Files
reflector/reflector-local/1-transcript-generator.py
2023-06-12 20:56:30 -04:00

58 lines
1.8 KiB
Python
Executable File

import argparse
import os
import moviepy.editor
from loguru import logger
import whisper
WHISPER_MODEL_SIZE = "base"
def init_argparse() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
usage="%(prog)s <LOCATION> <OUTPUT>",
description="Creates a transcript of a video or audio file using the OpenAI Whisper model"
)
parser.add_argument("location", help="Location of the media file")
parser.add_argument("output", help="Output file path")
return parser
def main():
import sys
sys.setrecursionlimit(10000)
parser = init_argparse()
args = parser.parse_args()
media_file = args.location
logger.info(f"Processing file: {media_file}")
# Check if the media file is a valid audio or video file
if os.path.isfile(media_file) and not media_file.endswith(('.mp3', '.wav', '.ogg', '.flac', '.mp4', '.avi', '.flv')):
logger.error(f"Invalid file format: {media_file}")
return
# If the media file we just retrieved is an audio file then skip extraction step
audio_filename = media_file
logger.info(f"Found audio-only file, skipping audio extraction")
audio = moviepy.editor.AudioFileClip(audio_filename)
logger.info("Selected extracted audio")
# Transcribe the audio file using the OpenAI Whisper model
logger.info("Loading Whisper speech-to-text model")
whisper_model = whisper.load_model(WHISPER_MODEL_SIZE)
logger.info(f"Transcribing file: {media_file}")
whisper_result = whisper_model.transcribe(media_file)
logger.info("Finished transcribing file")
# Save the transcript to the specified file.
logger.info(f"Saving transcript to: {args.output}")
transcript_file = open(args.output, "w")
transcript_file.write(whisper_result["text"])
transcript_file.close()
if __name__ == "__main__":
main()