Files
reflector/server/reflector-local/whisper_summarizer_bart.py
2023-07-26 15:13:46 +07:00

126 lines
4.3 KiB
Python

import argparse
import os
import tempfile
import moviepy.editor
import nltk
import whisper
from loguru import logger
from transformers import BartTokenizer, BartForConditionalGeneration
nltk.download('punkt', quiet=True)
WHISPER_MODEL_SIZE = "base"
def init_argparse() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
usage="%(prog)s [OPTIONS] <LOCATION> <OUTPUT>",
description="Creates a transcript of a video or audio file, then summarizes it using BART."
)
parser.add_argument("location", help="Location of the media file")
parser.add_argument("output", help="Output file path")
parser.add_argument(
"-t", "--transcript", help="Save a copy of the intermediary transcript file", type=str)
parser.add_argument(
"-l", "--language", help="Language that the summary should be written in",
type=str, default="english", choices=['english', 'spanish', 'french', 'german', 'romanian'])
parser.add_argument(
"-m", "--model_name", help="Name or path of the BART model",
type=str, default="facebook/bart-large-cnn")
return parser
# NLTK chunking function
def chunk_text(txt, max_chunk_length=500):
"Split text into smaller chunks."
sentences = nltk.sent_tokenize(txt)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_chunk_length:
current_chunk += f" {sentence.strip()}"
else:
chunks.append(current_chunk.strip())
current_chunk = f"{sentence.strip()}"
chunks.append(current_chunk.strip())
return chunks
# BART summary function
def summarize_chunks(chunks, tokenizer, model):
summaries = []
for c in chunks:
input_ids = tokenizer.encode(c, return_tensors='pt')
summary_ids = model.generate(
input_ids, num_beams=4, length_penalty=2.0, max_length=1024, no_repeat_ngram_size=3)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
summaries.append(summary)
return summaries
def main():
import sys
sys.setrecursionlimit(10000)
parser = init_argparse()
args = parser.parse_args()
media_file = args.location
logger.info(f"Processing file: {media_file}")
# If the media file we just retrieved is a video, extract its audio stream.
if os.path.isfile(media_file) and media_file.endswith(('.mp4', '.avi', '.flv')):
audio_filename = tempfile.NamedTemporaryFile(
suffix=".mp3", delete=False).name
logger.info(f"Extracting audio to: {audio_filename}")
video = moviepy.editor.VideoFileClip(media_file)
video.audio.write_audiofile(audio_filename, logger=None)
logger.info("Finished extracting audio")
media_file = audio_filename
# Transcribe the audio file using the OpenAI Whisper model
logger.info("Loading Whisper speech-to-text model")
whisper_model = whisper.load_model(WHISPER_MODEL_SIZE)
logger.info(f"Transcribing audio file: {media_file}")
whisper_result = whisper_model.transcribe(media_file)
logger.info("Finished transcribing file")
# If we got the transcript parameter on the command line, save the transcript to the specified file.
if args.transcript:
logger.info(f"Saving transcript to: {args.transcript}")
transcript_file = open(args.transcript, "w")
transcript_file.write(whisper_result["text"])
transcript_file.close()
# Summarize the generated transcript using the BART model
logger.info(f"Loading BART model: {args.model_name}")
tokenizer = BartTokenizer.from_pretrained(args.model_name)
model = BartForConditionalGeneration.from_pretrained(args.model_name)
logger.info("Breaking transcript into smaller chunks")
chunks = chunk_text(whisper_result['text'])
logger.info(
f"Transcript broken into {len(chunks)} chunks of at most 500 words") # TODO fix variable
logger.info(f"Writing summary text in {args.language} to: {args.output}")
with open(args.output, 'w') as f:
f.write('Summary of: ' + args.location + "\n\n")
summaries = summarize_chunks(chunks, tokenizer, model)
for summary in summaries:
f.write(summary.strip() + "\n\n")
logger.info("Summarization completed")
if __name__ == "__main__":
main()