConfigDict(
env_file=".env",
env_file_encoding="utf-8",
extra="ignore",
)
OPENMP_KMP_DUPLICATE_LIB_OK: bool = False
# CORS
CORS_ORIGIN: str = "*"
CORS_ALLOW_CREDENTIALS: bool = False
# Database
DATABASE_URL: str = "sqlite:///./reflector.sqlite3"
# local data directory (audio for no)
DATA_DIR: str = "./data"
# Whisper
WHISPER_MODEL_SIZE: str = "tiny"
WHISPER_REAL_TIME_MODEL_SIZE: str = "tiny"
# Summarizer
SUMMARIZER_MODEL: str = "facebook/bart-large-cnn"
SUMMARIZER_INPUT_ENCODING_MAX_LENGTH: int = 1024
SUMMARIZER_MAX_LENGTH: int = 2048
SUMMARIZER_BEAM_SIZE: int = 6
SUMMARIZER_MAX_CHUNK_LENGTH: int = 1024
SUMMARIZER_USING_CHUNKS: bool = True
# Audio
AUDIO_BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME: str = "aggregator"
AUDIO_AV_FOUNDATION_DEVICE_ID: int = 1
AUDIO_CHANNELS: int = 2
AUDIO_SAMPLING_RATE: int = 48000
AUDIO_SAMPLING_WIDTH: int = 2
AUDIO_BUFFER_SIZE: int = 256 * 960
# Audio Transcription
# backends: whisper, modal
TRANSCRIPT_BACKEND: str = "whisper"
TRANSCRIPT_URL: str | None = None
TRANSCRIPT_TIMEOUT: int = 90
# Translate into the target language
TRANSLATE_URL: str | None = None
TRANSLATE_TIMEOUT: int = 90
# Audio transcription modal.com configuration
TRANSCRIPT_MODAL_API_KEY: str | None = None
# Audio transcription storage
TRANSCRIPT_STORAGE_BACKEND: str | None = None
# Storage configuration for AWS
TRANSCRIPT_STORAGE_AWS_BUCKET_NAME: str = "reflector-bucket"
TRANSCRIPT_STORAGE_AWS_REGION: str = "us-east-1"
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID: str | None = None
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY: str | None = None
# LLM
# available backend: openai, modal, oobabooga
LLM_BACKEND: str = "oobabooga"
# LLM common configuration
LLM_URL: str | None = None
LLM_HOST: str = "localhost"
LLM_PORT: int = 7860
LLM_OPENAI_KEY: str | None = None
LLM_OPENAI_MODEL: str = "gpt-3.5-turbo"
LLM_OPENAI_TEMPERATURE: float = 0.7
LLM_TIMEOUT: int = 60 * 5 # take cold start into account
LLM_MAX_TOKENS: int = 1024
LLM_TEMPERATURE: float = 0.7
ZEPHYR_LLM_URL: str | None = None
# LLM Modal configuration
LLM_MODAL_API_KEY: str | None = None
# Diarization
DIARIZATION_ENABLED: bool = True
DIARIZATION_BACKEND: str = "modal"
DIARIZATION_URL: str | None = None
# Sentry
SENTRY_DSN: str | None = None
# User authentication (none, fief)
AUTH_BACKEND: str = "none"
# User authentication using fief
AUTH_FIEF_URL: str | None = None
AUTH_FIEF_CLIENT_ID: str | None = None
AUTH_FIEF_CLIENT_SECRET: str | None = None
# API public mode
# if set, all anonymous record will be public
PUBLIC_MODE: bool = False
# Default LLM model name
DEFAULT_LLM: str = "lmsys/vicuna-13b-v1.5"
# Cache directory for all model storage
CACHE_DIR: str = "./data"
# Min transcript length to generate topic + summary
MIN_TRANSCRIPT_LENGTH: int = 750
# Celery
CELERY_BROKER_URL: str = "redis://localhost:6379/1"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
# Redis
REDIS_HOST: str = "localhost"
REDIS_PORT: int = 6379
REDIS_CACHE_DB: int = 2
# Secret key
SECRET_KEY: str = "changeme-f02f86fd8b3e4fd892c6043e5a298e21"
# Current hosting/domain
BASE_URL: str = "http://localhost:1250"
# Profiling
PROFILING: bool = False
settings = Settings()