Files
reflector/server/gpu/modal/reflector_llm.py
2023-08-16 22:37:20 +05:30

188 lines
5.2 KiB
Python

"""
Reflector GPU backend - LLM
===========================
"""
import os
from modal import asgi_app, Image, method, Secret, Stub
from pydantic.typing import Optional
# LLM
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
LLM_LOW_CPU_MEM_USAGE: bool = True
LLM_TORCH_DTYPE: str = "bfloat16"
LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/model"
stub = Stub(name="reflector-llm")
def download_llm():
from huggingface_hub import snapshot_download
print("Downloading LLM model")
snapshot_download(LLM_MODEL, local_dir=IMAGE_MODEL_DIR)
print("LLM model downloaded")
def migrate_cache_llm():
"""
XXX The cache for model files in Transformers v4.22.0 has been updated.
Migrating your old cache. This is a one-time only operation. You can
interrupt this and resume the migration later on by calling
`transformers.utils.move_cache()`.
"""
from transformers.utils.hub import move_cache
print("Moving LLM cache")
move_cache()
print("LLM cache moved")
llm_image = (
Image.debian_slim(python_version="3.10.8")
.apt_install("git")
.pip_install(
"transformers",
"torch",
"sentencepiece",
"protobuf",
"jsonformer==0.12.0",
"accelerate==0.21.0",
"einops==0.6.1",
"hf-transfer~=0.1",
"huggingface_hub==0.16.4",
)
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
.run_function(download_llm)
.run_function(migrate_cache_llm)
)
@stub.cls(
gpu="A100",
timeout=60 * 5,
container_idle_timeout=60 * 5,
concurrency_limit=2,
image=llm_image,
)
class LLM:
def __enter__(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
print("Instance llm model")
model = AutoModelForCausalLM.from_pretrained(
IMAGE_MODEL_DIR,
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
)
# generation configuration
print("Instance llm generation config")
# JSONFormer doesn't yet support generation configs, but keeping for future usage
model.config.max_new_tokens = LLM_MAX_NEW_TOKENS
gen_cfg = GenerationConfig.from_model_config(model.config)
gen_cfg.max_new_tokens = LLM_MAX_NEW_TOKENS
# load tokenizer
print("Instance llm tokenizer")
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
# move model to gpu
print("Move llm model to GPU")
model = model.cuda()
print("Warmup llm done")
self.model = model
self.tokenizer = tokenizer
self.gen_cfg = gen_cfg
def __exit__(self, *args):
print("Exit llm")
@method()
def warmup(self):
print("Warmup ok")
return {"status": "ok"}
@method()
def generate(self, prompt: str, schema: str = None):
print(f"Generate {prompt=}")
if schema:
import ast
import jsonformer
jsonformer_llm = jsonformer.Jsonformer(model=self.model,
tokenizer=self.tokenizer,
json_schema=ast.literal_eval(schema),
prompt=prompt,
max_string_token_length=self.gen_cfg.max_new_tokens)
response = jsonformer_llm()
print(f"Generated {response=}")
return {"text": response}
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(
self.model.device
)
output = self.model.generate(input_ids, generation_config=self.gen_cfg)
# decode output
response = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
print(f"Generated {response=}")
return {"text": response}
# -------------------------------------------------------------------
# Web API
# -------------------------------------------------------------------
@stub.function(
container_idle_timeout=60 * 10,
timeout=60 * 5,
secrets=[
Secret.from_name("reflector-gpu"),
],
)
@asgi_app()
def web():
from fastapi import FastAPI, HTTPException, status, Depends
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
llmstub = LLM()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class LLMRequest(BaseModel):
prompt: str
schema: Optional[str] = None
@app.post("/llm", dependencies=[Depends(apikey_auth)])
async def llm(
req: LLMRequest,
):
func = llmstub.generate.spawn(prompt=req.prompt, schema=req.schema)
result = func.get()
return result
@app.post("/warmup", dependencies=[Depends(apikey_auth)])
async def warmup():
return llmstub.warmup.spawn().get()
return app