Files
reflector/server/gpu/modal_deployments/reflector_transcriber.py
2025-03-25 11:09:01 +01:00

162 lines
4.2 KiB
Python

import os
import tempfile
import threading
import modal
from pydantic import BaseModel
MODELS_DIR = "/models"
MODEL_NAME = "large-v2"
MODEL_COMPUTE_TYPE: str = "float16"
MODEL_NUM_WORKERS: int = 1
MINUTES = 60 # seconds
volume = modal.Volume.from_name("models", create_if_missing=True)
app = modal.App("reflector-transcriber")
def download_model():
from faster_whisper import download_model
volume.reload()
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
volume.commit()
image = (
modal.Image.debian_slim(python_version="3.12")
.pip_install(
"huggingface_hub==0.27.1",
"hf-transfer==0.1.9",
"torch==2.5.1",
"faster-whisper==1.1.1",
)
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1",
"LD_LIBRARY_PATH": (
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
),
}
)
.run_function(download_model, volumes={MODELS_DIR: volume})
)
@app.cls(
gpu="A10G",
timeout=5 * MINUTES,
scaledown_window=5 * MINUTES,
allow_concurrent_inputs=6,
image=image,
volumes={MODELS_DIR: volume},
)
class Transcriber:
@modal.enter()
def enter(self):
import faster_whisper
import torch
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=MODEL_COMPUTE_TYPE,
num_workers=MODEL_NUM_WORKERS,
download_root=MODELS_DIR,
local_files_only=True,
)
@modal.method()
def transcribe_segment(
self,
audio_data: str,
audio_suffix: str,
language: str,
):
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
fp.write(audio_data)
with self.lock:
segments, _ = self.model.transcribe(
fp.name,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(segment.text for segment in segments)
words = [
{"word": word.word, "start": word.start, "end": word.end}
for segment in segments
for word in segment.words
]
return {"text": text, "words": words}
@app.function(
scaledown_window=60,
timeout=60,
allow_concurrent_inputs=40,
secrets=[
modal.Secret.from_name("reflector-gpu"),
],
volumes={MODELS_DIR: volume},
)
@modal.asgi_app()
def web():
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
from fastapi.security import OAuth2PasswordBearer
from typing_extensions import Annotated
transcriber = Transcriber()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class TranscriptResponse(BaseModel):
result: dict
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
def transcribe(
file: UploadFile,
model: str = "whisper-1",
language: Annotated[str, Body(...)] = "en",
) -> TranscriptResponse:
audio_data = file.file.read()
audio_suffix = file.filename.split(".")[-1]
assert audio_suffix in supported_file_types
func = transcriber.transcribe_segment.spawn(
audio_data=audio_data,
audio_suffix=audio_suffix,
language=language,
)
result = func.get()
return result
return app